1
|
Calzuola ST, Newman G, Feaugas T, Perrault CM, Blondé JB, Roy E, Porrini C, Stojanovic GM, Vidic J. Membrane-based microfluidic systems for medical and biological applications. LAB ON A CHIP 2024; 24:3579-3603. [PMID: 38954466 DOI: 10.1039/d4lc00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Microfluidic devices with integrated membranes that enable control of mass transport in constrained environments have shown considerable growth over the last decade. Membranes are a key component in several industrial processes such as chemical, pharmaceutical, biotechnological, food, and metallurgy separation processes as well as waste management applications, allowing for modular and compact systems. Moreover, the miniaturization of a process through microfluidic devices leads to process intensification together with reagents, waste and cost reduction, and energy and space savings. The combination of membrane technology and microfluidic devices allows therefore magnification of their respective advantages, providing more valuable solutions not only for industrial processes but also for reproducing biological processes. This review focuses on membrane-based microfluidic devices for biomedical science with an emphasis on microfluidic artificial organs and organs-on-chip. We provide the basic concepts of membrane technology and the laws governing mass transport. The role of the membrane in biomedical microfluidic devices, along with the required properties, available materials, and current challenges are summarized. We believe that the present review may be a starting point and a resource for researchers who aim to replicate a biological phenomenon on-chip by applying membrane technology, for moving forward the biomedical applications.
Collapse
Affiliation(s)
- Silvia Tea Calzuola
- UMR7646 Laboratoire d'hydrodynamique (LadHyX), Ecole Polytechnique, Palaiseau, France.
- Eden Tech, Paris, France
| | - Gwenyth Newman
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Thomas Feaugas
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | | | | | | | - Goran M Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovića 6, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
2
|
Carvalho DJ, Kip AM, Tegel A, Stich M, Krause C, Romitti M, Branca C, Verhoeven B, Costagliola S, Moroni L, Giselbrecht S. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks. Adv Healthc Mater 2024; 13:e2303444. [PMID: 38247306 PMCID: PMC11481080 DOI: 10.1002/adhm.202303444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The convergence of organoid and organ-on-a-chip (OoC) technologies is urgently needed to overcome limitations of current 3D in vitro models. However, integrating organoids in standard OoCs faces several technical challenges, as it is typically laborious, lacks flexibility, and often results in even more complex and less-efficient cell culture protocols. Therefore, specifically adapted and more flexible microfluidic platforms need to be developed to facilitate the incorporation of complex 3D in vitro models. Here, a modular, tubeless fluidic circuit board (FCB) coupled with reversibly sealed cell culture bricks for dynamic culture of embryonic stem cell-derived thyroid follicles is developed. The FCB is fabricated by milling channels in a polycarbonate (PC) plate followed by thermal bonding against another PC plate. LEGO-like fluidic interconnectors allow plug-and-play connection between a variety of cell culture bricks and the FCB. Lock-and-play clamps are integrated in the organoid brick to enable easy (un)loading of organoids. A multiplexed perfusion experiment is conducted with six FCBs, where thyroid organoids are transferred on-chip within minutes and cultured up to 10 d without losing their structure and functionality, thus validating this system as a flexible, easy-to-use platform, capable of synergistically combining organoids with advanced microfluidic platforms.
Collapse
Affiliation(s)
- Daniel J. Carvalho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Anna M. Kip
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Andreas Tegel
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Matthias Stich
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Christian Krause
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikAnderlecht1070Belgium
| | - Carlotta Branca
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Bart Verhoeven
- IDEE Instrument Development Engineering and Evaluation – Research EngineeringUniversiteitssingel 50Maastricht6200 MDThe Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikAnderlecht1070Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
3
|
Mohan MD, Latifi N, Flick R, Simmons CA, Young EWK. Interrogating Matrix Stiffness and Metabolomics in Pancreatic Ductal Carcinoma Using an Openable Microfluidic Tumor-on-a-Chip. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38606850 DOI: 10.1021/acsami.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma that contributes to aggressive tumor biology and therapeutic resistance. Current in vitro PDAC models lack sufficient optical and physical access for fibrous network visualization, in situ mechanical stiffness measurement, and metabolomic profiling. Here, we describe an openable multilayer microfluidic PDAC-on-a-chip platform that consists of pancreatic tumor cells (PTCs) and pancreatic stellate cells (PSCs) embedded in a 3D collagen matrix that mimics the stroma. Our system allows fibrous network visualization via reflected light confocal (RLC) microscopy, in situ mechanical stiffness testing using atomic force microscopy (AFM), and compartmentalized hydrogel extraction for PSC metabolomic profiling via mass spectrometry (MS) analysis. In comparing cocultures of gel-embedded PSCs and PTCs with PSC-only monocultures, RLC microscopy identified a significant decrease in pore size and corresponding increase in fiber density. In situ AFM indicated significant increases in stiffness, and hallmark characteristics of PSC activation were observed using fluorescence microscopy. PSCs in coculture also demonstrated localized fiber alignment and densification as well as increased collagen production. Finally, an untargeted MS study putatively identified metabolic contributions consistent with in vivo PDAC studies. Taken together, this platform can potentially advance our understanding of tumor-stromal interactions toward the discovery of novel therapies.
Collapse
Affiliation(s)
- Michael D Mohan
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
| | - Neda Latifi
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, 14th Floor, Toronto, Ontario M5G 1M1, Canada
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, ENG 030, Tampa, Florida 33620, United States
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Craig A Simmons
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, 14th Floor, Toronto, Ontario M5G 1M1, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
4
|
Joshi IM, Mansouri M, Ahmed A, De Silva D, Simon RA, Esmaili P, Desa DE, Elias TM, Brown EB, Abhyankar VV. Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308071. [PMID: 38706986 PMCID: PMC11067715 DOI: 10.1002/adfm.202308071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 05/07/2024]
Abstract
Collagen fibers in the 3D tumor microenvironment (TME) exhibit complex alignment landscapes that are critical in directing cell migration through a process called contact guidance. Previous in vitro work studying this phenomenon has focused on quantifying cell responses in uniformly aligned environments. However, the TME also features short-range gradients in fiber alignment that result from cell-induced traction forces. Although the influence of graded biophysical taxis cues is well established, cell responses to physiological alignment gradients remain largely unexplored. In this work, fiber alignment gradients in biopsy samples are characterized and recreated using a new microfluidic biofabrication technique to achieve tunable sub-millimeter to millimeter scale gradients. This study represents the first successful engineering of continuous alignment gradients in soft, natural biomaterials. Migration experiments on graded alignment show that HUVECs exhibit increased directionality, persistence, and speed compared to uniform and unaligned fiber architectures. Similarly, patterned MDA-MB-231 aggregates exhibit biased migration toward increasing fiber alignment, suggesting a role for alignment gradients as a taxis cue. This user-friendly approach, requiring no specialized equipment, is anticipated to offer new insights into the biophysical cues that cells interpret as they traverse the extracellular matrix, with broad applicability in healthy and diseased tissue environments.
Collapse
Affiliation(s)
- Indranil M. Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Dinindu De Silva
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Richard A. Simon
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Poorya Esmaili
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Danielle E. Desa
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Tresa M. Elias
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Vinay V. Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| |
Collapse
|
5
|
Mansouri M, Hughes AR, Audi LA, Carter AE, Vidas JA, McGrath JL, Abhyankar VV. Transforming Static Barrier Tissue Models into Dynamic Microphysiological Systems. J Vis Exp 2024:10.3791/66090. [PMID: 38436378 PMCID: PMC11096840 DOI: 10.3791/66090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Microphysiological systems are miniaturized cell culture platforms used to mimic the structure and function of human tissues in a laboratory setting. However, these platforms have not gained widespread adoption in bioscience laboratories where open-well, membrane-based approaches serve as the gold standard for mimicking tissue barriers, despite lacking fluid flow capabilities. This issue can be primarily attributed to the incompatibility of existing microphysiological systems with standard protocols and tools developed for open-well systems. Here, we present a protocol for creating a reconfigurable membrane-based platform with an open-well structure, flow enhancement capability, and compatibility with conventional protocols. This system utilizes a magnetic assembly approach that enables reversible switching between open-well and microfluidic modes. With this approach, users have the flexibility to begin an experiment in the open-well format using standard protocols and add or remove flow capabilities as needed. To demonstrate the practical usage of this system and its compatibility with standard techniques, an endothelial cell monolayer was established in an open-well format. The system was reconfigured to introduce fluid flow and then switched to the open-well format to conduct immunostaining and RNA extraction. Due to its compatibility with conventional open-well protocols and flow enhancement capability, this reconfigurable design is expected to be adopted by both engineering and bioscience laboratories.
Collapse
Affiliation(s)
- Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - Aidan R Hughes
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - Lauren A Audi
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - Anna E Carter
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - Justin A Vidas
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology;
| |
Collapse
|
6
|
Kutluk H, Bastounis EE, Constantinou I. Integration of Extracellular Matrices into Organ-on-Chip Systems. Adv Healthc Mater 2023; 12:e2203256. [PMID: 37018430 PMCID: PMC11468608 DOI: 10.1002/adhm.202203256] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Indexed: 04/07/2023]
Abstract
The extracellular matrix (ECM) is a complex, dynamic network present within all tissues and organs that not only acts as a mechanical support and anchorage point but can also direct fundamental cell behavior, function, and characteristics. Although the importance of the ECM is well established, the integration of well-controlled ECMs into Organ-on-Chip (OoC) platforms remains challenging and the methods to modulate and assess ECM properties on OoCs remain underdeveloped. In this review, current state-of-the-art design and assessment of in vitro ECM environments is discussed with a focus on their integration into OoCs. Among other things, synthetic and natural hydrogels, as well as polydimethylsiloxane (PDMS) used as substrates, coatings, or cell culture membranes are reviewed in terms of their ability to mimic the native ECM and their accessibility for characterization. The intricate interplay among materials, OoC architecture, and ECM characterization is critically discussed as it significantly complicates the design of ECM-related studies, comparability between works, and reproducibility that can be achieved across research laboratories. Improving the biomimetic nature of OoCs by integrating properly considered ECMs would contribute to their further adoption as replacements for animal models, and precisely tailored ECM properties would promote the use of OoCs in mechanobiology.
Collapse
Affiliation(s)
- Hazal Kutluk
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| | - Effie E. Bastounis
- Institute of Microbiology and Infection Medicine (IMIT)Eberhard Karls University of TübingenAuf der Morgenstelle 28, E872076TübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections” EXC 2124Eberhard Karls University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Iordania Constantinou
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| |
Collapse
|
7
|
Joshi IM, Mansouri M, Ahmed A, Simon RA, Bambizi PE, Desa DE, Elias TM, Brown EB, Abhyankar VV. Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548253. [PMID: 37502844 PMCID: PMC10369918 DOI: 10.1101/2023.07.09.548253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In the tumor microenvironment (TME), collagen fibers facilitate tumor cell migration through the extracellular matrix. Previous studies have focused on studying the responses of cells on uniformly aligned or randomly aligned collagen fibers. However, the in vivo environment also features spatial gradients in alignment, which arise from the local reorganization of the matrix architecture due to cell-induced traction forces. Although there has been extensive research on how cells respond to graded biophysical cues, such as stiffness, porosity, and ligand density, the cellular responses to physiological fiber alignment gradients have been largely unexplored. This is due, in part, to a lack of robust experimental techniques to create controlled alignment gradients in natural materials. In this study, we image tumor biopsy samples and characterize the alignment gradients present in the TME. To replicate physiological gradients, we introduce a first-of-its-kind biofabrication technique that utilizes a microfluidic channel with constricting and expanding geometry to engineer 3D collagen hydrogels with tunable fiber alignment gradients that range from sub-millimeter to millimeter length scales. Our modular approach allows easy access to the microengineered gradient gels, and we demonstrate that HUVECs migrate in response to the fiber architecture. We provide preliminary evidence suggesting that MDA-MB-231 cell aggregates, patterned onto a specific location on the alignment gradient, exhibit preferential migration towards increasing alignment. This finding suggests that alignment gradients could serve as an additional taxis cue in the ECM. Importantly, our study represents the first successful engineering of continuous gradients of fiber alignment in soft, natural materials. We anticipate that our user-friendly platform, which needs no specialized equipment, will offer new experimental capabilities to study the impact of fiber-based contact guidance on directed cell migration.
Collapse
Affiliation(s)
- Indranil M. Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Richard A. Simon
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | | | - Danielle E. Desa
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Tresa M. Elias
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Vinay V. Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| |
Collapse
|
8
|
Lomeli-Martin A, Ahamed N, Abhyankar VV, Lapizco-Encinas BH. Electropatterning-Contemporary developments for selective particle arrangements employing electrokinetics. Electrophoresis 2023; 44:884-909. [PMID: 37002779 PMCID: PMC10330388 DOI: 10.1002/elps.202200286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The selective positioning and arrangement of distinct types of multiscale particles can be used in numerous applications in microfluidics, including integrated circuits, sensors and biochips. Electrokinetic (EK) techniques offer an extensive range of options for label-free manipulation and patterning of colloidal particles by exploiting the intrinsic electrical properties of the target of interest. EK-based techniques have been widely implemented in many recent studies, and various methodologies and microfluidic device designs have been developed to achieve patterning two- and three-dimensional (3D) patterned structures. This review provides an overview of the progress in electropatterning research during the last 5 years in the microfluidics arena. This article discusses the advances in the electropatterning of colloids, droplets, synthetic particles, cells, and gels. Each subsection analyzes the manipulation of the particles of interest via EK techniques such as electrophoresis and dielectrophoresis. The conclusions summarize recent advances and provide an outlook on the future of electropatterning in various fields of application, especially those with 3D arrangements as their end goal.
Collapse
Affiliation(s)
- Adrian Lomeli-Martin
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Nuzhet Ahamed
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Vinay V. Abhyankar
- Biological Microsystems Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
9
|
Mansouri M, Ahmed A, Ahmad SD, McCloskey MC, Joshi IM, Gaborski TR, Waugh RE, McGrath JL, Day SW, Abhyankar VV. The Modular µSiM Reconfigured: Integration of Microfluidic Capabilities to Study In Vitro Barrier Tissue Models under Flow. Adv Healthc Mater 2022; 11:e2200802. [PMID: 35953453 PMCID: PMC9798530 DOI: 10.1002/adhm.202200802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Indexed: 01/28/2023]
Abstract
Microfluidic tissue barrier models have emerged to address the lack of physiological fluid flow in conventional "open-well" Transwell-like devices. However, microfluidic techniques have not achieved widespread usage in bioscience laboratories because they are not fully compatible with traditional experimental protocols. To advance barrier tissue research, there is a need for a platform that combines the key advantages of both conventional open-well and microfluidic systems. Here, a plug-and-play flow module is developed to introduce on-demand microfluidic flow capabilities to an open-well device that features a nanoporous membrane and live-cell imaging capabilities. The magnetic latching assembly of this design enables bi-directional reconfiguration and allows users to conduct an experiment in an open-well format with established protocols and then add or remove microfluidic capabilities as desired. This work also provides an experimentally-validated flow model to select flow conditions based on the experimental needs. As a proof-of-concept, flow-induced alignment of endothelial cells and the expression of shear-sensitive gene targets are demonstrated, and the different phases of neutrophil transmigration across a chemically stimulated endothelial monolayer under flow conditions are visualized. With these experimental capabilities, it is anticipated that both engineering and bioscience laboratories will adopt this reconfigurable design due to the compatibility with standard open-well protocols.
Collapse
Affiliation(s)
- Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Molly C. McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Indranil M. Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Thomas R. Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Steven W. Day
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Vinay V. Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
10
|
Ahmed A, Joshi IM, Goulet MR, Vidas JA, Byerley AM, Mansouri M, Day SW, Abhyankar VV. Microengineering 3D Collagen Hydrogels with Long-Range Fiber Alignment. J Vis Exp 2022:10.3791/64457. [PMID: 36156068 PMCID: PMC10203374 DOI: 10.3791/64457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Aligned collagen I (COL1) fibers guide tumor cell motility, influence endothelial cell morphology, control stem cell differentiation, and are a hallmark of cardiac and musculoskeletal tissues. To study cell response to aligned microenvironments in vitro, several protocols have been developed to generate COL1 matrices with defined fiber alignment, including magnetic, mechanical, cell-based, and microfluidic methods. Of these, microfluidic approaches offer advanced capabilities such as accurate control over fluid flows and the cellular microenvironment. However, the microfluidic approaches to generate aligned COL1 matrices for advanced in vitro culture platforms have been limited to thin "mats" (<40 µm in thickness) of COL1 fibers that extend over distances less than 500 µm and are not conducive to 3D cell culture applications. Here, we present a protocol to fabricate 3D COL1 matrices (130-250 µm in thickness) with millimeter-scale regions of defined fiber alignment in a microfluidic device. This platform provides advanced cell culture capabilities to model structured tissue microenvironments by providing direct access to the micro-engineered matrix for cell culture.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Indranil M Joshi
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Madeleine R Goulet
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Justin A Vidas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Ann M Byerley
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Mehran Mansouri
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Steven W Day
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology;
| |
Collapse
|
11
|
Lai X, Yang M, Wu H, Li D. Modular Microfluidics: Current Status and Future Prospects. MICROMACHINES 2022; 13:1363. [PMID: 36014285 PMCID: PMC9414757 DOI: 10.3390/mi13081363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This review mainly studies the development status, limitations, and future directions of modular microfluidic systems. Microfluidic technology is an important tool platform for scientific research and plays an important role in various fields. With the continuous development of microfluidic applications, conventional monolithic microfluidic chips show more and more limitations. A modular microfluidic system is a system composed of interconnected, independent modular microfluidic chips, which are easy to use, highly customizable, and on-site deployable. In this paper, the current forms of modular microfluidic systems are classified and studied. The popular fabrication techniques for modular blocks, the major application scenarios of modular microfluidics, and the limitations of modular techniques are also discussed. Lastly, this review provides prospects for the future direction of modular microfluidic technologies.
Collapse
Affiliation(s)
- Xiaochen Lai
- School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingpeng Yang
- School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Hsu MC, Mansouri M, Ahamed NNN, Larson SM, Joshi IM, Ahmed A, Borkholder DA, Abhyankar VV. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Sci Rep 2022; 12:10769. [PMID: 35750792 PMCID: PMC9232624 DOI: 10.1038/s41598-022-15087-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
Well-defined fluid flows are the hallmark feature of microfluidic culture systems and enable precise control over biophysical and biochemical cues at the cellular scale. Microfluidic flow control is generally achieved using displacement-based (e.g., syringe or peristaltic pumps) or pressure-controlled techniques that provide numerous perfusion options, including constant, ramped, and pulsed flows. However, it can be challenging to integrate these large form-factor devices and accompanying peripherals into incubators or other confined environments. In addition, microfluidic culture studies are primarily carried out under constant perfusion conditions and more complex flow capabilities are often unused. Thus, there is a need for a simplified flow control platform that provides standard perfusion capabilities and can be easily integrated into incubated environments. To this end, we introduce a tunable, 3D printed micro pressure regulator (µPR) and show that it can provide robust flow control capabilities when combined with a battery-powered miniature air pump to support microfluidic applications. We detail the design and fabrication of the µPR and: (i) demonstrate a tunable outlet pressure range relevant for microfluidic applications (1-10 kPa), (ii) highlight dynamic control capabilities in a microfluidic network, (iii) and maintain human umbilical vein endothelial cells (HUVECs) in a multi-compartment culture device under continuous perfusion conditions. We anticipate that our 3D printed fabrication approach and open-access designs will enable customized µPRs that can support a broad range of microfluidic applications.
Collapse
Affiliation(s)
- Meng-Chun Hsu
- Department of Electrical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Nuzhet N N Ahamed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Stephen M Larson
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Indranil M Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - David A Borkholder
- Department of Electrical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA.
| |
Collapse
|
13
|
Ahmed A, Mansouri M, Joshi IM, Byerley AM, Day SW, Gaborski TR, Abhyankar VV. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication 2022; 14. [PMID: 35735228 DOI: 10.1088/1758-5090/ac7824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023]
Abstract
Randomly oriented type I collagen (COL1) fibers in the extracellular matrix are reorganized by biophysical forces into aligned domains extending several millimeters and with varying degrees of fiber alignment. These aligned fibers can transmit traction forces, guide tumor cell migration, facilitate angiogenesis, and influence tissue morphogenesis. To create aligned COL1 domains in microfluidic cell culture models, shear flows have been used to align thin COL1 matrices (<50µm in height) in a microchannel. However, there has been limited investigation into the role of shear flows in aligning 3D hydrogels (>130µm). Here, we show that pure shear flows do not induce fiber alignment in 3D atelo COL1 hydrogels, but the simple addition of local extensional flow promotes alignment that is maintained across several millimeters, with a degree of alignment directly related to the extensional strain rate. We further advance experimental capabilities by addressing the practical challenge of accessing a 3D hydrogel formed within a microchannel by introducing a magnetically coupled modular platform that can be released to expose the microengineered hydrogel. We demonstrate the platform's capability to pattern cells and fabricate multi-layered COL1 matrices using layer-by-layer fabrication and specialized modules. Our approach provides an easy-to-use fabrication method to achieve advanced hydrogel microengineering capabilities that combine fiber alignment with biofabrication capabilities.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Indranil M Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Ann M Byerley
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Steven W Day
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Thomas R Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| |
Collapse
|
14
|
|
15
|
Zoio P, Oliva A. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics 2022; 14:pharmaceutics14030682. [PMID: 35336056 PMCID: PMC8955316 DOI: 10.3390/pharmaceutics14030682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The increased demand for physiologically relevant in vitro human skin models for testing pharmaceutical drugs has led to significant advancements in skin engineering. One of the most promising approaches is the use of in vitro microfluidic systems to generate advanced skin models, commonly known as skin-on-a-chip (SoC) devices. These devices allow the simulation of key mechanical, functional and structural features of the human skin, better mimicking the native microenvironment. Importantly, contrary to conventional cell culture techniques, SoC devices can perfuse the skin tissue, either by the inclusion of perfusable lumens or by the use of microfluidic channels acting as engineered vasculature. Moreover, integrating sensors on the SoC device allows real-time, non-destructive monitoring of skin function and the effect of topically and systemically applied drugs. In this Review, the major challenges and key prerequisites for the creation of physiologically relevant SoC devices for drug testing are considered. Technical (e.g., SoC fabrication and sensor integration) and biological (e.g., cell sourcing and scaffold materials) aspects are discussed. Recent advancements in SoC devices are here presented, and their main achievements and drawbacks are compared and discussed. Finally, this review highlights the current challenges that need to be overcome for the clinical translation of SoC devices.
Collapse
Affiliation(s)
- Patrícia Zoio
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
| | - Abel Oliva
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
16
|
A modular, reversible sealing, and reusable microfluidic device for drug screening. Anal Chim Acta 2021; 1185:339068. [PMID: 34711311 DOI: 10.1016/j.aca.2021.339068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Preclinical tests for evaluating potential drug candidates using conventional protocols can be exhaustive and high-cost processes. Microfluidic technologies that can speed up this process and allow fast screening of drugs are promising alternatives. This work presents the design, concept, and operational conditions of a simple, modular, and reversible sealing microdevice useful for drug screening. This microdevice allows for the operation of 4 parallel simultaneous conditions and can also generate a diffusive concentration gradient in sextuplicates. We used laminated polydimethylsiloxane (PDMSLAM) and glass as building materials as proof of concept. The PDMSLAM parts can be reused since they can be easily sterilized. We cultured MCF-7 (Michigan Cancer Foundation-7) breast cancer cells. Cells were exposed to a doxorubicin diffusive concentration gradient for 3 h. They were monitored by automated microscopy, and after data processing, it was possible to determine cell viability as a function of doxorubicin concentration. The reversible sealing enabled the recovery of the tested cells and image acquisition. Therefore, this microdevice is a promising tool for drug screening that allows assessing the cellular behavior in dynamic conditions and the recovery of cells for afterward processing and imaging.
Collapse
|
17
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
18
|
Ahmed A, Joshi IM, Mansouri M, Ahamed NNN, Hsu MC, Gaborski TR, Abhyankar VV. Engineering fiber anisotropy within natural collagen hydrogels. Am J Physiol Cell Physiol 2021; 320:C1112-C1124. [PMID: 33852366 PMCID: PMC8285641 DOI: 10.1152/ajpcell.00036.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
It is well known that biophysical properties of the extracellular matrix (ECM), including stiffness, porosity, composition, and fiber alignment (anisotropy), play a crucial role in controlling cell behavior in vivo. Type I collagen (collagen I) is a ubiquitous structural component in the ECM and has become a popular hydrogel material that can be tuned to replicate the mechanical properties found in vivo. In this review article, we describe popular methods to create 2-D and 3-D collagen I hydrogels with anisotropic fiber architectures. We focus on methods that can be readily translated from engineering and materials science laboratories to the life-science community with the overall goal of helping to increase the physiological relevance of cell culture assays.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Indranil M Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| | - Mehran Mansouri
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Nuzhet N N Ahamed
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Meng-Chun Hsu
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Thomas R Gaborski
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| | - Vinay V Abhyankar
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| |
Collapse
|
19
|
Ahmed A, Joshi IM, Larson S, Mansouri M, Gholizadeh S, Allahyari Z, Forouzandeh F, Borkholder DA, Gaborski TR, Abhyankar VV. Microengineered 3D Collagen Gels with Independently Tunable Fiber Anisotropy and Directionality. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001186. [PMID: 34150990 PMCID: PMC8211114 DOI: 10.1002/admt.202001186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 05/17/2023]
Abstract
Cellular processes, including differentiation, proliferation, and migration, have been linked to the alignment (anisotropy) and orientation (directionality) of collagen fibers in the native extracellular matrix (ECM). Given the critical role that biophysical cell-matrix interactions play in regulating biological functions, several microfluidic-based methods have been used to establish 3D collagen gels with defined fiber properties; these gels have helped to establish quantitative relationships between structural ECM cues and observed cell responses. Although existing microfluidic fabrication methods provide excellent definition over collagen fiber anisotropy, they have not demonstrated the independent control over fiber anisotropy and directionality necessary to replicate in vivo collagen architecture. Therefore, to advance collagen microengineering capabilities, we present a user-friendly technology platform that uses controlled fluid flows within a non-uniform microfluidic channel network to create collagen landscapes that can be tuned as a function of extensional strain rate. Herein, we demonstrate capabilities to i) control the degree of fiber anisotropy, ii) create spatial gradients in fiber anisotropy, iii) independently define fiber directionality, and iv) generate multi-material interfaces within a 3D environment. We then address the practical issue of integrating cells into microfluidic systems by using a peel-off template technique to provide direct access to microengineered collagen gels, and demonstrate that cells respond to the defined properties of the landscape. Finally, the platform's modular capability is highlighted by integrating a sub-micrometer thick porous parylene membrane onto the microengineered collagen as a method to define cell-substrate interactions.
Collapse
Affiliation(s)
- Adeel Ahmed
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Indranil M Joshi
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Stephen Larson
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Mehran Mansouri
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shayan Gholizadeh
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Zahra Allahyari
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Farzad Forouzandeh
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - David A Borkholder
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Thomas R Gaborski
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Vinay V Abhyankar
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
20
|
Advanced Fabrication Techniques of Microengineered Physiological Systems. MICROMACHINES 2020; 11:mi11080730. [PMID: 32731495 PMCID: PMC7464561 DOI: 10.3390/mi11080730] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
The field of organs-on-chips (OOCs) has experienced tremendous growth over the last decade. However, the current main limiting factor for further growth lies in the fabrication techniques utilized to reproducibly create multiscale and multifunctional devices. Conventional methods of photolithography and etching remain less useful to complex geometric conditions with high precision needed to manufacture the devices, while laser-induced methods have become an alternative for higher precision engineering yet remain costly. Meanwhile, soft lithography has become the foundation upon which OOCs are fabricated and newer methods including 3D printing and injection molding show great promise to innovate the way OOCs are fabricated. This review is focused on the advantages and disadvantages associated with the commonly used fabrication techniques applied to these microengineered physiological systems (MPS) and the obstacles that remain in the way of further innovation in the field.
Collapse
|
21
|
Hochstetter A. Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. MICROMACHINES 2020; 11:E468. [PMID: 32365567 PMCID: PMC7281269 DOI: 10.3390/mi11050468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
In the last three decades, microfluidics and its applications have been on an exponential rise, including approaches to isolate rare cells and diagnose diseases on the single-cell level. The techniques mentioned herein have already had significant impacts in our lives, from in-the-field diagnosis of disease and parasitic infections, through home fertility tests, to uncovering the interactions between SARS-CoV-2 and their host cells. This review gives an overview of the field in general and the most notable developments of the last five years, in three parts: 1. What can we detect? 2. Which detection technologies are used in which setting? 3. How do these techniques work? Finally, this review discusses potentials, shortfalls, and an outlook on future developments, especially in respect to the funding landscape and the field-application of these chips.
Collapse
Affiliation(s)
- Axel Hochstetter
- Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| |
Collapse
|
22
|
Das P, van der Meer AD, Vivas A, Arik YB, Remigy JC, Lahitte JF, Lammertink RG, Bacchin P. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance. Tissue Eng Part A 2019; 25:1635-1645. [DOI: 10.1089/ten.tea.2019.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pritam Das
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- BIOS Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
- Soft Matter, Fluidics and Interfaces, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Andries D. van der Meer
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Aisen Vivas
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- BIOS Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Yusuf B. Arik
- Applied Stem Cell Technologies, TechMed Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- BIOS Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Jean-Christophe Remigy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| | - Jean-François Lahitte
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| | - Rob G.H. Lammertink
- Soft Matter, Fluidics and Interfaces, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS UMR 5503, INPT, UPS, Toulouse, France
| |
Collapse
|
23
|
Pasman T, Grijpma D, Stamatialis D, Poot A. Flat and microstructured polymeric membranes in organs-on-chips. J R Soc Interface 2019; 15:rsif.2018.0351. [PMID: 30045892 DOI: 10.1098/rsif.2018.0351] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/03/2018] [Indexed: 01/30/2023] Open
Abstract
In recent years, organs-on-chips (OOCs) have been developed to meet the desire for more realistic in vitro cell culture models. These systems introduce microfluidics, mechanical stretch and other physiological stimuli to in vitro models, thereby significantly enhancing their descriptive power. In most OOCs, porous polymeric membranes are used as substrates for cell culture. The polymeric material, morphology and shape of these membranes are often suboptimal, despite their importance for achieving ideal cell functionality such as cell-cell interaction and differentiation. The currently used membranes are flat and thus do not account for the shape and surface morphology of a tissue. Moreover, the polymers used for fabrication of these membranes often lack relevant characteristics, such as mechanical properties matching the tissue to be developed and/or cytocompatibility. Recently, innovative techniques have been reported for fabrication of porous membranes with suitable porosity, shape and surface morphology matching the requirements of OOCs. In this paper, we review the state of the art for developing these membranes and discuss their application in OOCs.
Collapse
Affiliation(s)
- Thijs Pasman
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands
| | - Dirk Grijpma
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands.,Biomedical Engineering, Rijksuniversiteit Groningen Faculteit voor Wiskunde en Natuurwetenschappen, Groningen, The Netherlands
| | - Dimitrios Stamatialis
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands
| | - Andreas Poot
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands
| |
Collapse
|
24
|
Williams MJ, Lee NK, Mylott JA, Mazzola N, Ahmed A, Abhyankar VV. A Low-Cost, Rapidly Integrated Debubbler (RID) Module for Microfluidic Cell Culture Applications. MICROMACHINES 2019; 10:mi10060360. [PMID: 31151206 PMCID: PMC6632054 DOI: 10.3390/mi10060360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 01/08/2023]
Abstract
Microfluidic platforms use controlled fluid flows to provide physiologically relevant biochemical and biophysical cues to cultured cells in a well-defined and reproducible manner. Undisturbed flows are critical in these systems, and air bubbles entering microfluidic channels can lead to device delamination or cell damage. To prevent bubble entry into microfluidic channels, we report a low-cost, Rapidly Integrated Debubbler (RID) module that is simple to fabricate, inexpensive, and easily combined with existing experimental systems. We demonstrate successful removal of air bubbles spanning three orders of magnitude with a maximum removal rate (dV/dt)max = 1.5 mL min−1, at flow rates required to apply physiological wall shear stress (1–200 dyne cm−2) to mammalian cells cultured in microfluidic channels.
Collapse
Affiliation(s)
- Matthew J Williams
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Nicholas K Lee
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Joseph A Mylott
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Nicole Mazzola
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Adeel Ahmed
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| |
Collapse
|
25
|
Abstract
Translational research requires reliable biomedical microdevices (BMMD)
to mimic physiological conditions and answer biological questions. In this work, we
introduce a reversibly sealed quick-fit hybrid BMMD that is operator-friendly and
bubble-free, requires low reagent and cell consumption, enables robust and high
throughput performance for biomedical experiments. Specifically, we fabricate a
quick-fit poly(methyl methacrylate) and poly(dimethyl siloxane) (PMMA/PDMS)
prototype to illustrate its utilities by probing the adhesion of glioblastoma cells
(T98G and U251MG) to primary endothelial cells. In static condition, we confirm that
angiopoietin-Tie2 signaling increases the adhesion of glioblastoma cells to
endothelial cells. Next, to mimic the physiological hemodynamic flow and investigate
the effect of physiological electric field, the endothelial cells are
pre-conditioned with concurrent shear flow (with fixed 1 Pa shear stress) and direct
current electric field (dcEF) in the quick-fit PMMA/PDMS BMMD. With shear flow
alone, endothelial cells exhibit classical parallel alignment; while under a
concurrent dcEF, the cells align perpendicularly to the electric current when the
dcEF is greater than 154 V m− 1. Moreover, with fixed
shear stress of 1 Pa, T98G glioblastoma cells demonstrate increased adhesion to
endothelial cells conditioned in dcEF of 154 V m− 1,
while U251MG glioblastoma cells show no difference. The quick-fit hybrid BMMD
provides a simple and flexible platform to create multiplex systems, making it
possible to investigate complicated biological conditions for translational
research.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 9040495, Japan.
| | - Kazumi Toda-Peters
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 9040495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 9040495, Japan.
| |
Collapse
|
26
|
Kaisar MA, Abhyankar VV, Cucullo L. In Vitro BBB Models: Working with Static Platforms and Microfluidic Systems. BLOOD-BRAIN BARRIER 2019. [DOI: 10.1007/978-1-4939-8946-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
FAN YQ, WANG HL, GAO KX, LIU JJ, CHAI DP, ZHANG YJ. Applications of Modular Microfluidics Technology. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61126-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Microfluidic-Based 3D Engineered Microvascular Networks and Their Applications in Vascularized Microtumor Models. MICROMACHINES 2018; 9:mi9100493. [PMID: 30424426 PMCID: PMC6215090 DOI: 10.3390/mi9100493] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The microvasculature plays a critical role in human physiology and is closely associated to various human diseases. By combining advanced microfluidic-based techniques, the engineered 3D microvascular network model provides a precise and reproducible platform to study the microvasculature in vitro, which is an essential and primary component to engineer organ-on-chips and achieve greater biological relevance. In this review, we discuss current strategies to engineer microvessels in vitro, which can be broadly classified into endothelial cell lining-based methods, vasculogenesis and angiogenesis-based methods, and hybrid methods. By closely simulating relevant factors found in vivo such as biomechanical, biochemical, and biological microenvironment, it is possible to create more accurate organ-specific models, including both healthy and pathological vascularized microtissue with their respective vascular barrier properties. We further discuss the integration of tumor cells/spheroids into the engineered microvascular to model the vascularized microtumor tissue, and their potential application in the study of cancer metastasis and anti-cancer drug screening. Finally, we conclude with our commentaries on current progress and future perspective of on-chip vascularization techniques for fundamental and clinical/translational research.
Collapse
|
29
|
Sarrafpour B, Boughton P, Farahani RM, Cox SC, Denyer G, Kelly E, Zoellner H. A method for investigating the cellular response to cyclic tension or compression in three-dimensional culture. J Mech Behav Biomed Mater 2018; 88:11-17. [PMID: 30118920 DOI: 10.1016/j.jmbbm.2018.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/17/2018] [Accepted: 08/07/2018] [Indexed: 11/26/2022]
Abstract
We have an interest in the cellular response to mechanical stimuli, and here describe an in-vitro method to examine the response of cells cultured in a three-dimensional matrix to mechanical compressive and tensile stress. Synthetic aliphatic polyester scaffolds coated with 45S5 bioactive glass were seeded with human dental follicular cells (HDFC), and attached to well inserts and magnetic endplates in six well palates. Scaffolds were subjected to either cyclic 10% tensile deformation, or 8% compression, at 1 Hz and 2 Hz respectively for 6, 24 or 48 h, by uniaxial motion of magnetically-coupled endplates. It was possible to isolate high quality mRNA from cells in these scaffolds, as demonstrated by high RNA integrity numbers scores, and ability to perform meaningful cRNA microarray analysis, in which 669 and 727 genes were consistently upregulated, and 662 and 518 genes down regulated at all times studied under tensile and compressive loading conditions respectively. MetaCore analysis revealed the most regulated gene ontogenies under both loading conditions to be for: cytoskeletal remodelling; cell adhesion-chemokines and adhesion; cytoskeleton remodelling-TGF WNT and cytoskeletal remodelling pathways. We believe the method here described will be of value for analysis of the cellular response to cyclic loading.
Collapse
Affiliation(s)
- Babak Sarrafpour
- The University of Sydney, Faculty of Dentistry, Department of Oral Pathology and Oral Medicine, Cellular and Molecular Pathology Research Unit, Westmead Centre for Oral Health, Westmead Hospital, NSW 2145, Australia.
| | - Philip Boughton
- The University of Sydney, The Institute of Biomedical Engineering and Technology, Sydney, NSW 2006, Australia.
| | - Ramin M Farahani
- The University of Sydney, Faculty of Dentistry, Institute of Dental Research, Westmead Hospital, NSW 2145, Australia.
| | - Stephen C Cox
- The University of Sydney, Department of Oral Surgery, Westmead Centre for Oral Health, Westmead Hospital, Westmead, NSW, Australia.
| | - Gareth Denyer
- The University of Sydney, School of Molecular Bioscience, NSW 2006, Australia.
| | - Elizabeth Kelly
- The University of Sydney, Faculty of Dentistry, Department of Oral Pathology and Oral Medicine, Cellular and Molecular Pathology Research Unit, Westmead Centre for Oral Health, Westmead Hospital, NSW 2145, Australia.
| | - Hans Zoellner
- The University of Sydney, Faculty of Dentistry, Department of Oral Pathology and Oral Medicine, Cellular and Molecular Pathology Research Unit, Westmead Centre for Oral Health, Westmead Hospital, NSW 2145, Australia.
| |
Collapse
|
30
|
A fluidic device for the controlled formation and real-time monitoring of soft membranes self-assembled at liquid interfaces. Sci Rep 2018; 8:2900. [PMID: 29440702 PMCID: PMC5811436 DOI: 10.1038/s41598-018-20998-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/10/2018] [Indexed: 01/04/2023] Open
Abstract
Membrane materials formed at the interface between two liquids have found applications in a large variety of technologies, from sensors to drug-delivery and catalysis. However, studying the formation of these membranes in real-time presents considerable challenges, owing to the difficulty of prescribing the location and instant of formation of the membrane, the difficulty of observing time-dependent membrane shape and thickness, and the poor reproducibility of results obtained using conventional mixing procedures. Here we report a fluidic device that facilitates characterisation of the time-dependent thickness, morphology and mass transport properties of materials self-assembled at fluid-fluid interfaces. In the proposed device the membrane forms from the controlled coalescence of two liquid menisci in a linear open channel. The linear geometry and controlled mixing of the solutions facilitate real-time visualisation, manipulation and improve reproducibility. Because of its small dimensions, the device can be used in conjunction with standard microscopy methods and reduces the required volumes of potentially expensive reagents. As an example application to tissue engineering, we use the device to characterise interfacial membranes formed by supra-molecular self-assembly of peptide-amphiphiles with either an elastin-like-protein or hyaluronic acid. The device can be adapted to study self-assembling membranes for applications that extend beyond bioengineering.
Collapse
|
31
|
Hasan MR, Peri SSS, Sabane VP, Mansur N, Gao JX, Nguyen KT, Weidanz JA, Iqbal SM, Abhyankar VV. One-step fabrication of flexible nanotextured PDMS as a substrate for selective cell capture. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aa89a6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
33
|
Carter RN, Casillo SM, Mazzocchi AR, DesOrmeaux JPS, Roussie JA, Gaborski TR. Ultrathin transparent membranes for cellular barrier and co-culture models. Biofabrication 2017; 9:015019. [PMID: 28140345 DOI: 10.1088/1758-5090/aa5ba7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.
Collapse
Affiliation(s)
- Robert N Carter
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, United States of America. Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, United States of America
| | | | | | | | | | | |
Collapse
|
34
|
Kaisar MA, Sajja RK, Prasad S, Abhyankar VV, Liles T, Cucullo L. New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opin Drug Discov 2016; 12:89-103. [PMID: 27782770 DOI: 10.1080/17460441.2017.1253676] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases. Area covered: This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms. Expert opinion: Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms.
Collapse
Affiliation(s)
- Mohammad A Kaisar
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| | - Ravi K Sajja
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| | - Shikha Prasad
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| | - Vinay V Abhyankar
- c Biological Microsystems Division at The University of Texas at Arlington Research Institute , Fort Worth , TX , USA
| | - Taylor Liles
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| | - Luca Cucullo
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA.,b Center for Blood Brain Barrier Research , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| |
Collapse
|