1
|
Guan P, Yu H, Wang S, Sun J, Chai X, Sun X, Qi X, Zhang R, Jiao Y, Li Z, Kim IH, Feng X, Liu X. Dietary rutin alleviated the damage by cold stress on inflammation reaction, tight junction protein and intestinal microbial flora in the mice intestine. J Nutr Biochem 2024; 130:109658. [PMID: 38663564 DOI: 10.1016/j.jnutbio.2024.109658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024]
Abstract
Low temperature is a common stress source for the poultry industry in the north of China. However, the low energy consuming and economical way to reduce the negative effects from cold stress is still limited. Therefore, the aim of this study was to investigate the effect of rutin on intestinal barrier in mice under low temperature. The cold stress model was established at 4°C for 3 h each day and the experiment lasted for 21 days. Forty Balb/c mice were randomly divided into four treatments: CON, normal temperature with the basal diet; RUT, normal temperature with the basal diet +150 mg/kg body weight (BW) of rutin; CS, mice under cold stress with basal diet; CR, 150 mg/kg of BW rutin under cold stress. Rutin supplementation significantly increased the ileum villus-to-crypt ratio compared with these non-supplemented treatments. Rutin attenuated the hypothermia induced morphological damage in the ileum. In addition, rutin improved the antioxidant capacity of mice under cold stress. Rutin supplementation significantly increased the trypsin activity and inhibited the lipase in cold stressed mice. Rutin supplementation significantly inhibited the production of inflammatory factors induced by cold stress. Rutin induced the inhibition of TLR4 and NF-кB, thereby reducing the expression of inflammation-related genes. In addition, rutin improved the reduction of the intestinal claudin-1 and occludin expression in those mice in the cold stress (P < .05) and improved the intestinal ZO-1 expression in cold stressed mice. Finally, rutin alleviated the dysregulation of intestinal microflora in the mice under cold stress.
Collapse
Affiliation(s)
- Peiyue Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hao Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shenao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jing Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xuehong Chai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xue Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xueyan Qi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ruoshi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yihan Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhongqiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Anseodong, South Korea
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| | - Xiao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
2
|
Egbujor MC, Olaniyan OT, Emeruwa CN, Saha S, Saso L, Tucci P. An insight into role of amino acids as antioxidants via NRF2 activation. Amino Acids 2024; 56:23. [PMID: 38506925 PMCID: PMC10954862 DOI: 10.1007/s00726-024-03384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024]
Abstract
Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.
Collapse
Affiliation(s)
- Melford C Egbujor
- Department of Chemistry, Federal University Otuoke, Otuoke, Bayelsa, Nigeria
| | | | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| |
Collapse
|
3
|
Yang C, Shi Z, Bao L, Xv X, Jiang D, You L. Targeted metabolomic analysis of serum amino acids in heart failure patients. Amino Acids 2024; 56:22. [PMID: 38483649 PMCID: PMC10940394 DOI: 10.1007/s00726-024-03385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024]
Abstract
Heart failure (HF) has been recognized as a global epidemic with high rates of morbidity, hospitalization, and mortality. The role of amino acids, which provide the body with energy, in the development of HF is still unclear. The aim of this study was to explore changes in serum amino acids in patients with HF and identify potential biomarkers. First, the serum amino acid metabolism profiles of 44 patients with HF and 30 healthy controls (Con) were quantitatively measured. Then, candidate markers were identified through the utilization of T test, multivariate statistical analysis, and receiver operating characteristic (ROC) curve analysis. The results found that there were 11 amino acid levels that were significantly different between patients with HF and Con. Based on ROC curve analysis, the biomarkers of eight amino acids (Glutamic acid, Taurine, L-aspartic acid, L-ornithine, Ethanolamine, L-Serine, L-Sarcosine, and Cysteine) showed high sensitivity and specificity (AUC > 0.90), and binary logistic regression analysis was used in MetaboAnalyst 5.0. Among the amino acids examined, six exhibited notable alterations in accordance with the severity of HF. In conclusion, this study cannot only provide clinicians with an objective diagnostic approach for the early identification of HF, but also enhances comprehension of the underlying mechanisms involved in the pathogenesis of HF.
Collapse
Affiliation(s)
- Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Zhengyuan Shi
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Li Bao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Xiqiao Xv
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Dechun Jiang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Longtai You
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
| |
Collapse
|
4
|
Zhang S, Chen A, Jiang L, Liu X, Chai L. Copper-mediated shifts in transcriptomic responses of intestines in Bufo gargarizans tadpoles to lead stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50144-50161. [PMID: 36790706 DOI: 10.1007/s11356-023-25801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/04/2023] [Indexed: 04/16/2023]
Abstract
The differential transcriptomic responses of intestines in Bufo gargarizans tadpoles to Pb alone or in the presence of Cu were evaluated. Tadpoles were exposed to 30 μg/L Pb individually and in combination with Cu at 16 or 64 μg/L from Gosner stage (Gs) 26 to Gs 38. After de novo assembly, 105,107 unigenes were generated. Compared to the control group, 7387, 6937, and 11139 differentially expressed genes (DEGs) were identified in the treatment of Pb + Cu0, Pb + Cu16, and Pb + Cu64, respectively. In addition, functional annotation and enrichment analysis of DEGs revealed substantial transcriptional reprogramming of diverse molecular and biological pathways were induced in all heavy metal treatments. The relative expression levels of genes associated with intestinal epithelial barrier and bile acids (BAs) metabolism, such as mucin2, claudin5, ZO-1, Asbt, and Ost-β, were validated by qPCR. This study demonstrated that Pb exposure induced transcriptional responses in tadpoles, and the responses could be modulated by Cu.
Collapse
Affiliation(s)
- Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China.
| |
Collapse
|
5
|
Ha JW, Choi JY, Boo YC. Differential Effects of Histidine and Histidinamide versus Cysteine and Cysteinamide on Copper Ion-Induced Oxidative Stress and Cytotoxicity in HaCaT Keratinocytes. Antioxidants (Basel) 2023; 12:antiox12040801. [PMID: 37107176 PMCID: PMC10135049 DOI: 10.3390/antiox12040801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Metal chelators are used for various industrial and medical purposes based on their physicochemical properties and biological activities. In biological systems, copper ions bind to certain enzymes as cofactors to confer catalytic activity or bind to specific proteins for safe storage and transport. However, unbound free copper ions can catalyze the production of reactive oxygen species (ROS), causing oxidative stress and cell death. The present study aims to identify amino acids with copper chelation activities that might mitigate oxidative stress and toxicity in skin cells exposed to copper ions. A total of 20 free amino acids and 20 amidated amino acids were compared for their copper chelation activities in vitro and the cytoprotective effects in cultured HaCaT keratinocytes exposed to CuSO4. Among the free amino acids, cysteine showed the highest copper chelation activity, followed by histidine and glutamic acid. Among the amidated amino acids, cysteinamide showed the highest copper chelation activity, followed by histidinamide and aspartic acid. CuSO4 (0.4–1.0 mM) caused cell death in a concentration-dependent manner. Among the free and amidated amino acids (1.0 mM), only histidine and histidinamide prevented the HaCaT cell death induced by CuSO4 (1.0 mM). Cysteine and cysteinamide had no cytoprotective effects despite their potent copper-chelating activities. EDTA and GHK-Cu, which were used as reference compounds, had no cytoprotective effects either. Histidine and histidinamide suppressed the CuSO4-induced ROS production, glutathione oxidation, lipid peroxidation, and protein carbonylation in HaCaT cells, whereas cysteine and cysteinamide had no such effects. Bovine serum albumin (BSA) showed copper-chelating activity at 0.5–1.0 mM (34–68 mg mL−1). Histidine, histidinamide, and BSA at 0.5–1.0 mM enhanced the viability of cells exposed to CuCl2 or CuSO4 (0.5 mM or 1.0 mM) whereas cysteine and cysteinamide had no such effects. The results of this study suggest that histidine and histidinamide have more advantageous properties than cysteine and cysteinamide in terms of alleviating copper ion-induced toxic effects in the skin.
Collapse
Affiliation(s)
- Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
6
|
Liang H, Xu P, Xu G, Zhang L, Huang D, Ren M, Zhang L. Histidine Deficiency Inhibits Intestinal Antioxidant Capacity and Induces Intestinal Endoplasmic-Reticulum Stress, Inflammatory Response, Apoptosis, and Necroptosis in Largemouth Bass ( Micropterus salmoides). Antioxidants (Basel) 2022; 11:2399. [PMID: 36552607 PMCID: PMC9774248 DOI: 10.3390/antiox11122399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
This 56-day study aimed to evaluate the effects of histidine levels on intestinal antioxidant capacity and endoplasmic-reticulum stress (ERS) in largemouth bass (Micropterus salmoides). The initial weights of the largemouth bass were (12.33 ± 0.01) g. They were fed six graded levels of histidine: 0.71% (deficient group), 0.89%, 1.08%, 1.26%, 1.48%, and 1.67%. The results showed that histidine deficiency significantly suppressed the intestinal antioxidant enzyme activities, including SOD, CAT, GPx, and intestinal level of GSH, which was supported by significantly higher levels of intestinal MDA. Moreover, histidine deficiency significantly lowered the mRNA level of nrf2 and upregulated the mRNA level of keap1, which further lowered the mRNA levels of the downstream genes sod, cat, and gpx. Additionally, histidine-deficiency-induced intestinal ERS, which was characterized by activating the PEPK-signalling pathway and IRE1-signalling pathway, including increased core gene expression of pepk, grp78, eif2α, atf4, chopα, ire1, xbp1, traf2, ask1, and jnk1. Dietary histidine deficiency also induced apoptosis and necroptosis in the intestine by upregulating the expressions of proapoptotic genes, including caspase 3, caspase 8, caspase 9, and bax, and necroptosis-related genes, including mlkl and ripk3, while also lowering the mRNA level of the antiapoptotic gene bcl-2. Furthermore, histidine deficiency activated the NF-κB-signalling pathway to induce an inflammatory response, improving the mRNA levels of the proinflammatory factors tnf-α, hepcidin 1, cox2, cd80, and cd83 and lowering the mRNA levels of the anti-inflammatory factors tgf-β1 and ikbα. Similarly, dietary histidine deficiency significantly lowered the intestinal levels of the anti-inflammatory factors TGF-β and IL-10 and upregulated the intestinal levels of the proinflammatory factor TNF-α, showing a trend similar to the gene expression of inflammatory factors. However, dietary histidine deficiency inhibited only the level of C3, and no significant effects were observed for IgM, IgG, HSP70, or IFN-γ. Based on the MDA and T-SOD results, the appropriate dietary histidine requirements of juvenile largemouth bass were 1.32% of the diet (2.81% dietary protein) and 1.47% of the diet (3.13% dietary protein), respectively, as determined by quadratic regression analysis.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lin Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongyu Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu 610093, China
| |
Collapse
|
7
|
Udayakumar P, Das R, Kannadasan A. Significance of probiotics in remodeling the gut consortium to enhance the immunity of Caenorhabditis elegans. Genesis 2021; 59:e23454. [PMID: 34664387 DOI: 10.1002/dvg.23454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022]
Abstract
In the recent past, Caenorhabditis elegans has emerged as one of the leading nematode models for studying host-microbe interactions on molecular, cellular, or organismal levels. In general, morphological and functional similarities of the gut of C. elegans with respect to that of human has brought in speculations on the study of the intestinal microbiota. On the other hand, probiotics have proved their efficacy in metabolism, development, and pathogenesis thereby inducing an immune response in C. elegans. Nurturing C. elegans with probiotics has led to immunomodulatory effects in the intestinal microbiota, proposing C. elegans as one of the in vivo screening criteria to select potential probiotic bacteria for host health-promoting factors. The major prospect of these probiotics is to exert longevity toward the host in diverse environmental conditions. The extent of research on probiotic metabolism has shed light on mechanisms of the immunomodulatory effect exerted by the nematode model. This review discusses various aspects of the effects of probiotics in improving the health and mechanisms involved in conferring immunity in C. elegans.
Collapse
Affiliation(s)
- Prithika Udayakumar
- Dr. APJ Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Reena Das
- Dr. APJ Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Anandbabu Kannadasan
- Dr. APJ Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
8
|
Hu A, Chen X, Wang W, Li L, Zhou Y, Zhi W, Zheng J. Properties and Structure of Modified Taro Starch: Comparison of Ultrasound and Malic Acid Treatments. STARCH-STARKE 2021. [DOI: 10.1002/star.202000252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Aijun Hu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Xinli Chen
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Wei Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Li Li
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Yu Zhou
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Wenli Zhi
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Jie Zheng
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| |
Collapse
|
9
|
Song JS, Jung S, Jee S, Yoon JW, Byeon YS, Park S, Kim SB. Growth and bioactive phytochemicals of Panax ginseng sprouts grown in an aeroponic system using plasma-treated water as the nitrogen source. Sci Rep 2021; 11:2924. [PMID: 33536557 PMCID: PMC7859182 DOI: 10.1038/s41598-021-82487-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Ginseng (Panax ginseng Meyer) sprouts are grown to whole plants in 20 to 25 days in a soil-less cultivation system and then used as a medicinal vegetable. As a nitrogen (N) source, plasma-treated water (PTW) has been used to enhance the seed germination and seedling growth of many crops but has not been investigated for its effects on ginseng sprouts. This study established an in-situ system for N-containing water production using plasma technology and evaluated the effects of the PTW on ginseng growth and its bioactive phytochemicals compared with those of an untreated control. The PTW became weakly acidic 30 min after the air discharge at the electrodes because of the formation of nitrate (NO3‒) and nitrite (NO2‒) in the water. The NO3‒ and NO2‒ in the PTW, together with potassium ions (K+), enhanced the shoot biomass of the ginseng sprout by 26.5% compared to the untreated control. The ginseng sprout grown in the PTW had accumulated more free amino acids and ginsenosides in the sprout at 25 days after planting. Therefore, PTW can be used as a liquid N fertilizer for P. ginseng growth and phytochemical accumulation during sprouting under aeroponic conditions.
Collapse
Affiliation(s)
- Jong-Seok Song
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea.
| | - Sunkyung Jung
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Sunghoon Jee
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Jung Woo Yoon
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Yong Seong Byeon
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Seungil Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| | - Seong Bong Kim
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, 54004, Republic of Korea
| |
Collapse
|
10
|
Yang P, Zhao X, Zhou L, Jin Y, Zheng X, Ouyang Y, Chen M, Zeng L, Chen S, Chen X, Tian Z. Protective effect of oral histidine on hypertension in Dahl salt-sensitive rats induced by high-salt diet. Life Sci 2021; 270:119134. [PMID: 33513395 DOI: 10.1016/j.lfs.2021.119134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 01/11/2023]
Abstract
AIMS Salt-sensitive hypertension is a risk factor for cardiovascular disease. Previous studies have shown that insufficient arginine in the kidney caused by metabolic imbalance is an important factor in salt-sensitive hypertension. Whether the high nitrogen content of histidine can affect the balance of nitrogen metabolism in Dahl salt-sensitive (SS) rats. This article aimed to study the effects of oral histidine on salt-sensitive hypertension, kidney damage and metabolic patterns of high-salt diet in SS rats. MAIN METHODS Adult rats were divided into four groups, and blood pressure was measured using a non-invasive tail-cuff system. Gas chromatography-mass spectrometry analyzed metabolites in serum and kidney tissues. KEY FINDINGS High-salt diet significantly increased the blood pressure of rats and aggravated kidney damage. Of note, histidine can attenuate salt-sensitive hypertension and kidney damage by improving metabolic pattern, reducing Reactive Oxygen Species (ROS) and increasing nitric oxide levels in SS rats. SIGNIFICANCE These results suggest that histidine could be a potential adjuvant to prevent and control salt-sensitive hypertension.
Collapse
Affiliation(s)
- Pengfei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinrui Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Luxin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuexin Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanan Ouyang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Zeng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sa Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiangbo Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
11
|
Chu H, Jiang L, Gao B, Gautam N, Alamoudi JA, Lang S, Wang Y, Duan Y, Alnouti Y, Cable EE, Schnabl B. The selective PPAR-delta agonist seladelpar reduces ethanol-induced liver disease by restoring gut barrier function and bile acid homeostasis in mice. Transl Res 2021; 227:1-14. [PMID: 32553670 PMCID: PMC7719076 DOI: 10.1016/j.trsl.2020.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Alcohol-associated liver disease is accompanied by dysregulation of bile acid metabolism and gut barrier dysfunction. Peroxisome proliferator-activated receptor-delta (PPARδ) agonists are key metabolic regulators and have anti-inflammatory properties. Here, we evaluated the effect of the selective PPAR-delta agonist seladelpar (MBX-8025) on gut barrier function and bile acid metabolism in a mouse model of ethanol-induced liver disease. Wild type C57BL/6 mice were fed LieberDeCarli diet containing 0%-36% ethanol (caloric) for 8 weeks followed by a single binge of ethanol (5 g/kg). Pair fed mice received an isocaloric liquid diet as control. MBX-8025 (10 mg/kg/d) or vehicle were added to the liquid diet during the entire feeding period (prevention), or during the last 4 weeks of Lieber DeCarli diet feeding (intervention). In both prevention and intervention trials, MBX-8025 protected mice from ethanol-induced liver disease, characterized by lower serum alanine aminotransferase (ALT) levels, hepatic triglycerides, and inflammation. Chronic ethanol intake disrupted bile acid metabolism by increasing the total bile acid pool and serum bile acids. MBX-8025 reduced serum total and secondary bile acids, and the total bile acid pool as compared with vehicle treatment in both prevention and intervention trials. MBX-8025 restored ethanol-induced gut dysbiosis and gut barrier dysfunction. Data from this study demonstrates that seladelpar prevents and treats ethanol-induced liver damage in mice by direct PPARδ agonism in both the liver and the intestine.
Collapse
Affiliation(s)
- Huikuan Chu
- Department of Medicine, University of California San Diego, La Jolla, California; Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jawaher A Alamoudi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
12
|
Effects of Dietary Histidine on Growth Performance, Serum Amino Acids, and Intestinal Morphology and Microbiota Communities in Low Protein Diet-Fed Piglets. Mediators Inflamm 2020; 2020:1240152. [PMID: 33354159 PMCID: PMC7735825 DOI: 10.1155/2020/1240152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Previous study showed that low protein diet-fed pigs are characterized by lower histidine concentration in the serum and muscle, suggesting that histidine may involve in protein-restricted response. Thus, the current study mainly investigated the effects of dietary histidine on growth performance, blood biochemical parameters and amino acids, intestinal morphology, and microbiota communities in low protein diet-challenged-piglets. The results showed that protein restriction inhibited growth performance, blood biochemical parameters and amino acids, and gut microbiota but had little effect on intestinal morphology. Dietary supplementation with histidine markedly enhanced serum histidine level and restored tryptophan concentration in low protein diet-fed piglets, while growth performance and intestinal morphology were not markedly altered in histidine-treated piglets. In addition, histidine exposure failed to affect bacterial diversity (observed species, Shannon, Simpson, Chao1, ACE, and phylogenetic diversity), but histidine-treated piglets exhibited higher abundances of Butyrivibrio and Bacteroides compared with the control and protein-restricted piglets. In conclusion, dietary histidine in low protein diet enhanced histidine concentration and affected gut microbiota (Butyrivibrio and Bacteroides) but failed to improve growth performance and intestinal morphology.
Collapse
|
13
|
Carvalho CDS, Moraes Utsunomiya HS, Pasquoto-Stigliani T, Costa MJ, Fernandes MN. Biomarkers of the oxidative stress and neurotoxicity in tissues of the bullfrog, Lithobates catesbeianus to assess exposure to metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110560. [PMID: 32247955 DOI: 10.1016/j.ecoenv.2020.110560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Lithobates catesbeianus tadpoles were exposed to 1 μg L-1 of zinc (Zn), copper (Cu) and cadmium (Cd) alone or combined (1:1 and 1:1:1) for 2 and 16 days. Results showed a significant increase in the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities in the liver, kidney and muscle (except for GPx) in the groups exposed to metal either alone or co-exposed after 2 days compared to the control. After 16 days, SOD, CAT and GST activities decreased significantly in the liver and kidney and GPx activity increased in the liver. Reduced glutathione (GSH) increased in the liver and kidney following combined exposure and decreased after 2 days of metal exposure in the muscle. There were significant increases in lipid hydroperoxide (LPO) levels in the liver, kidney and muscle (2 and 16 days), with the highest levels after metal co-exposure. Cholinesterase (ChE) activity increased significantly in the brain after 2 days of exposure but decreased in the brain (16 days) and muscle (2 days) after exposure to metals, alone and combined. The current study highlighted that the antioxidant system of L. catesbeianus was sensitive to metals and specially to the co-exposure of the three metals, despite presenting differences in the response among tissues. In addition, tadpoles were sensitive at both periods of exposure, but in different modes with stress response (activation, up-regulation) at 2 days and oppression (down-regulation) at 16 days.
Collapse
Affiliation(s)
- Cleoni Dos Santos Carvalho
- Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil; Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil.
| | - Heidi Samantha Moraes Utsunomiya
- Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil; Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil
| | - Tatiane Pasquoto-Stigliani
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade de Sorocaba, Rodovia Raposo Tavares, Km 92,5 - Artura, Sorocaba, SP, 18023-000, SP, Brazil
| | - Monica Jones Costa
- Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil; Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, SP-264, CEP, 18052-780, Sorocaba, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Universidade Federal de São Carlos, Departamento de Ciências Fisiológicas, Caixa Postal 676, Rodovia Washington Luis km 235, CEP, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
14
|
Moro J, Tomé D, Schmidely P, Demersay TC, Azzout-Marniche D. Histidine: A Systematic Review on Metabolism and Physiological Effects in Human and Different Animal Species. Nutrients 2020; 12:E1414. [PMID: 32423010 PMCID: PMC7284872 DOI: 10.3390/nu12051414] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Histidine is an essential amino acid (EAA) in mammals, fish, and poultry. We aim to give an overview of the metabolism and physiological effects of histidine in humans and different animal species through a systematic review following the guidelines of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). In humans, dietary histidine may be associated with factors that improve metabolic syndrome and has an effect on ion absorption. In rats, histidine supplementation increases food intake. It also provides neuroprotection at an early stage and could protect against epileptic seizures. In chickens, histidine is particularly important as a limiting factor for carnosine synthesis, which has strong anti-oxidant effects. In fish, dietary histidine may be one of the most important factors in preventing cataracts. In ruminants, histidine is a limiting factor for milk protein synthesis and could be the first limiting AA for growth. In excess, histidine supplementation can be responsible for eating and memory disorders in humans and can induce growth retardation and metabolic dysfunction in most species. To conclude, the requirements for histidine, like for other EAA, have been derived from growth and AA composition in tissues and also have specific metabolic roles depending on species and dietary levels.
Collapse
Affiliation(s)
- Joanna Moro
- AgroParisTech, Université Paris-Saclay, INRAE, UMR PNCA, 75005 Paris, France; (J.M.); (D.T.)
| | - Daniel Tomé
- AgroParisTech, Université Paris-Saclay, INRAE, UMR PNCA, 75005 Paris, France; (J.M.); (D.T.)
| | - Philippe Schmidely
- AgroParisTech, Université Paris-Saclay, INRAE, UMR0791 Mosar, 75005 Paris, France;
| | | | - Dalila Azzout-Marniche
- AgroParisTech, Université Paris-Saclay, INRAE, UMR PNCA, 75005 Paris, France; (J.M.); (D.T.)
| |
Collapse
|
15
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Glandorf B, Herman L, Maradona Prieto M, Saarela M, Tosti L, Anguita M, Galobart J, Holczknecht O, Manini P, Tarres-Call J, Pettenati E, Pizzo F. Safety and efficacy of l-histidine monohydrochloride monohydrate produced by fermentation with Escherichia coli (NITE BP-02526) for all animal species. EFSA J 2019; 17:e05785. [PMID: 32626407 PMCID: PMC7009181 DOI: 10.2903/j.efsa.2019.5785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on l-histidine monohydrochloride monohydrate produced by fermentation with Escherichia coli (NITE BP-02526) when used as a nutritional additive or as a feed flavouring compound in feed and water for drinking for all animal species. The product under assessment is l-histidine HCl H2O produced by fermentation with a genetically modified strain of E. coli (NITE BP-02526). The production strain and its recombinant DNA were not detected in the final products. l-Histidine HCl H2O does not give rise to any safety concern to the production strain. The use of l-histidine HCl H2O is safe for the target species when used to supplement the diet in appropriate amounts. It is safe at the proposed use level of 25 mg/kg when used as a flavouring compound for all animal species. The use of l-histidine HCl H2O in animal nutrition raises no safety concerns for consumers of animal products. The additive is not irritating to the skin or eyes and is not a skin sensitiser. There is a risk for persons handling the additive from the exposure to endotoxins by inhalation. The use of l-histidine as a feed additive does not represent a risk to the environment. The additive l-histidine HCl H2O is regarded as an effective source of the amino acid l-histidine when used as a nutritional additive. For the supplemental l-histidine to be as efficacious in ruminants as in non-ruminant species, it requires protection against degradation in the rumen. It is also considered efficacious as a feed flavouring compound under the proposed conditions of use.
Collapse
|
16
|
Gao J, An L, Xu Y, Huang Y. Catalpol Exerts an Anti-Epilepticus Effect, Possibly by Regulating the Nrf2-Keap1-ARE Signaling Pathway. Med Sci Monit 2018; 24:9436-9441. [PMID: 30592708 PMCID: PMC6322367 DOI: 10.12659/msm.911902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Status epilepticus (SE) is a refractory neurological disease with high mortality and morbidity rates. SE can be induced by numerous factors, including oxidative stress. Catalpol has several biological activities, including regulating the oxidative stress response. However, the role of catapol in SE has not been fully elucidated. Material/Methods Thirty Wistar rats were randomly and equally divided into 3 groups: a control group, an SE group established by LiCl-pilocarpine intraperitoneal injection, and an SE+catalpol group established administering catalpol to SE rats. Epileptic seizure level and after-discharge duration (ADD) were analyzed. Cognitive function was assessed by Morris water maze. Myeloperoxidase (MPO) and superoxide dismutase (SOD) activities were tested. Keap1 and ARE mRNA expressions were detected by real-time PCR. Nrf2 protein expression was determined by Western blot. Results Catalpol significantly decreased epileptic seizure level, extended ADD, and improved cognitive function compared with the SE group (P<0.05). MPO was increased, SOD was reduced, Keap1 mRNA was upregulated, and Nrf2 protein and ARE mRNA were reduced in the SE group compared with the control group (P<0.05). Catalpol markedly decreased MPO, enhanced SOD activity, decreased Keap1 mRNA level, and elevated Nrf2 protein and ARE mRNA expressions compared with the SE group (P<0.05). Conclusions Catalpol plays an anti-epileptic role and improves cognitive function by regulating the Nrf2-Keap1-ARE signaling pathway to inhibit oxidative stress response.
Collapse
Affiliation(s)
- Jing Gao
- Department of Emergency, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China (mainland)
| | - Li An
- Department of Neurology, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China (mainland)
| | - Yueyue Xu
- Department of Nursing, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China (mainland)
| | - Yudiao Huang
- Department of Neurology, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China (mainland)
| |
Collapse
|
17
|
Wu P, Tang L, Jiang W, Hu K, Liu Y, Jiang J, Kuang S, Tang L, Tang W, Zhang Y, Zhou X, Feng L. The relationship between dietary methionine and growth, digestion, absorption, and antioxidant status in intestinal and hepatopancreatic tissues of sub-adult grass carp ( Ctenopharyngodon idella). J Anim Sci Biotechnol 2017; 8:63. [PMID: 28781773 PMCID: PMC5537997 DOI: 10.1186/s40104-017-0194-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/21/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Methionine is an essential amino acid for fish. The present study was conducted to investigate the effects of dietary methionine on growth performance, digestive and absorptive ability, as well as antioxidant capacity in the intestine and hepatopancreas of sub-adult grass carp (Ctenopharyngodon idella). RESULTS Dietary methionine deficiency significantly decreased percentage weight gain (PWG), feed intake, feed efficiency and protein efficiency ratio, as well as activities of hepatopancreatic glutamate-oxaloacetate transaminase and muscle glutamate-pyruvate transaminase in sub-adult grass carp (P < 0.05). Furthermore, methionine deficiency significantly reduced activities of trypsin, lipase and amylase in the intestine, Na+/K+-ATPase, alkaline phosphatase and γ-glutamyl transpeptidase in three intestinal segments, and creatine kinase (CK) in the proximal intestine (P < 0.05). However, an unexplained and significant increase in CK activity in the mid intestine was associated with dietary methionine deficiency. Malondialdehyde and protein carbonyl contents in the intestine and hepatopancreas were significantly increased by methionine deficiency (P < 0.05), whereas anti-hydroxyl radical capacity in the hepatopancreas and intestine, and anti-superoxide anion capacity in the intestine, were significantly decreased by methionine deficiency (P < 0.05). Moreover, methionine deficiency significantly decreased superoxide dismutase and glutathione reductase activities, glutathione contents in the hepatopancreas and intestine, as well as glutathione peroxidase activity in the intestine (P < 0.05), whereas it significantly increased activities of catalase in the hepatopancreas and glutathione-S-transferase in the hepatopancreas and intestine (P < 0.05). CONCLUSIONS The present results demonstrated that dietary methionine deficiency induced poor growth, and decreased digestive and absorptive function and antioxidant capacity in the hepatopancreas and intestine of sub-adult grass carp. Methionine requirements for sub-adult grass carp (450-1, 170 g) based on PWG, intestinal trypsin, and hepatopancreatic anti-hydroxyl radical activities were estimated to be 6.12 g/kg diet (21.80 g/kg protein), 6.99 g/kg diet (24.90 g/kg protein) and 5.42 g/kg diet (19.31 g/kg protein), respectively, in the presence of 1.50 g cysteine/kg (5.35 g/kg protein).
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Kai Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shengyao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066 China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066 China
| | - Wuneng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066 China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
18
|
A Comparative Study on Antioxidant System in Fish Hepatopancreas and Intestine Affected by Choline Deficiency: Different Change Patterns of Varied Antioxidant Enzyme Genes and Nrf2 Signaling Factors. PLoS One 2017; 12:e0169888. [PMID: 28099509 PMCID: PMC5242466 DOI: 10.1371/journal.pone.0169888] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/22/2016] [Indexed: 01/24/2023] Open
Abstract
The liver and intestine are susceptible to the oxidative damage which could result in several diseases. Choline deficiency induced oxidative damage in rat liver cells. Thus, this study aimed to investigate the potential molecular mechanisms responsible for choline deficiency-induced oxidative damage. Juvenile Jian carp were fed diets differing in choline content [165 (deficient group), 310, 607, 896, 1167 and 1820 mg/kg diet] respectively for 65 days. Oxidative damage, antioxidant enzyme activities and related gene expressions in the hepatopancreas and intestine were measured. Choline deficiency decreased choline and phosphatidylcholine contents, and induced oxidative damage in both organs, as evidenced by increased levels of oxidative-stress markers (malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine), coupled with decreased activities of antioxidant enzymes [Copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. However, choline deficiency increased glutathione contents in the hepatopancreas and intestine. Furthermore, dietary choline deficiency downregulated mRNA levels of MnSOD, GPx1b, GST-rho, mGST3 and Kelch-like ECH associating protein 1 (Keap1b) in the hepatopancreas, MnSOD, GPx1b, GPx4a, GPx4b, GST-rho, GST-theta, GST-mu, GST-alpha, GST-pi and GST-kappa in the intestine, as well as intestinal Nrf2 protein levels. In contrast, choline deficiency upregulated the mRNA levels of GPx4a, GPx4b, mGST1, mGST2, GST-theta, GST-mu, Keap1a and PKC in the hepatopancreas, mGST3, nuclear factor erythoid 2-related factor 2 (Nrf2) and Keap1a in the intestine, as well as hepatopancreatic Nrf2 protein levels. This study provides new evidence that choline deficiency-induced oxidative damage is associated with changes in the transcription of antioxidant enzyme and Nrf2/Keap1 signaling molecules in the hepatopancreas and intestine. Additionally, this study firstly indicated that choline deficiency induced varied change patterns of different GPx and GST isoforms. Meanwhile, the changes of some GPx and GST isoforms caused by choline deficiency in the intestine were contrary to those in the hepatopancreas.
Collapse
|
19
|
Samma MK, Zhou H, Cui W, Zhu K, Zhang J, Shen W. Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa. Biometals 2017; 30:97-111. [DOI: 10.1007/s10534-017-9989-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
|