1
|
Hashemi M, Gholamrezaie H, Ziyaei F, Asadi S, Naeini ZY, Salimian N, Enayat G, Sharifi N, Aliahmadi M, Rezaie YS, Khoushab S, Rahimzadeh P, Miri H, Abedi M, Farahani N, Taheriazam A, Nabavi N, Entezari M. Role of lncRNA PVT1 in the progression of urological cancers: Novel insights into signaling pathways and clinical opportunities. Cell Signal 2025; 131:111736. [PMID: 40081549 DOI: 10.1016/j.cellsig.2025.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Urologic malignancies, encompassing cancers of the kidney, bladder, and prostate, represent approximately 25 % of all cancer cases. Recent advances have enhanced our understanding of PVT1's crucial functions. Long noncoding RNAs influence both the onset and development of cancer, as well as epigenetic alterations. Recent findings have focused on PVT1's mechanism of action across several malignancies, particularly urologic cancers. Understanding the various functions of PVT1 linked to cancer is necessary for the development of cancer detection and treatment when PVT1 is dysregulated. Furthermore, recent advancements in genomic and epigenetic research have elucidated the complex regulatory networks that control PVT1 expression. Comprehending the intricate role of PVT1 Understanding the complex function of PVT1 in urologic cancers has substantial clinical implications. Here, we summarize some of the most recent findings about the carcinogenic effects of PVT1 signaling pathways and the possible treatment strategies for urological malignancies that target these pathways.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faezeh Ziyaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Yousefian Naeini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology,Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Salimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Golnaz Enayat
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Sharifi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran,Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Huang L, Shen Q, Yu K, Yang J, Li X. RBPMS-AS1 sponges miR-19a-3p to restrain cervical cancer cells via enhancing PLCL1-mediated pyroptosis. Biotechnol Appl Biochem 2025; 72:340-354. [PMID: 39300709 DOI: 10.1002/bab.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Cervical cancer (CC) poses a threat to human health. Enhancing pyroptosis can prevent the proliferation and epithelial-mesenchymal transition (EMT) of tumor cells. This study aims to reveal the candidates that modulate pyroptosis in CC. Accordingly, the common microRNAs (miRNAs/miRs) that were sponged by RBPMS antisense RNA 1 (RBPMS-AS1) and could target Phospholipase C-Like 1 (PLCL1) were intersected. The expression of PBPMS-AS1/miR-19a-3p (candidate miRNA)/PLCL1 was predicted in cervical squamous cell carcinoma (CESC), by which the expression location of RBPMS-AS1 and the binding between RBPMS-AS1/PLCL1 and miR-19a-3p were analyzed. The targeting relationship between RBPMS-AS1/PLCL1 and miR-19a-3p was confirmed by dual-luciferase reporter assay. After the transfection, cell counting kit-8 assay, colony formation assay, quantitative reverse transcription PCR, and Western blot were implemented for cell viability and proliferation analysis as well as gene and protein expression quantification analysis. Based on the results, RBPMS-AS1 and PLCL1 were lowly expressed, yet miR-19a-3p was highly expressed in CESC. RBPMS-AS1 overexpression diminished the proliferation and expressions of N-cadherin, vimentin, and miR-19a-3p, yet enhanced those of E-cadherin, PLCL1, and pyroptosis-relevant proteins (inteleukin-1β, caspase-1, and gasdermin D N-terminal). However, the above RBPMS-AS1 overexpression-induced effects were counteracted in the presence of miR-19a-3p. There also existed a targeting relationship and negative interplay between PLCL1 and miR-19a-3p. In short, RBPMS-AS1 sponges miR-19a-3p and represses the growth and EMT of CC cells via enhancing PLCL1-mediated pyroptosis.
Collapse
Affiliation(s)
- Lina Huang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qinqin Shen
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kun Yu
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jie Yang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiuxiu Li
- Department of Science and Education, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Sinha A, Ghosh S, Ghosh A, Ghosh A, Mathai S, Bhaumik J, Mukhopadhyay A, Maitra A, Biswas NK, Sengupta S. Unfurling the functional association between long intergenic noncoding RNAs (lincRNAs) and HPV16-related cervical cancer pathogenesis through weighted gene co-expression network analysis of differentially expressed lincRNAs and coding genes. Carcinogenesis 2024; 45:451-462. [PMID: 38446431 DOI: 10.1093/carcin/bgae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) do not overlap annotated coding genes and are located in intergenic regions, as opposed to antisense and sense-intronic lncRNAs, located in genic regions. LincRNAs influence gene expression profiles and are thereby key to disease pathogenesis. In this study, we assessed the association between lincRNAs and HPV16-positive cervical cancer (CaCx) pathogenesis using weighted gene co-expression network analysis (WGCNA) with coding genes, comparing differentially expressed lincRNA and coding genes (DElincGs and DEcGs, respectively) in HPV16-positive patients with CaCx (n = 44) with those in HPV-negative healthy individuals (n = 34). Our analysis revealed five DElincG modules, co-expressing and correlating with DEcGs. We validated a substantial number of such module-specific correlations in the HPV16-positive cancer TCGA-CESC dataset. Four such modules, displayed significant correlations with patient traits, such as HPV16 physical status, lymph node involvement and overall survival (OS), highlighting a collaborative effect of all genes within specific modules on traits. Using the DAVID bioinformatics knowledgebase, we identified the underlying biological processes associated with these modules as cancer development and progression-associated pathways. Next, we identified the top 10 DElincGs with the highest connectivity within each functional module. Focusing on the prognostic module hub genes, downregulated CTD-2619J13.13 expression was associated with poor patient OS. This lincRNA gene interacted with 25 coding genes of its module and was associated with such biological processes as keratinization loss and keratinocyte differentiation, reflecting severe disease phenotypes. This study has translational relevance in fighting various cancers with high mortality rates in underdeveloped countries.
Collapse
Affiliation(s)
- Abarna Sinha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sahana Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Abhisikta Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sonia Mathai
- Tata Medical Center, Kolkata, West Bengal, India
| | | | - Asima Mukhopadhyay
- Kolkata Gynecological Oncology Trials and Translational Research Group, Kolkata, West Bengal, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sharmila Sengupta
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
4
|
Shahamiri K, Alghasi A, Saki N, Teimori H, Kaydani GA, sheikhi S. Upregulation of the long noncoding RNA GJA9-MYCBP and PVT1 is a potential diagnostic biomarker for acute lymphoblastic leukemia. Cancer Rep (Hoboken) 2024; 7:e2115. [PMID: 38994720 PMCID: PMC11240143 DOI: 10.1002/cnr2.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common type of blood cancer in children. Aberrant expression of long noncoding RNAs (lncRNAs) may set stages for ALL development. LncRNAs are emerging as a novel diagnostic and prognostic biomarker for ALL. Herein, we aimed to evaluate the expression of lncRNA GJA9-MYCBP and PVT1 in blood samples of ALL and healthy individuals. METHODS As a case-control study, 40 pairs of ALL and healthy individual samples were used. The expression of MYC and each candidate lncRNA was measured using quantitative real-time PCR. Any possible association between the expression of putative noncoding RNAs and clinicopathological characteristics was also evaluated. RESULTS LncRNA GJA9-MYCBP and PVT1 were significantly upregulated in ALL samples compared with healthy ones. Similarly, mRNA levels of MYC were increased in ALL samples than control ones. Receiver operating characteristic curve analysis indicated a satisfactory diagnostic efficacy (p-value <.0001), suggesting that lncRNA GJA9-MYCBP and PVT1 may serve as a diagnostic biomarker for ALL. Linear regression analysis unveiled positive correlations between the expression level of MYC and lncRNA GJA9-MYCBP and PVT1 in ALL patients (p-values <.01). CONCLUSIONS In this study, we provided approval for the clinical diagnostic significance of lncRNA GJA9-MYCBP and PVT1that their upregulations may be a diagnostic biomarker for ALL.
Collapse
Affiliation(s)
- Kamal Shahamiri
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Arash Alghasi
- Thalassemia & Hemoglobinopathy Research center, Health research instituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research center, Health research instituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Gholam Abbas Kaydani
- Department of Laboratory Sciences, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Setare sheikhi
- Department of Hematology and Blood Transfusion, School of Allied Medical SciencesTehran University of Medical scienceTehranIran
| |
Collapse
|
5
|
Singh AK, Walavalkar K, Tavernari D, Ciriello G, Notani D, Sabarinathan R. Cis-regulatory effect of HPV integration is constrained by host chromatin architecture in cervical cancers. Mol Oncol 2024; 18:1189-1208. [PMID: 38013620 PMCID: PMC11076994 DOI: 10.1002/1878-0261.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Human papillomavirus (HPV) infections are the primary drivers of cervical cancers, and often HPV DNA gets integrated into the host genome. Although the oncogenic impact of HPV encoded genes is relatively well known, the cis-regulatory effect of integrated HPV DNA on host chromatin structure and gene regulation remains less understood. We investigated genome-wide patterns of HPV integrations and associated host gene expression changes in the context of host chromatin states and topologically associating domains (TADs). HPV integrations were significantly enriched in active chromatin regions and depleted in inactive ones. Interestingly, regardless of chromatin state, genomic regions flanking HPV integrations showed transcriptional upregulation. Nevertheless, upregulation (both local and long-range) was mostly confined to TADs with integration, but not affecting adjacent TADs. Few TADs showed recurrent integrations associated with overexpression of oncogenes within them (e.g. MYC, PVT1, TP63 and ERBB2) regardless of proximity. Hi-C and 4C-seq analyses in cervical cancer cell line (HeLa) demonstrated chromatin looping interactions between integrated HPV and MYC/PVT1 regions (~ 500 kb apart), leading to allele-specific overexpression. Based on these, we propose HPV integrations can trigger multimodal oncogenic activation to promote cancer progression.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Kaivalya Walavalkar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Daniele Tavernari
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute for Experimental Cancer Research (ISREC), EPFLLausanneSwitzerland
| | - Giovanni Ciriello
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Dimple Notani
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | | |
Collapse
|
6
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
7
|
Davoodvandi A, Rafiyan M, Mansournia MA, Rajabpoor Nikoo N, Saati M, Samimi M, Asemi Z. MicroRNA and gynecological cancers: Focus on miR-195. Pathol Res Pract 2023; 249:154784. [PMID: 37639954 DOI: 10.1016/j.prp.2023.154784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Different cancer types have been shown to have down-regulated expression levels of miR-195 as an anti-tumor agent. MiR-195 family members can inhibit cancer cell proliferation, angiogenesis, epithelial-mesenchymal transition and metastases, immunosuppression, glycolysis, drug resistance, and cancer stem cell development by targeting the 3'-UTR of the mRNA of different pro-tumor genes. MiR-195 identified as a tumor suppressor miR in a variety of cancers, most notably gynecological malignancies such as cervical, endometrial, and ovarian carcinoma. As a result, restoring miR-195 expression should be regarded as a potential therapy for either prevention or treatment of gynecological cancers. This review will present the most recent data about miR-195-mediated anti-tumor effects in gynecological malignancies, emphasizing its downstream signaling pathways and target genes, as well as prospective treatment techniques.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Islamic Republic of Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nesa Rajabpoor Nikoo
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Maryam Saati
- Department of Nursing, Semnan Branch, Islamic Azad University, Semnan, Islamic Republic of Iran
| | - Mansooreh Samimi
- Department of Gynecology and Obstetrics, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
8
|
Zhang L, Wang X, Nepovimova E, Wu Q, Wu W, Kuca K. Deoxynivalenol upregulates hypoxia-inducible factor-1α to promote an "immune evasion" process by activating STAT3 signaling. Food Chem Toxicol 2023; 179:113975. [PMID: 37517547 DOI: 10.1016/j.fct.2023.113975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Trichothecene mycotoxin deoxynivalenol (DON) negatively regulates immune response by damaging host immune system and harming the organism's health. We hypothesized that DON can initiate an active immunosuppressive mechanism similar to "immune evasion" to alter the cellular microenvironment and evade immune surveillance. We tested this hypothesis using the RAW264.7 macrophage model. DON rapidly increased the expression of immune checkpoints PD-1 and PD-L1, inflammatory cytokine TGF-β, and key immune evasion factors STAT3, VEGF, and TLR-4, and caused cellular hypoxia. Importantly, hypoxia-inducible factor-1α (HIF-1α) acts as a key regulator of DON-induced immunosuppression. HIF-1α accumulated in the cytoplasm and was gradually transferred to the nucleus following DON treatment. Moreover, DON activated HIF-1α through STAT3 signaling to upregulate downstream signaling, including PD-1/PD-L1. Under DON treatment, immunosuppressive miR-210-3p, lncRNA PVT1, lncRNA H19, and lncRNA HOTAIR were upregulated by the STAT3/HIF-1α axis. Moreover, DON damaged mitochondrial function, causing mitophagy, and suppressed immune defenses. Collectively, DON triggered RAW264.7 intracellular hypoxia and rapidly activated HIF-1α via STAT3 signaling, activating immune evasion signals, miRNAs, and lncRNAs, thereby initiating the key link of immune evasion. This study offers further clues for accurate prevention and treatment of immune diseases caused by mycotoxins.
Collapse
Affiliation(s)
- Luying Zhang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic.
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
9
|
Vučković N, Hoppe-Seyler K, Riemer AB. Characterization of DoTc2 4510-Identifying HPV16 Presence in a Cervical Carcinoma Cell Line Previously Considered to Be HPV-Negative. Cancers (Basel) 2023; 15:3810. [PMID: 37568626 PMCID: PMC10417116 DOI: 10.3390/cancers15153810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cervical cancer is the fourth leading cause of cancer deaths in women, with over 340,000 women dying from this disease in 2020. Almost all cases have an underlying persistent infection with an oncogenic high-risk type of human papillomavirus (HPV), mainly HPV16. While cervical squamous cell carcinoma is hardly ever HPV-negative, a small subset of adenocarcinoma exhibits absence of HPV, even after disproval of false-negative testing results due to low viral load. This proportion is evident in many cervical cancer studies and is reflected in the repertoire of model cell lines commonly used in research. As the viral origin of cervical cancer makes it a disease preventable and potentially treatable by immunotherapeutic approaches, it is the focus of many studies. For pertinent research, both a broad set of HPV-infected cervical carcinoma models are required, as well as stringent negative controls. A ubiquitously used HPV-negative cervical adenocarcinoma cell line is C-33A. Another cervical cancer cell line is available for purchase from the American Type Culture Collection (ATCC), namely DoTc2 4510, described to be HPV-negative and thus as a model for a rare gynecological malignancy. Here, we present findings proving that DoTc2 4510 is, in fact, an HPV16-positive cell line. This we assessed using a highly sensitive nested multiplex PCR protocol adapted for the identification of 12 carcinogenic HPV types and a second PCR targeting the HPV16 oncogenes E6 and E7. Subsequently, the protein expression of E6 and E7 was examined, as well as the expression of their target proteins p53, p21, and p16INK4a, to assess E6/E7 functionality. Finally, to attest to the survival dependence of DoTc2 4510 cells on HPV16, we performed an HPV16 E6/E7-targeted siRNA knock-down, which indeed led to senescence induction. Together, these findings demonstrate that DoTc2 4510 is an HPV16-transformed cell line.
Collapse
Affiliation(s)
- Nika Vučković
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Angelika B. Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Long non-coding RNAs as promising biomarkers and therapeutic targets in cervical cancer. Noncoding RNA Res 2023; 8:233-239. [PMID: 36890809 PMCID: PMC9988427 DOI: 10.1016/j.ncrna.2023.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Cervical cancer is the second most common cancer in women. The detection of oncopathologies in the early stages of development is a paramount task of modern medicine, which can be solved only by improving modern diagnostic methods. The use of screening for certain tumor markers could complement modern tests such as testing for oncogenic types of human papillomavirus (HPV), cytology, colposcopy with acetic acid and iodine solutions. Such highly informative biomarkers can be long noncoding RNAs (lncRNAs) that are highly specific compared to the mRNA profile and are involved in the regulation of gene expression. LncRNAs are a class of non-coding RNAs molecules that are typically over 200 nucleotides in length. LncRNAs may be involved in the regulation of all major cellular processes, including proliferation and differentiation, metabolism, signaling pathways, and apoptosis. LncRNAs molecules are highly stable due to their small size, which is also their undoubted advantage. The study of individual lncRNAs as regulators of the expression of genes involved in the mechanisms of oncogenesis cervical cancer can be not only of great diagnostic value, but, as a result, of therapeutic significance in cervical cancer patients. This review article will present the characteristics of lncRNAs that allow them to be used as accurate diagnostic and prognostic tools, as well as to consider them as effective therapeutic targets in cervical cancer.
Collapse
|
11
|
Shi W, Sethi G. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment. J Cell Physiol 2023; 238:880-895. [PMID: 36924057 DOI: 10.1002/jcp.30992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
A novel kind of nonapoptotic, iron-dependent cell death brought on by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including neurotoxicity, neurological disorders, ischemia-reperfusion damage, and particularly cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Recent studies have established the critical roles that ferroptosis can play in cancer development and the evolution of resistance to standard chemoradiotherapy, thus suggesting that ferroptosis may be a feasible therapeutic strategy for cancer management. Gene expression may be regulated at the transcriptional and posttranscriptional levels by long noncoding RNAs (lncRNAs). They have been implicated in tumorigenesis. Some lncRNAs participate in the biological process of ferroptosis, which represents an exciting alternative to regulate ferroptosis as a means of cancer therapy. Even though there is evidence that lncRNAs have a mechanistic role in the ferroptosis of cancer cells, research on the mechanism and potential treatments for these lncRNAs is still lacking. We elucidate the potential mechanisms by which lncRNAs modulate ferroptosis in cancer and examine the promise and challenges of employing lncRNAs as novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Li Q, Kong F, Cong R, Ma J, Wang C, Ma X. PVT1/miR-136/Sox2/UPF1 axis regulates the malignant phenotypes of endometrial cancer stem cells. Cell Death Dis 2023; 14:177. [PMID: 36869031 PMCID: PMC9984375 DOI: 10.1038/s41419-023-05651-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/22/2022] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
Tumor stem cells (TSCs) are thought to contribute to the progression and maintenance of cancer. Previous studies have suggested that plasmacytoma variant translocation 1 (PVT1) has a tumor-promoting effect on endometrial cancer; however, its mechanism of action in endometrial cancer stem cells (ECSCs) is unknown. Here, we found that PVT1 was highly expressed in endometrial cancers and ECSCs, correlated with poor patient prognosis, promoted the malignant behavior and the stemness of endometrial cancer cells (ECCs) and ECSCs. In contrast, miR-136, which was lowly expressed in endometrial cancer and ECSCs, had the opposite effect, and knockdown miR-136 inhibited the anticancer effects of down-regulated PVT1. PVT1 affected miR-136 specifically binding the 3' UTR region of Sox2 by competitively "sponging" miR-136, thus positively saving Sox2. Sox2 promoted the malignant behavior and the stemness of ECCs and ECSCs, and overexpression Sox2 inhibited the anticancer effects of up-regulated miR-136. Sox2 can act as a transcription factor to positively regulate Up-frameshift protein 1 (UPF1) expression, thereby exerting a tumor-promoting effect on endometrial cancer. In nude mice, simultaneously downregulating PVT1 and upregulating miR-136 exerted the strongest antitumor effect. We demonstrate that the PVT1/miR-136/Sox2/UPF1 axis plays an important role in the progression and maintenance of endometrial cancer. The results suggest a novel target for endometrial cancer therapies.
Collapse
Affiliation(s)
- Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Rong Cong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China.
| |
Collapse
|
13
|
Zhou M, Liu L, Wang J, Liu W. The role of long noncoding RNAs in therapeutic resistance in cervical cancer. Front Cell Dev Biol 2022; 10:1060909. [PMID: 36438563 PMCID: PMC9682114 DOI: 10.3389/fcell.2022.1060909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is one of the common tumors and often causes cancer-related death in women. Chemotherapy is a common cancer therapy, which displays a pivotal clinical benefit for cancer patients. However, chemoresistance becomes a big obstacle for failure of treatment in cancer patients. Recently, long noncoding RNAs (lncRNAs) have been identified to regulate drug resistance in human cancers, including cervical cancer. In this review, we describe the role of lncRNAs in regulation of chemotherapeutic resistance in cervical cancer. We also discuss the molecular mechanisms of lncRNA-mediated drug resistance in cervical cancer. Moreover, we describe that targeting lncRNAs could reverse drug resistance in cervical cancer. Therefore, lncRNAs could become effective therapeutic targets and chemotherapeutic sensitizers for cervical cancer patients.
Collapse
|
14
|
San A, Palmieri D, Saxena A, Singh S. In silico study predicts a key role of RNA-binding domains 3 and 4 in nucleolin-miRNA interactions. Proteins 2022; 90:1837-1850. [PMID: 35514080 DOI: 10.1002/prot.26355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2023]
Abstract
RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for posttranscriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL-RBDs and miRNAs, as well as predict scenarios of NCL-miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.
Collapse
Affiliation(s)
- Avdar San
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anjana Saxena
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
15
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
16
|
Direct Comparison of HPV16 Viral Genomic Integration, Copy Loss, and Structural Variants in Oropharyngeal and Uterine Cervical Cancers Reveal Distinct Relationships to E2 Disruption and Somatic Alteration. Cancers (Basel) 2022; 14:cancers14184488. [PMID: 36139648 PMCID: PMC9496734 DOI: 10.3390/cancers14184488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Squamous cell carcinoma of the oropharynx caused by HPV type 16 (HPV16+ OPSCC) is the most common HPV-associated malignancy in the USA and has many molecular differences from uterine cervical squamous cell carcinoma (UCSCC). Our understanding of HPV oncogenesis relied on studies of UCSCC revealing a consensus model reliant on HPV integration with a loss of E2. Here, we compare patterns of HPV integration in UCSCC and OPSCC by analysis of affinity capture sequencing of the HPV16 genome in 104 OPSCC and 44 UCSCC tumors. These cohorts were contemporaneously sequenced using an identical strategy. Integration was identified using discordant read pair clustering and assembly-based approaches. Viral integration sites, structural variants, and copy losses were examined. While large-scale deep losses of HPV16 genes were common in UCSCC and were associated with E2 loss, deep copy losses of the HPV16 genome were infrequent in HPV16+ OPSCC. Similarly, structural variants within HPV16 favored E2 loss in UCSCC but not OPSCC. HPV16 integration sites were non-random, with recurrent integration hot-spots identified. OPSCC tumors had many more integration sites per tumor when compared to UCSCC and had more integration sites in genomic regions with high gene density. These data show that viral integration and E2 disruption are distinct in UCSCC and OPSCC. Our findings also add to growing literature suggesting that HPV tumorigenesis in OPSCC does not follow the model developed based on UCSCC.
Collapse
|
17
|
Lopatina T, Sarcinella A, Brizzi MF. Tumour Derived Extracellular Vesicles: Challenging Target to Blunt Tumour Immune Evasion. Cancers (Basel) 2022; 14:cancers14164020. [PMID: 36011012 PMCID: PMC9406972 DOI: 10.3390/cancers14164020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumour onset and development occur because of specific immune support. The immune system, which is originally able to perceive and eliminate incipient cancer cells, becomes suppressed and hijacked by cancer. For these purposes, tumour cells use extracellular vesicles (TEVs). Specific molecular composition allows TEVs to reprogram immune cells towards tumour tolerance. Circulating TEVs move from their site of origin to other organs, preparing “a fertile soil” for metastasis formation. This implies that TEV molecular content can provide a valuable tool for cancer biomarker discovery and potential targets to reshape the immune system into tumour recognition and eradication. Abstract Control of the immune response is crucial for tumour onset and progression. Tumour cells handle the immune reaction by means of secreted factors and extracellular vesicles (EV). Tumour-derived extracellular vesicles (TEV) play key roles in immune reprogramming by delivering their cargo to different immune cells. Tumour-surrounding tissues also contribute to tumour immune editing and evasion, tumour progression, and drug resistance via locally released TEV. Moreover, the increase in circulating TEV has suggested their underpinning role in tumour dissemination. This review brings together data referring to TEV-driven immune regulation and antitumour immune suppression. Attention was also dedicated to TEV-mediated drug resistance.
Collapse
|
18
|
Xie W, Chu M, Song G, Zuo Z, Han Z, Chen C, Li Y, Wang ZW. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin Cancer Biol 2022; 83:303-318. [PMID: 33207266 DOI: 10.1016/j.semcancer.2020.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is one of the most common causes of cancer death in the world due to the lack of early symptoms, metastasis occurrence and chemoresistance. Therefore, early diagnosis by detection of biomarkers, blockade of metastasis, and overcoming chemoresistance are the effective strategies to improve the survival of pancreatic cancer patients. Accumulating evidence has revealed that long noncoding RNA (lncRNA) and circular RNAs (circRNAs) play essential roles in modulating chemosensitivity in pancreatic cancer. In this review article, we will summarize the role of lncRNAs in drug resistance of pancreatic cancer cells, including HOTTIP, HOTAIR, PVT1, linc-ROR, GAS5, UCA1, DYNC2H1-4, MEG3, TUG1, HOST2, HCP5, SLC7A11-AS1 and CASC2. We also highlight the function of circRNAs, such as circHIPK3 and circ_0000284, in regulation of drug sensitivity of pancreatic cancer cells. Moreover, we describe a number of compounds, including curcumin, genistein, resveratrol, quercetin, and salinomycin, which may modulate the expression of lncRNAs and enhance chemosensitivity in pancreatic cancers. Therefore, targeting specific lncRNAs and cicrRNAs could contribute to reverse chemoresistance of pancreatic cancer cells. We hope this review might stimulate the studies of lncRNAs and cicrRNAs, and develop the new therapeutic strategy via modulating these noncoding RNAs to promote chemosensitivity of pancreatic cancer cells.
Collapse
Affiliation(s)
- Wangkai Xie
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gendi Song
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ziyi Zuo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zheng Han
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuyun Li
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Zhi-Wei Wang
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
19
|
Tabury K, Monavarian M, Listik E, Shelton AK, Choi AS, Quintens R, Arend RC, Hempel N, Miller CR, Györrfy B, Mythreye K. PVT1 is a stress-responsive lncRNA that drives ovarian cancer metastasis and chemoresistance. Life Sci Alliance 2022; 5:5/11/e202201370. [PMID: 35820706 PMCID: PMC9275596 DOI: 10.26508/lsa.202201370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Metastatic growth of ovarian cancer cells into the peritoneal cavity requires adaptation to various cellular stress factors to facilitate cell survival and growth. Here, we demonstrate the role of PVT1, one such stress induced long non-coding RNA, in ovarian cancer growth and metastasis. PVT1 is an amplified and overexpressed lncRNA in ovarian cancer with strong predictive value for survival and response to targeted therapeutics. We find that expression of PVT1 is regulated by tumor cells in response to cellular stress, particularly loss of cell-cell contacts and changes in matrix rigidity occurring in a YAP1-dependent manner. Induction of PVT1 promotes tumor cell survival, growth, and migration. Conversely, reducing PVT1 levels robustly abrogates metastatic behavior and tumor cell dissemination in cell lines and syngeneic transplantation models in vivo. We find that reducing PVT1 causes widespread changes in the transcriptome leading to alterations in cellular stress response and metabolic pathways including doxorubicin metabolism, which impacts chemosensitivity. Together, these findings implicate PVT1 as a promising therapeutic target to suppress metastasis and chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Kevin Tabury
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC, USA,Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Eduardo Listik
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Abigail K Shelton
- Division of Neuropathology, Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Alex Seok Choi
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Rebecca C Arend
- Department of Gynecology Oncology, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA,Department of Pharmacology, and Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - C Ryan Miller
- Division of Neuropathology, Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Balázs Györrfy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA,Correspondence:
| |
Collapse
|
20
|
Bohosova J, Kasik M, Kubickova A, Trachtova K, Stanik M, Poprach A, Slaby O. LncRNA PVT1 is increased in renal cell carcinoma and affects viability and migration in vitro. J Clin Lab Anal 2022; 36:e24442. [PMID: 35441392 PMCID: PMC9169165 DOI: 10.1002/jcla.24442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Renal cell carcinoma is difficult to diagnose and unpredictable in disease course and severity. There are no specific biomarkers for diagnosis and prognosis estimation feasible in clinical practice. Long non‐coding RNAs (lncRNAs) have emerged as potent regulators of gene expression in recent years. Aside from their cellular role, their expression patterns could be used as a biomarker of ongoing pathology. Methods In this work, we used next‐generation sequencing for global lncRNA expression profiling in tumor and non‐tumor tissue of RCC patients. The four candidate lncRNAs have been further validated on an independent cohort. PVT1, as the most promising lncRNA, has also been studied using functional in vitro tests. Results Next‐generation sequencing showed significant dysregulation of 1163 lncRNAs; among them top 20 dysregulated lncRNAs were AC061975.7, AC124017.1, AP000696.1, AC148477.4, LINC02437, GATA3‐AS, LINC01762, LINC01230, LINC01271, LINC01187, LINC00472, AC007849.1, LINC00982, LINC01543, AL031710.1, and AC019197.1 as down‐regulated lncRNAs; and SLC16A1‐AS1, PVT1, LINC0887, and LUCAT1 as up‐regulated lncRNAs. We observed statistically significant dysregulation of PVT1, LUCAT1, and LINC00982. Moreover, we studied the effect of artificial PVT1 decrease in renal cell line 786–0 and observed an effect on cell viability and migration. Conclusion Our results show not only the diagnostic but also the therapeutic potential of PVT1 in renal cell carcinoma.
Collapse
Affiliation(s)
- Julia Bohosova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marek Kasik
- Department of Urology, The University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Adela Kubickova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karolina Trachtova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michal Stanik
- Department of Urologic Oncology, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk Memorial Cancer Institute, Masaryk University, Brno, Czech Republic
| | - Alexandr Poprach
- Department of Urologic Oncology, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk Memorial Cancer Institute, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (Lond) 2022; 42:117-140. [PMID: 35019235 PMCID: PMC8822594 DOI: 10.1002/cac2.12254] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With the development of proteomics and epigenetics, a large number of RNA‐binding proteins (RBPs) have been discovered in recent years, and the interaction between long non‐coding RNAs (lncRNAs) and RBPs has also received increasing attention. It is extremely important to conduct in‐depth research on the lncRNA‐RBP interaction network, especially in the context of its role in the occurrence and development of cancer. Increasing evidence has demonstrated that lncRNA‐RBP interactions play a vital role in cancer progression; therefore, targeting these interactions could provide new insights for cancer drug discovery. In this review, we discussed how lncRNAs can interact with RBPs to regulate their localization, modification, stability, and activity and discussed the effects of RBPs on the stability, transport, transcription, and localization of lncRNAs. Moreover, we explored the regulation and influence of these interactions on lncRNAs, RBPs, and downstream pathways that are related to cancer development, such as N6‐methyladenosine (m6A) modification of lncRNAs. In addition, we discussed how the lncRNA‐RBP interaction network regulates cancer cell phenotypes, such as proliferation, apoptosis, metastasis, drug resistance, immunity, tumor environment, and metabolism. Furthermore, we summarized the therapeutic strategies that target the lncRNA‐RBP interaction network. Although these treatments are still in the experimental stage and various theories and processes are still being studied, we believe that these strategies may provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Zi-Ting Yao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yan-Ming Yang
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Miao-Miao Sun
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Yan He
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Long Liao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Kui-Sheng Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Bin Li
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| |
Collapse
|
22
|
Li P, Qiao G, Lu J, Ji W, Gao C, Qi F. PVT1 is a prognostic marker associated with immune invasion of bladder urothelial carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:169-190. [PMID: 34902986 DOI: 10.3934/mbe.2022009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmacytoma variant translocation 1 (PVT1) is involved in multiple signaling pathways and plays an important regulatory role in a variety of malignant tumors. However, its role in the prognosis and immune invasion of bladder urothelial carcinoma (BLCA) remains unclear. This study investigated the expression of PVT1 in tumor tissue and its relationship with immune invasion, and determined its prognostic role in patients with BLCA. Patients were identified from the cancer genome atlas (TCGA). The enrichment pathway and function of PVT1 were explained by gene ontology (GO) term analysis, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA), and the degree of immune cell infiltration was quantified. Kaplan-Meier analysis and Cox regression were used to analyze the correlation between PVT1 and survival rate. PVT1-high BLCA patients had a lower 10-year disease-specific survival (DSS P < 0.05) and overall survival (OS P < 0.05). Multivariate Cox regression analysis showed that PVT1 (high vs. low) (P = 0.004) was an independent prognostic factor. A nomogram was used to predict the effect of PVT1 on the prognosis. PVT1 plays an important role in the progression and prognosis of BLCA and can be used as a medium biomarker to predict survival after cystectomy.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Gangjie Qiao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
23
|
Liu X, Li L, Bai J, Li L, Fan J, Fu Z, Liu J. Long noncoding RNA plasmacytoma variant translocation 1 promotes progression of colorectal cancer by sponging microRNA-152-3p and regulating E2F3/MAPK8 signaling. Cancer Sci 2022; 113:109-119. [PMID: 34418232 PMCID: PMC8748219 DOI: 10.1111/cas.15113] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to investigate the pathogenesis of colorectal cancer (CRC) and the effects of the long noncoding RNA plasmacytoma variant translocation 1 (PVT1) on CRC progression. Bioinformatics analysis verified PVT1 expression in tumor and normal tissues. Quantitative PCR and western blotting were used to measure mRNA and protein levels, respectively. The MTT, Transwell, colony formation, and in vivo assays were used to assess the effects of PVT1 on proliferation, migration, and invasion by CRC cells. Both PVT1 and microRNA (miR)-152-3p were shown to be colocalized in CRC cells using FISH assay. The target genes of miR-152-3p were predicted and verified by bioinformatics analysis, luciferase assay, and RNA pull-down assay. The ChIP assay revealed that E2F3 binds with the promoter of MAPK8. We found that PVT1 was overexpressed in CRC specimens, and its expression was higher in CRC cells than normal intestinal cells. Overexpression of PVT1 enhanced the proliferation, migration, and invasion of CRC cells, whereas PVT1 knockdown inhibited these processes. MicroRNA-152-3p was a target of PVT1, and E2F3 was a target of miR-152-3p. Rescue experiments confirmed the interaction between miR-152-3p and PVT1 and between miR-152-3p and E2F3. Luciferase and ChIP assay results confirmed that E2F3 modulates the transcriptional activation of MAPK8. Long noncoding RNA PVT1 activated E2F3 signaling by sponging miR-152-3p. The PVT1/miR-152-3p/E2F3/MAPK8 axis promoted CRC progression.
Collapse
Affiliation(s)
- Xin Liu
- Department of Medical Service, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Lei Li
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Jing Bai
- Department of Geriatrics, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Liang Li
- Department of Gastroenterology, Cixian People's Hospital, Handan, China
| | - Jianghe Fan
- Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Zexian Fu
- Department of Scientific Research and Education, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Jianxia Liu
- Department of Nursing, Affiliated Hospital of Hebei University of Engineering, Handan, China
| |
Collapse
|
24
|
Prognostic Value of lncRNA PVT1 for Patients with Gastric Cancer: A Meta-Analysis. DISEASE MARKERS 2021; 2021:5595965. [PMID: 34900027 PMCID: PMC8660201 DOI: 10.1155/2021/5595965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Objective To evaluate the prognostic value of lncRNA PVT1 for patients with gastric cancer. Methods A comprehensive literature searching was performed in PubMed, Cochrane Library, Web of Science, Embase, CNKI, CBM, and Wanfang Database to identify published studies on the expression level of lncRNA PVT1 in human gastric cancer. STATA 12.0 was conducted to perform the meta-analysis. Clinical outcomes including patients' age, genders, TNM stage, OS, and DFS were assessed in the study. Results A total of 8 studies involving 747 patients were included in this meta-analysis. The results of meta-analysis showed that higher expression level of lncRNA PVT1 was associated with GC patients' gender (for male: OR = 2.27, 95% CI: 1.67~3.07, P = 0.000), invasion depth (for T3~4: OR = 3.98, 95% CI: 2.85~5.56, P = 0.000), poorer OS (HR = 1.68, 95% CI: 1.43~1.97, P = 0.000), and DFS (HR = 1.74, 95% CI: 1.44~2.08, P = 0.000). Conclusion Higher expression level of lncRNA PVT1 is significantly associated with GC patients' gender, invasion depth, poorer OS, and worse DFS. lncRNA PVT1 might act as a novel predictive biomarker of poor prognosis and clinicopathological characteristics for gastric cancer.
Collapse
|
25
|
Lagström S, Løvestad AH, Umu SU, Ambur OH, Nygård M, Rounge TB, Christiansen IK. HPV16 and HPV18 type-specific APOBEC3 and integration profiles in different diagnostic categories of cervical samples. Tumour Virus Res 2021; 12:200221. [PMID: 34175494 PMCID: PMC8287217 DOI: 10.1016/j.tvr.2021.200221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Human papillomavirus (HPV) 16 and 18 are the most predominant types in cervical cancer. Only a small fraction of HPV infections progress to cancer, indicating that additional factors and genomic events contribute to the carcinogenesis, such as minor nucleotide variation caused by APOBEC3 and chromosomal integration. We analysed intra-host minor nucleotide variants (MNVs) and integration in HPV16 and HPV18 positive cervical samples with different morphology. Samples were sequenced using an HPV whole genome sequencing protocol TaME-seq. A total of 80 HPV16 and 51 HPV18 positive samples passed the sequencing depth criteria of 300× reads, showing the following distribution: non-progressive disease (HPV16 n = 21, HPV18 n = 12); cervical intraepithelial neoplasia (CIN) grade 2 (HPV16 n = 27, HPV18 n = 9); CIN3/adenocarcinoma in situ (AIS) (HPV16 n = 27, HPV18 n = 30); cervical cancer (HPV16 n = 5). Similar numbers of MNVs in HPV16 and HPV18 samples were observed for most viral genes, with the exception of HPV18 E4 with higher numbers across clinical categories. APOBEC3 signatures were observed in HPV16 lesions, while similar mutation patterns were not detected for HPV18. The proportion of samples with integration was 13% for HPV16 and 59% for HPV18 positive samples, with a noticeable portion located within or close to cancer-related genes.
Collapse
Affiliation(s)
- Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Sinan Uğur Umu
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Ole Herman Ambur
- Faculty of Health Sciences, OsloMet, Oslo Metropolitan University, Oslo, Norway
| | - Mari Nygård
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway; Department of Informatics, University of Oslo, Oslo, Norway.
| | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog, Norway.
| |
Collapse
|
26
|
Multi-omics mapping of human papillomavirus integration sites illuminates novel cervical cancer target genes. Br J Cancer 2021; 125:1408-1419. [PMID: 34526665 PMCID: PMC8575955 DOI: 10.1038/s41416-021-01545-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Integration of human papillomavirus (HPV) into the host genome is a dominant feature of invasive cervical cancer (ICC), yet the tumorigenicity of cis genomic changes at integration sites remains largely understudied. METHODS Combining multi-omics data from The Cancer Genome Atlas with patient-matched long-read sequencing of HPV integration sites, we developed a strategy for using HPV integration events to identify and prioritise novel candidate ICC target genes (integration-detected genes (IDGs)). Four IDGs were then chosen for in vitro functional studies employing small interfering RNA-mediated knockdown in cell migration, proliferation and colony formation assays. RESULTS PacBio data revealed 267 unique human-HPV breakpoints comprising 87 total integration events in eight tumours. Candidate IDGs were filtered based on the following criteria: (1) proximity to integration site, (2) clonal representation of integration event, (3) tumour-specific expression (Z-score) and (4) association with ICC survival. Four candidates prioritised based on their unknown function in ICC (BNC1, RSBN1, USP36 and TAOK3) exhibited oncogenic properties in cervical cancer cell lines. Further, annotation of integration events provided clues regarding potential mechanisms underlying altered IDG expression in both integrated and non-integrated ICC tumours. CONCLUSIONS HPV integration events can guide the identification of novel IDGs for further study in cervical carcinogenesis and as putative therapeutic targets.
Collapse
|
27
|
Peng PH, Hsu KW, Chieh-Yu Lai J, Wu KJ. The role of hypoxia-induced long noncoding RNAs (lncRNAs) in tumorigenesis and metastasis. Biomed J 2021; 44:521-533. [PMID: 34654684 PMCID: PMC8640553 DOI: 10.1016/j.bj.2021.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs with length greater than 200 nt. The biological roles and mechanisms mediated by lncRNAs have been extensively investigated. Hypoxia is a proven microenvironmental factor that promotes solid tumor metastasis. Epithelial-mesenchymal transition (EMT) is one of the major mechanisms induced by hypoxia to contribute to metastasis. Many lncRNAs have been shown to be induced by hypoxia and their roles have been delineated. In this review, we focus on the hypoxia-inducible lncRNAs that interact with protein/protein complex and chromatin/epigenetic factors, and the mechanisms that contribute to metastasis. The role of a recently discovered lncRNA RP11-390F4.3 in hypoxia-induced EMT is discussed. Whole genome approaches to delineating the association between lncRNAs and histone modifications are discussed. Other topics related to hypoxia-induced tumor progression but require further investigation are also mentioned. The clinical significance and treatment strategy targeted against lncRNAs are discussed. The review aims to identify suitable lncRNA targets that may provide feasible therapeutic venues for hypoxia-involved cancers.
Collapse
Affiliation(s)
- Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | | | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Shen T, Xia W, Min S, Yang Z, Cheng L, Wang W, Zhan Q, Shao F, Zhang X, Wang Z, Zhang Y, Shen G, Zhang H, Wu LL, Yu GY, Kong QP, Wang X. A pair of long intergenic non-coding RNA LINC00887 variants act antagonistically to control Carbonic Anhydrase IX transcription upon hypoxia in tongue squamous carcinoma progression. BMC Biol 2021; 19:192. [PMID: 34493285 PMCID: PMC8422755 DOI: 10.1186/s12915-021-01112-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are important regulators in tumor progression. However, their biological functions and underlying mechanisms in hypoxia adaptation remain largely unclear. Results Here, we established a correlation between a Chr3q29-derived lncRNA gene and tongue squamous carcinoma (TSCC) by genome-wide analyses. Using RACE, we determined that two novel variants of this lncRNA gene are generated in TSCC, namely LINC00887_TSCC_short (887S) and LINC00887_TSCC_long (887L). RNA-sequencing in 887S or 887L loss-of-function cells identified their common downstream target as Carbonic Anhydrase IX (CA9), a gene known to be upregulated by hypoxia during tumor progression. Mechanistically, our results showed that the hypoxia-augmented 887S and constitutively expressed 887L functioned in opposite directions on tumor progression through the common target CA9. Upon normoxia, 887S and 887L interacted. Upon hypoxia, the two variants were separated. Each RNA recognized and bound to their responsive DNA cis-acting elements on CA9 promoter: 887L activated CA9’s transcription through recruiting HIF1α, while 887S suppressed CA9 through DNMT1-mediated DNA methylation. Conclusions We provided hypoxia-permitted functions of two antagonistic lncRNA variants to fine control the hypoxia adaptation through CA9. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01112-2.
Collapse
Affiliation(s)
- Tao Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wangxiao Xia
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
| | - Sainan Min
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Zixuan Yang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Lehua Cheng
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
| | - Wei Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Qianxi Zhan
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Fanghong Shao
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Xuehan Zhang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhiyu Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Yan Zhang
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guodong Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, 650223, China.
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China. .,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
29
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
García-Venzor A, Mandujano-Tinoco EA, Ruiz-Silvestre A, Sánchez JM, Lizarraga F, Zampedri C, Melendez-Zajgla J, Maldonado V. lncMat2B regulated by severe hypoxia induces cisplatin resistance by increasing DNA damage repair and tumor-initiating population in breast cancer cells. Carcinogenesis 2021; 41:1485-1497. [PMID: 32710610 DOI: 10.1093/carcin/bgaa078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
Multicellular tumor spheroids (MCTSs) constitute a three-dimensional culture system that recapitulates the in vivo tumor microenvironment. Tumor cells cultured as MCTSs present antineoplastic resistance due to the effect of microenvironmental signals acting upon them. In this work, we evaluated the biological function of a new microenvironment-regulated long non-coding RNA, lncMat2B, in breast cancer. In MCTSs, the expression of lncMat2B presented an increase and a zonal heterogeneity, as it was expressed principally in quiescent cells of hypoxic regions of the MCTSs. As expected, functional assays supported the role of severe hypoxia in the regulation of lncMat2B. Moreover, gain- and loss-of-function assays using a transcriptional silencing CRISPR/Cas9 system and gBlock revealed that lncMAT2B regulates the tumor-initiating phenotype. Interestingly, lncMat2B is overexpressed in a cisplatin-resistant MCF-7 cell line, and its ectopic expression in wild type MCF-7 cells increased survival to cisplatin exposure by reducing DNA damage and reactive oxygen species accumulation. lncMAT2B is a possible link between severe hypoxia, tumor-initiating phenotype and drug resistance in breast cancer cells.
Collapse
Affiliation(s)
| | - Edna Ayerim Mandujano-Tinoco
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México.,Tejido Conjuntivo, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, CDMX, México, México
| | | | - José Manuel Sánchez
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México
| | - Floria Lizarraga
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México
| | - Cecilia Zampedri
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México
| | | | - Vilma Maldonado
- Basic Research, Instituto Nacional de Medicina Genómica, CDMX, México, México
| |
Collapse
|
31
|
Zhou L, Xu XL. Long Non-Coding RNA ARAP1-AS1 Facilitates the Progression of Cervical Cancer by Regulating miR-149-3p and POU2F2. Pathobiology 2021; 88:301-312. [PMID: 33965958 DOI: 10.1159/000507830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. METHODS Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. RESULTS The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. CONCLUSION ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Obstetrics and Gynecology, Liyang People's Hospital, Liyang, China
| | - Xiao-Li Xu
- Department of Obstetrics and Gynecology, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Suzhou University), Changzhou, China
| |
Collapse
|
32
|
Zhong X, Wen X, Chen L, Gu N, Yu X, Sui K. Long non-coding RNA KCNQ1OT1 promotes the progression of gastric cancer via the miR-145-5p/ARF6 axis. J Gene Med 2021; 23:e3330. [PMID: 33682985 PMCID: PMC8244094 DOI: 10.1002/jgm.3330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Long non-coding RNA KCNQ1 opposite strand/antisense transcript one gene (KCNQ1OT1) has been reported to be involved in the progression of many types of human cancer, whereas its role in gastric cancer (GC) remains unknown. The present study aimed to investigate the role of KCNQ1OT1 in GC. METHODS In total, 25 GC tissues and adjacent normal tissues were collected. The expression of KCNQ1OT1, miR-145-5p and ARF6 in GC tissues and cell lines was detected by quantitative reverse transcriptase-polymerase chain reaction or western blotting. Bioinformatics analysis and a dual luciferase reporter assay were performed to determine the relationship between KCNQ1OT1 and miR-145-5p or miR-145-5p and ARF6. Gain- and loss-of function of KCNQ1OT1 and miR-145-5p were achieved to confirm their roles in GC cells. Cell counting kit-8, colony formation and flow cytometry assays were used to evaluate cell viability, proliferation and apoptosis. A xenograft tumor model was established with BGC803 tumor cells transfected with sh-KCNQ1OT1 or empty vector to determine the role of LINC01089 in vivo. RESULTS The expression levels of KCNQ1OT1 were markedly elevated in GC tissues and cells. Knockdown of KCNQ1OT1 inhibited GC tumor growth, reduced GC cell viability and colony formation, and induced GC cell apoptosis. The expression levels of miR-145-5p were significantly decreased in GC cells and correlated with the expression of KCNQ1OT1 in GC tumors. Moreover, KCNQ1OT1 directly binds with miR-145-5p, which is targeting ARF6. Knockdown of KCNQ1OT1 increased the expression levels of miR-145-5p. Inhibition of miR-145-5p increased the expression levels of KCNQ1OT1 and also attenuated the effects of knockdown of KCNQ1OT1 on the viability, proliferation and apoptosis of GC cells. In addition, overexpression of miR-145-5p reduced GC cell viability and colony formation and induced GC cell apoptosis, whereas overexpression of ARF6 attenuated the effects of overexpression of miR-145-5p on GC cell viability, colony formation and apoptosis. CONCLUSIONS KCNQ1OT1 can promote GC progression through the miR-145-5p/ARF6 axis. KCNQ1OT1 may serve as a therapeutic target and a diagnostic biomarker of GC.
Collapse
Affiliation(s)
- Xiongdong Zhong
- Department of Cardiothoracic SurgeryZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Zhuhai CityGuangdong ProvinceChina
| | - Xiaoyan Wen
- Department of Cardiothoracic SurgeryZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Zhuhai CityGuangdong ProvinceChina
| | - Lei Chen
- Department of Cardiothoracic SurgeryZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Zhuhai CityGuangdong ProvinceChina
| | - Ni Gu
- Department of Cardiothoracic SurgeryZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Zhuhai CityGuangdong ProvinceChina
| | - Xianchang Yu
- Department of Cardiothoracic SurgeryZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Zhuhai CityGuangdong ProvinceChina
| | - Kang Sui
- Department of Cardiothoracic SurgeryZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Zhuhai CityGuangdong ProvinceChina
| |
Collapse
|
33
|
Dias TR, Santos JMO, Gil da Costa RM, Medeiros R. Long non-coding RNAs regulate the hallmarks of cancer in HPV-induced malignancies. Crit Rev Oncol Hematol 2021; 161:103310. [PMID: 33781867 DOI: 10.1016/j.critrevonc.2021.103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the most frequent sexually transmitted agent worldwide and is responsible for approximately 5% of human cancers. Identifying novel biomarkers and therapeutic targets for these malignancies requires a deeper understanding of the mechanisms involved in the progression of HPV-induced cancers. Long non-coding RNAs (lncRNAs) are crucial in the regulation of biological processes. Importantly, these molecules are key players in the progression of multiple malignancies and are able to regulate the development of the different hallmarks of cancer. This review highlights the action of lncRNAs in the regulation of cellular processes leading to the typical hallmarks of cancer. The regulation of lncRNAs by HPV oncogenes, their targets and also their mechanisms of action are also discussed, in the context of HPV-induced malignancies. Overall, accumulating data indicates that lncRNAs may have a significant potential to become useful tools for clinical practice as disease biomarkers or therapy targets.
Collapse
Affiliation(s)
- Tânia R Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Tumour and DNA Biobank, Federal University of Maranhão (UFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
34
|
Cheng T, Huang S. Roles of Non-Coding RNAs in Cervical Cancer Metastasis. Front Oncol 2021; 11:646192. [PMID: 33777808 PMCID: PMC7990873 DOI: 10.3389/fonc.2021.646192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Metastasis remains to be a huge challenge in cancer therapy. The mechanism underlying cervical cancer metastasis is not well understood and needs to be elucidated. Recent studies have highlighted the diverse roles of non-coding RNAs in cancer progression and metastasis. Increasing numbers of miRNAs, lncRNAs and circRNAs are found to be dysregulated in cervical cancer, associated with metastasis. They have been shown to regulate metastasis through regulating metastasis-related genes, epithelial-mesenchymal transition, signaling pathways and interactions with tumor microenvironment. Moreover, miRNAs can interact with lncRNAs and circRNAs respectively during this complex process. Herein, we review literatures up to date involving non-coding RNAs in cervical cancer metastasis, mainly focus on the underlying mechanisms and highlight the interaction network between miRNAs and lncRNAs, as well as circRNAs. Finally, we discuss the therapeutic prospects.
Collapse
Affiliation(s)
- Tanchun Cheng
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, China
| | - Shouguo Huang
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, China
| |
Collapse
|
35
|
Wang T, Zhang XD, Hua KQ. A ceRNA network of BBOX1-AS1-hsa-miR-125b-5p/hsa-miR-125a-5p-CDKN2A shows prognostic value in cervical cancer. Taiwan J Obstet Gynecol 2021; 60:253-261. [DOI: 10.1016/j.tjog.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
|
36
|
Tolomeo D, Agostini A, Visci G, Traversa D, Storlazzi CT. PVT1: A long non-coding RNA recurrently involved in neoplasia-associated fusion transcripts. Gene 2021; 779:145497. [PMID: 33600954 DOI: 10.1016/j.gene.2021.145497] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
NGS technologies and bioinformatics tools allow the rapid identification of chimeric transcripts in cancer. More than 40,000 fusions are so far reported in the literature; however, for most of them, the role in oncogenesis is still not fully understood. This is the case for fusions involving the long non-coding RNA (lncRNA) Plasmacytoma variant translocation 1 (PVT1) (8q24.21). This lncRNA displays oncogenic functions in several cancer types interacting with microRNAs and proteins, but the role of PVT1 fusion transcripts is more obscure. These chimeras have been identified in both hematological malignancies and solid tumors, mainly arising from rearrangements and/or amplification of the 8q24 chromosomal region. In this review, we detail the full spectrum of PVT1 fusions in cancer, summarizing current knowledge about their genesis, function, and role as biomarkers.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biology, University of Bari, Via Orabona no.4, 70125 Bari, Italy.
| | - Antonio Agostini
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Grazia Visci
- Department of Biology, University of Bari, Via Orabona no.4, 70125 Bari, Italy.
| | - Debora Traversa
- Department of Biology, University of Bari, Via Orabona no.4, 70125 Bari, Italy.
| | | |
Collapse
|
37
|
Liu W, Yao D, Huang B. LncRNA PVT1 promotes cervical cancer progression by sponging miR-503 to upregulate ARL2 expression. Open Life Sci 2021; 16:1-13. [PMID: 33817293 PMCID: PMC7874532 DOI: 10.1515/biol-2021-0002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 01/23/2023] Open
Abstract
Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Dongmei Yao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Bo Huang
- Department of Gynaecology and Obstetrics, Hubei General Hospital, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei, 430060, China
| |
Collapse
|
38
|
Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol 2021; 157:103178. [PMID: 33279812 DOI: 10.1016/j.critrevonc.2020.103178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) is a major gynecological problem in developing and underdeveloped countries. Despite the significant advancement in early detection and treatment modalities, several patients recur. Moreover, the molecular mechanisms responsible for CC recurrence remains obscure. The patients with CC recurrence often show poor prognosis and significantly high mortality rates. The clinical management of recurrent CC depends on treatment history, site, and extent of the recurrence. Owing to poor prognosis and limited treatment options, recurrent CC often presents a challenge to the clinicians. Several in vitro, in vivo, and patient studies have led to the identification of the critical molecular changes responsible for CC recurrence. Both aberrant genetic and epigenetic modifications leading to altered cell signaling pathways have been reported to impact CC recurrence. Researchers are currently trying to dissect the molecular pathways in CC and translate these findings for better management of disease. This article attempts to review the existing knowledge of disease relapse, accompanying challenges, and associated molecular players in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of OBGYN, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
39
|
HAUBRW: Hybrid algorithm and unbalanced bi-random walk for predicting lncRNA-disease associations. Genomics 2020; 112:4777-4787. [PMID: 33348478 DOI: 10.1016/j.ygeno.2020.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 01/24/2023]
Abstract
An increasing number of research shows that long non-coding RNA plays a key role in many important biological processes. However, the number of disease-related lncRNAs found by researchers remains relatively small, and experimental identification is time consuming and labor intensive. In this study, we propose a novel method, namely HAUBRW, to predict undiscovered lncRNA-disease associations. First, the hybrid algorithm, which combines the heat spread algorithm and the probability diffusion algorithm, redistributes the resources. Second, unbalanced bi-random walk, is used to infer undiscovered lncRNA disease associations. Seven advanced models, i.e. BRWLDA, DSCMF, RWRlncD, IDLDA, KATZ, Ping's, and Yang's were compared with our method, and simulation results show that the AUC of our method is more perfect than the other models. In addition, case studies have shown that HAUBRW can effectively predict candidate lncRNAs for breast, osteosarcoma and cervical cancer. Therefore, our approach may be a good choice in future biomedical research.
Collapse
|
40
|
Ogunwobi OO, Segura MF. Editorial: PVT1 in Cancer. Front Oncol 2020; 10:588786. [PMID: 33194746 PMCID: PMC7606904 DOI: 10.3389/fonc.2020.588786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Wang K, Zhao Y, Wang YM. LncRNA MALAT1 Promotes Survival of Epithelial Ovarian Cancer Cells by Downregulating miR-145-5p. Cancer Manag Res 2020; 12:11359-11369. [PMID: 33192095 PMCID: PMC7654532 DOI: 10.2147/cmar.s267355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/06/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose This paper was aimed at investigating the regulatory mechanism of long non-coding RNA metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) in epithelial ovarian cancer (EOC). Materials and Methods MALAT1 and miR-145-5p expression in the tissues, serum, and EOC cell lines (TOV-112D, TOV-21G) of patients with EOC were detected. The two genes were transfected into the cells via upregulating or downregulating their expression. Levels of apoptosis-related proteins (Caspase-3, Bax, Bcl-2) were analyzed. Mechanisms of cell proliferation, invasion, and apoptosis were studied. Results MALAT1 was high expressed in EOC tissues, while miR-145-5p was poorly expressed in them. The areas under the curves (AUCs) of the two genes for diagnosing EOC were greater than 0.850, and the two had a significantly negative correlation. According to multivariate Cox regression analysis, high MALAT1 expression, tumor size, degree of differentiation, case staging, and lymph node metastasis were the independent risk factors affecting prognosis. The 5-year overall survival rate (OSR) of patients with low MALAT1 expression was remarkably higher than that of those with high expression. Overexpressing miR-145-5p and silencing MALAT1 could inhibit EOC cells from proliferating and invading, increase their apoptotic rate, and improve levels of the apoptosis-related proteins. After co-transfection with MALAT1-inhibitor + miR-145-5p-inhibitor, the proliferation and invasion of TOV-112D and TOV-21G cells were inhibited and the apoptotic rate rose more obviously. Inhibiting MALAT1 could increase miR-145-5p expression, thus inhibiting EOC cells from proliferating and invading and thereby increasing their apoptotic rate. Conclusion MALAT1 promotes EOC cells’ survival by downregulating miR-145-5p so it may become a new direction for EOC diagnosis and gene therapy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, People's Republic of China
| | - Ye Zhao
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Yi-Min Wang
- Central Research Room, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, People's Republic of China
| |
Collapse
|
42
|
Gao Y, Zou T, Liang W, Zhang Z, Qie M. Long non-coding RNA HAND2-AS1 delays cervical cancer progression via its regulation on the microRNA-21-5p/TIMP3/VEGFA axis. Cancer Gene Ther 2020; 28:619-633. [PMID: 33139818 DOI: 10.1038/s41417-020-00243-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/01/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Cervical cancer is a common cause of cancer-related mortality in women. Mounting evidence suggests that long non-coding RNAs (lncRNAs) function vitally in many cancers. In this study, we discovered that the regulation of the heart and neural crest derivatives expressed 2-antisense RNA 1 (HAND2-AS1) in cervical cancer. RT-qPCR was conducted to detect the expression of HAND2-AS1 and microRNA-21-5p (miR-21-5p). The relationship of HAND2-AS1 and miR-21-5p was identified by dual-luciferase reporter gene assay. The roles of HAND2-AS1, miR-21-5p and tissue inhibitor of metalloproteinases-3 (TIMP3) in cervical cancer were accessed via gain- and loss-of-function approaches. The expression of related proteins in the vascular endothelial growth factor A (VEGFA) signaling pathway was detected through Western blot analysis. Finally, xenografts of cervical cancer in nude mice were established to assess the effect of HAND2-AS1 on tumorigenesis in vivo. HAND2-AS1 and TIMP3 were downregulated in cervical cancer, which were identified to be associated with a poor prognosis of patients with cervical cancer. Moreover, HAND2-AS1 was upregulated the expression of TIMP3 through competitively binding to miR-21-5p. Overexpressed HAND2-AS1 or downregulated miR-21-5p inhibited cell proliferation, migration, and invasion while promoting cell apoptosis, in association with increased expression of proteins in VEGFA signaling pathway. These changes were reversed by silencing of TIMP3. Overexpressed HAND2-AS1 reduced the tumor formation ability in nude mice. In summary, HAND2-AS1 may exert inhibitory effects on cervical cancer cell growth and cervical cancer development through its regulation on the miR-21-5p/TIMP3/VEGFA axis. This highlights that HAND2-AS1 may serve as a potential target for cervical cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Gao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China.,Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550002, P.R. China.,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ting Zou
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550002, P.R. China
| | - Wentong Liang
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550002, P.R. China
| | - Zhijun Zhang
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550002, P.R. China
| | - Mingrong Qie
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China. .,Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
43
|
The Role of Non-Coding RNAs in Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12102944. [PMID: 33053887 PMCID: PMC7600503 DOI: 10.3390/cancers12102944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The development of uveal melanoma is a multifactorial and multi-step process, in which abnormal gene expression plays a key role. Recently, several studies have highlighted the role of non-coding RNAs in the progression of uveal melanoma by affecting different signaling pathways. As important agents in the regulation of genes, non-coding RNAs have enormous potential to open up therapeutic pathways, predict response to treatment, and anticipate patient outcome for uveal melanoma. This review aims to provide a comprehensive view of what we know about ncRNAs in uveal melanoma currently. Abstract Uveal melanoma (UM) is the most common primary intraocular tumor in adulthood. Approximately 50% of patients develop metastatic disease, which typically affects the liver and is usually fatal within one year. This type of cancer is heterogeneous in nature and is divided into two broad groups of tumors according to their susceptibility to develop metastasis. In the last decade, chromosomal abnormalities and the aberrant expression of several signaling pathways and oncogenes in uveal melanomas have been described. Recently, importance has been given to the association of the mentioned deregulation with the expression of non-coding RNAs (ncRNAs). Here, we review the different classes of ncRNAs—such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)—and their contribution to the development of UM. Special attention is given to miRNAs and their regulatory role in physiopathology and their potential as biomarkers. As important agents in gene regulation, ncRNAs have a huge potential for opening up therapeutic pathways, predicting response to treatment, and anticipating patient outcome for UM.
Collapse
|
44
|
Teppan J, Barth DA, Prinz F, Jonas K, Pichler M, Klec C. Involvement of Long Non-Coding RNAs (lncRNAs) in Tumor Angiogenesis. Noncoding RNA 2020; 6:E42. [PMID: 32992718 PMCID: PMC7711482 DOI: 10.3390/ncrna6040042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are defined as non-protein coding transcripts with a minimal length of 200 nucleotides. They are involved in various biological processes such as cell differentiation, apoptosis, as well as in pathophysiological processes. Numerous studies considered that frequently deregulated lncRNAs contribute to all hallmarks of cancer including metastasis, drug resistance, and angiogenesis. Angiogenesis, the formation of new blood vessels, is crucial for a tumor to receive sufficient amounts of nutrients and oxygen and therefore, to grow and exceed in its size over the diameter of 2 mm. In this review, the regulatory mechanisms of lncRNAs are described, which influence tumor angiogenesis by directly or indirectly regulating oncogenic pathways, interacting with other transcripts such as microRNAs (miRNAs) or modulating the tumor microenvironment. Further, angiogenic lncRNAs occurring in several cancer types such as liver, gastrointestinal cancer, or brain tumors are summarized. Growing evidence on the influence of lncRNAs on tumor angiogenesis verified these transcripts as potential predictive or diagnostic biomarkers or therapeutic targets of anti-angiogenesis treatment. However, there are many unsolved questions left which are pointed out in this review, hence driving comprehensive research in this area is necessary to enable an effective use of lncRNAs as either therapeutic molecules or diagnostic targets in cancer.
Collapse
Affiliation(s)
- Julia Teppan
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Felix Prinz
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Katharina Jonas
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| |
Collapse
|
45
|
He Q, Meng J, Liu S, Zeng Q, Zhu Q, Wei Z, Shao Y. Long non-coding RNA UCA1 upregulates KIF20A expression to promote cell proliferation and invasion via sponging miR-204 in cervical cancer. Cell Cycle 2020; 19:2486-2495. [PMID: 32835591 DOI: 10.1080/15384101.2020.1807666] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is a female cancer with the second highest motility over the world. It is urgent to find new therapeutic methods based on long-coding RNAs and microRNAs. UCA1 was proved to be related with many human cancer types, but limited researches have been performed for the inner associations between UCA1 and cervical cancer. Eighty females who were undergoing surgeries were recruited for study in our research. We took the cervical cancer tissues and cells from them. Massive experiments and analysis were conducted to investigate the gene expressions and protein expressions about UCA1, KIF20A, and miR-204 in normal cells and cancer cells. The techniques contain real-time PCR, migration/invasion assay, western blot, in vivo experiments, and so on.We found that UCA1 expression was greatly up-regulated in cervical cancer tissues and cell lines. Our in vitro assays revealed that the suppressing of UCA1 could reduce cervical cancer cells proliferation, migration, and invasion. In addition, we found that lncRNA UCA1 could sponge miR-204 and promote the proliferation and invasion of cervical cancer cells via the up-regulating of KIF20A expression. As a result, the inhibiting of UCA1 could lower cervical cancer (CC) cells growth rate in vivo.Our results identified that UCA1 could serve as an oncogene in cervical cancer cell progression through the modulating of miR-204/KIF20A axis. It gives novel insights to the searching of novel therapeutic methods for cervical cancer.
Collapse
Affiliation(s)
- Qing He
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Jianzhou Meng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing City, PR. China
| | - Shuai Liu
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Qiangcheng Zeng
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Qinghua Zhu
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Zhenlin Wei
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Yibo Shao
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| |
Collapse
|
46
|
Han Q, Wu W, Cui Y. LINC00337 Regulates KLF5 and Maintains Stem-Cell Like Traits of Cervical Cancer Cells by Modulating miR-145. Front Oncol 2020; 10:1433. [PMID: 32923396 PMCID: PMC7456823 DOI: 10.3389/fonc.2020.01433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating literature and evidence has highlighted the cancer stem-like cell (CSC) model as a cellular mechanism responsible for the phenotypic heterogeneity observed in various types of cancers, including cervical cancer. Long non-coding RNAs (lncRNAs) have been implicated in the retention of stem cell-like traits in cancer cells. However, the role of lncRNAs in the acquisition and maintenance of CSCs in cervical cancer remains largely unknown. Hence, the current study identified that LINC00337 knockdown diminished the CSC-like properties of CD44+/CD24low/−SFCs, evidenced by a decline in the generation of tumorospheres and colonies, a reduction in multi-drug resistance gene-1 (MDR-1), Nanog, Sox2, and Oct4 expression, along with an enhancement in cell apoptosis. RNA pull-down assays and RNA immunoprecipitation revealed the role of LINC00337 as a competing endogenous RNA (ceRNA) of microRNA-145 (miR-145). Furthermore, the miR-145 mRNA target, Kruppel-like factor 5 (KLF5), was decreased in CD44+/CD24low/−SFCs upon LINC00337 knockdown. The in vitro results were reproduced in in vivo studies, which provided verification attesting that LINC00337 knockdown attenuated the tumorigenicity of CD44+/CD24low/−SFCs in nude mice. Taken together, the key findings of the current study demonstrate that LINC00337 acts as an oncogenic lncRNA in cervical cancer and exerts its influence on the expression of KLF5 and the maintenance of cancer stem cell-like properties by means of downregulating miR-145.
Collapse
Affiliation(s)
- Qi Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjin Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Samimi H, Sajjadi-Jazi SM, Seifirad S, Atlasi R, Mahmoodzadeh H, Faghihi MA, Haghpanah V. Molecular mechanisms of long non-coding RNAs in anaplastic thyroid cancer: a systematic review. Cancer Cell Int 2020; 20:352. [PMID: 32760219 PMCID: PMC7392660 DOI: 10.1186/s12935-020-01439-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND anaplastic thyroid cancer (ATC) is one of the most lethal and aggressive cancers. Evidence has shown that the tumorigenesis of ATC is a multistep process involving the accumulation of genetic and epigenetic changes. Several studies have suggested that long non-coding RNAs (lncRNAs) may play an important role in the development and progression of ATC. In this article, we have collected the published reports about the role of lncRNAs in ATC. METHODS "Scopus", "Web of Science", "PubMed", "Embase", etc. were systematically searched for articles published since 1990 to 2020 in English language, using the predefined keywords. RESULTS 961 papers were reviewed and finally 33 papers which fulfilled the inclusion and exclusion criteria were selected. Based on this systematic review, among a lot of evidences on examining the function of lncRNAs in thyroid cancer, there are only a small number of studies about the role of lncRNAs and their molecular mechanisms in the pathogenesis of ATC. CONCLUSIONS lncRNAs play a crucial role in regulation of different processes involved in the development and progression of ATC. Currently, just a few lncRNAs have been identified in ATC that may serve as prognosis markers such as GAS5, MIR22HG, and CASC2. Also, because of the dysregulation of Klhl14-AS, HOTAIRM1, and PCA3 during ATC development and progression, they may act as therapeutic targets. However, for most lncRNAs, only a single experiment has evaluated the expression profile in ATC tissues/cells. Therefore, further functional studies and expression profiling is needed to resolve this limitation and identify novel and valid biomarkers.
Collapse
Affiliation(s)
- Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Seifirad
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, PERFUSE Study Group, Boston, MA USA
| | - Rasha Atlasi
- Evidence Based Practice Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Iranian National Cancer Institute, Imam Khomeini Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Dr. Faghihi’s Medical Genetic Center, Shiraz, Iran
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center (EMRC), Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114 Iran
| |
Collapse
|
48
|
Pal G, Di L, Orunmuyi A, Olapade-Olaopa EO, Qiu W, Ogunwobi OO. Population Differentiation at the PVT1 Gene Locus: Implications for Prostate Cancer. G3 (BETHESDA, MD.) 2020; 10:2257-2264. [PMID: 32358016 PMCID: PMC7341130 DOI: 10.1534/g3.120.401291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Genetic variation in susceptibility to complex diseases, such as cancer, is well-established. Enrichment of disease associated alleles in specific populations could have implications for disease incidence and prevalence. Prostate cancer (PCa) is a disease with well-established higher incidence, prevalence, and worse outcomes among men of African ancestry in comparison to other populations. PCa is a multi-factorial, complex disease, but the exact mechanisms for its development and progression are unclear. The gene desert located on chromosome 8q24 is associated with aggressiveness of PCa. Interestingly, the non-protein coding gene locus Plasmacytoma Variant Translocation (PVT1) is present at chromosome 8q24 and is overexpressed in PCa. PVT1 gives rise to multiple transcripts with potentially different molecular and cellular functions. In an analysis of the PVT1 locus using data from the 1000 Genomes Project, we found the chromosomal region spanning PVT1 exons 4A and 4B to be highly differentiated between African and non-African populations. We further investigated levels of gene expression of PVT1 exons 4A and 4B and observed significant overexpression of these exons in PCa tissues relative to benign prostatic hyperplasia and to normal prostate tissues obtained from men of African ancestry. These results indicate that PVT1 exons 4A and 4B may have clinical implications in PCa a conclusion supported by the observation that transient and stable overexpression of PVT1 exons 4A and 4B significantly induce greater prostate epithelial cell migration and proliferation. We anticipate that further exploration of the role of PVT1 exons 4A and 4B may lead to the development of diagnostic, therapeutic, and other clinical applications in PCa.
Collapse
Affiliation(s)
- Gargi Pal
- Department of Biological Sciences, Hunter College of The City University of New York, NY
| | - Lia Di
- Department of Biological Sciences, Hunter College of The City University of New York, NY
| | | | | | - Weigang Qiu
- Department of Biological Sciences, Hunter College of The City University of New York, NY
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, NY,
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY
| |
Collapse
|
49
|
Barwal TS, Sharma U, Vasquez KM, Prakash H, Jain A. A panel of circulating long non-coding RNAs as liquid biopsy biomarkers for breast and cervical cancers. Biochimie 2020; 176:62-70. [PMID: 32634463 DOI: 10.1016/j.biochi.2020.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
The early detection and diagnosis of cancer is critical to optimize the treatment and management of cancer patients. Typical methods such as imaging and tissue biopsy are invasive, time-consuming, and often imprecise. Thus, recent technological advances of dependable, facile, and minimally invasive collectible oncogenic biomarkers using human biofluids and secretions have been an active area of research. Recently, circulating long non-coding RNAs (lncRNAs) have been identified as promising biomarkers that fulfill many recommended properties of successful biomarkers for cancer diagnosis and prognosis. LncRNAs play essential roles in many cellular processes including DNA repair, cell proliferation, and epithelial-to-mesenchymal transition (EMT) by regulating the expression of various genes associated with cancer development and progression. Herein, we discuss the regulatory functions/pathways associated with multiple cancer-associated lncRNAs and their potential as prognostic/diagnostic markers for breast and cervical cancers. Additionally, we provide a correlation between lncRNA levels in the blood and clinicopathological data, including sensitivity, specificity, and Area Under Curve (AUC) merits of model performance value.
Collapse
Affiliation(s)
- Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
50
|
Singh D, Khan MA, Siddique HR. Emerging role of long non-coding RNAs in cancer chemoresistance: unravelling the multifaceted role and prospective therapeutic targeting. Mol Biol Rep 2020; 47:5569-5585. [PMID: 32601922 DOI: 10.1007/s11033-020-05609-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy is one of the important treatment modules in early as well as advanced stages of cancer. However, the major limitation of chemotherapy is the development of chemoresistance in the transformed cells of cancer patients, which leads to cancer recurrence. Long non-coding RNAs (lncRNA) are the transcripts longer than 200 nucleotides in length, which are reported to associate with the initiation, progression, recurrence, and metastasis of different cancers. Several lncRNAs have been implicated in the prevalence of chemoresistant phenotypes and also in the restoration of drug sensitivity in chemoresistant cells. LncRNAs such as HOTAIR, H19, and a lot more are involved in the chemoresistance of cancer cells. Therefore, targeting the lncRNAs may serve as a novel strategy for treating chemoresistant cancer. This review throws light on the role of lncRNA in chemoresistance along with the perspective of the therapeutic targets for the treatment of multiple cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|