1
|
Peng K, Karunakaran KD, Green S, Borsook D. Machines, mathematics, and modules: the potential to provide real-time metrics for pain under anesthesia. NEUROPHOTONICS 2024; 11:010701. [PMID: 38389718 PMCID: PMC10883389 DOI: 10.1117/1.nph.11.1.010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
The brain-based assessments under anesthesia have provided the ability to evaluate pain/nociception during surgery and the potential to prevent long-term evolution of chronic pain. Prior studies have shown that the functional near-infrared spectroscopy (fNIRS)-measured changes in cortical regions such as the primary somatosensory and the polar frontal cortices show consistent response to evoked and ongoing pain in awake, sedated, and anesthetized patients. We take this basic approach and integrate it into a potential framework that could provide real-time measures of pain/nociception during the peri-surgical period. This application could have significant implications for providing analgesia during surgery, a practice that currently lacks quantitative evidence to guide patient tailored pain management. Through a simple readout of "pain" or "no pain," the proposed system could diminish or eliminate levels of intraoperative, early post-operative, and potentially, the transition to chronic post-surgical pain. The system, when validated, could also be applied to measures of analgesic efficacy in the clinic.
Collapse
Affiliation(s)
- Ke Peng
- University of Manitoba, Department of Electrical and Computer Engineering, Price Faculty of Engineering, Winnipeg, Manitoba, Canada
| | - Keerthana Deepti Karunakaran
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Stephen Green
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Boston, Massachusetts, United States
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Montero-Hernandez S, Pollonini L, Park L, Martorella G, Miao H, Mathis KB, Ahn H. Self-administered transcranial direct current stimulation treatment of knee osteoarthritis alters pain-related fNIRS connectivity networks. NEUROPHOTONICS 2023; 10:015011. [PMID: 37006323 PMCID: PMC10063907 DOI: 10.1117/1.nph.10.1.015011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Significance Knee osteoarthritis (OA) is a disease that causes chronic pain in the elderly population. Currently, OA is mainly treated pharmacologically with analgesics, although research has shown that neuromodulation via transcranial direct current stimulation (tDCS) may be beneficial in reducing pain in clinical settings. However, no studies have reported the effects of home-based self-administered tDCS on functional brain networks in older adults with knee OA. Aim We used functional near-infrared spectroscopy (fNIRS) to investigate the functional connectivity effects of tDCS on underlying pain processing mechanisms at the central nervous level in older adults with knee OA. Approach Pain-related brain connectivity networks were extracted using fNIRS at baseline and for three consecutive weeks of treatment from 120 subjects randomly assigned to two groups undergoing active tDCS and sham tDCS. Results Our results showed that the tDCS intervention significantly modulated pain-related connectivity correlation only in the group receiving active treatment. We also found that only the active treatment group showed a significantly reduced number and strength of functional connections evoked during nociception in the prefrontal cortex, primary motor (M1), and primary somatosensory (S1) cortices. To our knowledge, this is the first study in which the effect of tDCS on pain-related connectivity networks is investigated using fNIRS. Conclusions fNIRS-based functional connectivity can be effectively used to investigate neural circuits of pain at the cortical level in association with nonpharmacological, self-administered tDCS treatment.
Collapse
Affiliation(s)
| | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
- University of Houston, Department of Electrical and Computer Engineering, Houston, Texas, United States
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Lindsey Park
- Florida State University, College of Nursing, Tallahassee, Florida, United States
| | - Geraldine Martorella
- Florida State University, College of Nursing, Tallahassee, Florida, United States
| | - Hongyu Miao
- Florida State University, College of Nursing, Tallahassee, Florida, United States
| | - Kenneth B. Mathis
- The University of Texas Health Science Center at Houston, McGovern Medical School, Department of Orthopedic Surgery, Houston, Texas, United States
| | - Hyochol Ahn
- Florida State University, College of Nursing, Tallahassee, Florida, United States
| |
Collapse
|
3
|
Jotwani ML, Wu Z, Lunde CE, Sieberg CB. The missing mechanistic link: Improving behavioral treatment efficacy for pediatric chronic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1022699. [PMID: 36313218 PMCID: PMC9614027 DOI: 10.3389/fpain.2022.1022699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Pediatric chronic pain is a significant global issue, with biopsychosocial factors contributing to the complexity of the condition. Studies have explored behavioral treatments for pediatric chronic pain, but these treatments have mixed efficacy for improving functional and psychological outcomes. Furthermore, the literature lacks an understanding of the biobehavioral mechanisms contributing to pediatric chronic pain treatment response. In this mini review, we focus on how neuroimaging has been used to identify biobehavioral mechanisms of different conditions and how this modality can be used in mechanistic clinical trials to identify markers of treatment response for pediatric chronic pain. We propose that mechanistic clinical trials, utilizing neuroimaging, are warranted to investigate how to optimize the efficacy of behavioral treatments for pediatric chronic pain patients across pain types and ages.
Collapse
Affiliation(s)
- Maya L. Jotwani
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Ziyan Wu
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Claire E. Lunde
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christine B. Sieberg
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Green S, Karunakaran KD, Peng K, Berry D, Kussman BD, Micheli L, Borsook D. Measuring "pain load" during general anesthesia. Cereb Cortex Commun 2022; 3:tgac019. [PMID: 35611143 PMCID: PMC9123643 DOI: 10.1093/texcom/tgac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Functional near-infrared spectroscopy (fNIRS) allows for ongoing measures of brain functions during surgery. The ability to evaluate cumulative effects of painful/nociceptive events under general anesthesia remains a challenge. Through observing signal differences and setting boundaries for when observed events are known to produce pain/nociception, a program can trigger when the concentration of oxygenated hemoglobin goes beyond ±0.3 mM from 25 s after standardization. Method fNIRS signals were retrieved from patients undergoing knee surgery for anterior cruciate ligament repair under general anesthesia. Continuous fNIRS measures were measured from the primary somatosensory cortex (S1), which is known to be involved in evaluation of nociception, and the medial polar frontal cortex (mPFC), which are both involved in higher cortical functions (viz. cognition and emotion). Results A ±0.3 mM threshold for painful/nociceptive events was observed during surgical incisions at least twice, forming a basis for a potential near-real-time recording of pain/nociceptive events. Evidence through observed true positives in S1 and true negatives in mPFC are linked through statistically significant correlations and this threshold. Conclusion Our results show that standardizing and observing concentrations over 25 s using the ±0.3 mM threshold can be an arbiter of the continuous number of incisions performed on a patient, contributing to a potential intraoperative pain load index that correlates with post-operative levels of pain and potential pain chronification.
Collapse
Affiliation(s)
- Stephen Green
- Corresponding author: 77 Lab, Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States.
| | - Keerthana Deepti Karunakaran
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Ke Peng
- Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Delany Berry
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Barry David Kussman
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Lyle Micheli
- Departments of Orthopedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02114, United States
| | - David Borsook
- Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada,Departments of Orthopedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02114, United States,Departments of Psychiatry and Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, United States
| |
Collapse
|
5
|
Advances in Neuroimaging and Monitoring to Defend Cerebral Perfusion in Noncardiac Surgery. Anesthesiology 2022; 136:1015-1038. [PMID: 35482943 DOI: 10.1097/aln.0000000000004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noncardiac surgery conveys a substantial risk of secondary organ dysfunction and injury. Neurocognitive dysfunction and covert stroke are emerging as major forms of perioperative organ dysfunction, but a better understanding of perioperative neurobiology is required to identify effective treatment strategies. The likelihood and severity of perioperative brain injury may be increased by intraoperative hemodynamic dysfunction, tissue hypoperfusion, and a failure to recognize complications early in their development. Advances in neuroimaging and monitoring techniques, including optical, sonographic, and magnetic resonance, have progressed beyond structural imaging and now enable noninvasive assessment of cerebral perfusion, vascular reserve, metabolism, and neurologic function at the bedside. Translation of these imaging methods into the perioperative setting has highlighted several potential avenues to optimize tissue perfusion and deliver neuroprotection. This review introduces the methods, metrics, and evidence underlying emerging optical and magnetic resonance neuroimaging methods and discusses their potential experimental and clinical utility in the setting of noncardiac surgery.
Collapse
|
6
|
Sieberg CB, Karunakaran KD, Kussman B, Borsook D. Preventing pediatric chronic postsurgical pain: Time for increased rigor. Can J Pain 2022; 6:73-84. [PMID: 35528039 PMCID: PMC9067470 DOI: 10.1080/24740527.2021.2019576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
Chronic postsurgical pain (CPSP) results from a cascade of events in the peripheral and central nervous systems following surgery. Several clinical predictors, including the prior pain state, premorbid psychological state (e.g., anxiety, catastrophizing), intraoperative surgical load (establishment of peripheral and central sensitization), and acute postoperative pain management, may contribute to the patient's risk of developing CPSP. However, research on the neurobiological and biobehavioral mechanisms contributing to pediatric CPSP and effective preemptive/treatment strategies are still lacking. Here we evaluate the perisurgical process by identifying key problems and propose potential solutions for the pre-, intra-, and postoperative pain states to both prevent and manage the transition of acute to chronic pain. We propose an eight-step process involving preemptive and preventative analgesia, behavioral interventions, and the use of biomarkers (brain-based, inflammatory, or genetic) to facilitate timely evaluation and treatment of premorbid psychological factors, ongoing surgical pain, and postoperative pain to provide an overall improved outcome. By achieving this, we can begin to establish personalized precision medicine for children and adolescents presenting to surgery and subsequent treatment selection.
Collapse
Affiliation(s)
- Christine B. Sieberg
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children’s Hospital, Boston, Massachusetts, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Keerthana Deepti Karunakaran
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children’s Hospital, Boston, Massachusetts, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Barry Kussman
- Department of Anesthesiology, Critical Care, & Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
- Department of Anesthesiology, Harvard Medical School, Boston, Massachusetts, United States
| | - David Borsook
- Department of Anesthesiology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychiatry and Radiology, Massachusetts General Hospital, Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Karunakaran KD, Kussman BD, Peng K, Becerra L, Labadie R, Bernier R, Berry D, Green S, Zurakowski D, Alexander ME, Borsook D. Brain-based measures of nociception during general anesthesia with remifentanil: A randomized controlled trial. PLoS Med 2022; 19:e1003965. [PMID: 35452458 PMCID: PMC9075662 DOI: 10.1371/journal.pmed.1003965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/06/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Catheter radiofrequency (RF) ablation for cardiac arrhythmias is a painful procedure. Prior work using functional near-infrared spectroscopy (fNIRS) in patients under general anesthesia has indicated that ablation results in activity in pain-related cortical regions, presumably due to inadequate blockade of afferent nociceptors originating within the cardiac system. Having an objective brain-based measure for nociception and analgesia may in the future allow for enhanced analgesic control during surgical procedures. Hence, the primary aim of this study is to demonstrate that the administration of remifentanil, an opioid widely used during surgery, can attenuate the fNIRS cortical responses to cardiac ablation. METHODS AND FINDINGS We investigated the effects of continuous remifentanil on cortical hemodynamics during cardiac ablation under anesthesia. In a randomized, double-blinded, placebo (PL)-controlled trial, we examined 32 pediatric patients (mean age of 15.8 years,16 females) undergoing catheter ablation for cardiac arrhythmias at the Cardiology Department of Boston Children's Hospital from October 2016 to March 2020; 9 received 0.9% NaCl, 12 received low-dose (LD) remifentanil (0.25 mcg/kg/min), and 11 received high-dose (HD) remifentanil (0.5 mcg/kg/min). The hemodynamic changes of primary somatosensory and prefrontal cortices were recorded during surgery using a continuous wave fNIRS system. The primary outcome measures were the changes in oxyhemoglobin concentration (NadirHbO, i.e., lowest oxyhemoglobin concentration and PeakHbO, i.e., peak change and area under the curve) of medial frontopolar cortex (mFPC), lateral prefrontal cortex (lPFC) and primary somatosensory cortex (S1) to ablation in PL versus remifentanil groups. Secondary measures included the fNIRS response to an auditory control condition. The data analysis was performed on an intention-to-treat (ITT) basis. Remifentanil group (dosage subgroups combined) was compared with PL, and a post hoc analysis was performed to identify dose effects. There were no adverse events. The groups were comparable in age, sex, and number of ablations. Results comparing remifentanil versus PL show that PL group exhibit greater NadirHbO in inferior mFPC (mean difference (MD) = 1.229, 95% confidence interval [CI] = 0.334, 2.124, p < 0.001) and superior mFPC (MD = 1.206, 95% CI = 0.303, 2.109, p = 0.001) and greater PeakHbO in inferior mFPC (MD = -1.138, 95% CI = -2.062, -0.214, p = 0.002) and superior mFPC (MD = -0.999, 95% CI = -1.961, -0.036, p = 0.008) in response to ablation. S1 activation from ablation was greatest in PL, then LD, and HD groups, but failed to reach significance, whereas lPFC activation to ablation was similar in all groups. Ablation versus auditory stimuli resulted in higher PeakHbO in inferior mFPC (MD = 0.053, 95% CI = 0.004, 0.101, p = 0.004) and superior mFPC (MD = 0.052, 95% CI = 0.013, 0.091, p < 0.001) and higher NadirHbO in posterior superior S1 (Pos. SS1; MD = -0.342, 95% CI = -0.680, -0.004, p = 0.007) during ablation of all patients. Remifentanil group had smaller NadirHbO in inferior mFPC (MD = 0.098, 95% CI = 0.009, 0.130, p = 0.003) and superior mFPC (MD = 0.096, 95% CI = 0.008, 0.116, p = 0.003) and smaller PeakHbO in superior mFPC (MD = -0.092, 95% CI = -0.680, -0.004, p = 0.007) during both the stimuli. Study limitations were small sample size, motion from surgery, indirect measure of nociception, and shallow penetration depth of fNIRS only allowing access to superficial cortical layers. CONCLUSIONS We observed cortical activity related to nociception during cardiac ablation under general anesthesia with remifentanil. It highlights the potential of fNIRS to provide an objective pain measure in unconscious patients, where cortical-based measures may be more accurate than current evaluation methods. Future research may expand on this application to produce a real-time indication of pain that will aid clinicians in providing immediate and adequate pain treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT02703090.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barry D. Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ke Peng
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Département en Neuroscience, Centre de Recherche du CHUM, l’Université de Montréal Montreal, Québec, Canada
| | - Lino Becerra
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Labadie
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rachel Bernier
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Delany Berry
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen Green
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Zurakowski
- Division of Biostatistics, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark E. Alexander
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Borsook
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry and Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Schmidt EJ, Elahi H, Meyer ES, Baumgaertner R, Neri L, Berger RD, Tandri H, Hunter DW, Cohen SP, Oberdier MT, Halperin HR. Reduced Motion External Defibrillation (RMD): Reduced Subject Motion with Equivalent Defibrillation Efficiency validated in Swine. Heart Rhythm 2022; 19:1165-1173. [PMID: 35240311 DOI: 10.1016/j.hrthm.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND External defibrillators are used for arrhythmia cardioversion and for defibrillating during cardiac arrest. During defibrillation, short-duration Biphasic pulses cause intense motion due to rapid chest-wall muscle contraction. A reduced-motion external defibrillator (RMD) was constructed by integrating a commercial defibrillator with a Tetanizing-waveform generator. A long-duration low-amplitude Tetanizing-waveform slowly stimulated the chest musculature prior to the Biphasic pulse, reducing muscle contraction during the shock. OBJECTIVE Evaluate RMD defibrillation in swine for subject-motion during defibrillation pulses and for defibrillation effectiveness. RMD defibrillation can reduce the duration of arrhythmia ablation-therapy or simplify cardioversion procedures. METHODS The Tetanizing unit delivered a triangular 1-kHz pulse of 0.25-2.0sec duration and 10-100Volt peak amplitude, subsequently triggering the conventional defibrillator to output standard 1-200J energy Biphasic pulses at the next R-wave. Forward-limb motion was evaluated by measuring Peak Acceleration and Limb Work during RMD (Tetanizing+Biphasic) or Biphasic-pulse-only waveforms at 10-3sec sampling-rate. Seven swine were arrested electrically and subsequently defibrillated. Biphasic-pulse-only and RMD defibrillations were repeated 25-35 times/swine, varying Tetanizing parameters and the Biphasic-pulse energy. Defibrillation thresholds (DFTs) were established by measuring the minimum energy required to restore sinus-rhythm with Biphasic-pulse-only or RMD defibrillations. RESULTS Two forward-limb acceleration-peaks occurred during both the Tetanizing-waveform and Biphasic-pulse, indicating rapid and slower nociceptic (pain-sensation) nerve-fiber activation. Optimal RMD Tetanizing-parameters (25-35V, 0.25-0.75sec duration), relative to Biphasic-pulse-only defibrillations, resulted in 74+10% smaller Peak Accelerations and 85+10% reduced Limb Work. DFT energies were identical, comparing RMD to Biphasic-pulse-only defibrillations. CONCLUSION Relative to conventional defibrillations, RMD defibrillations maintain rhythm-restoration efficiency with drastically reduced subject-motion.
Collapse
Affiliation(s)
- Ehud J Schmidt
- Medicine (Cardiology), Johns Hopkins University, Baltimore, MD.
| | - Hassan Elahi
- Medicine (Cardiology), Johns Hopkins University, Baltimore, MD
| | - Eric S Meyer
- Medicine (Cardiology), Johns Hopkins University, Baltimore, MD
| | | | - Luca Neri
- Medicine (Cardiology), Johns Hopkins University, Baltimore, MD
| | - Ronald D Berger
- Medicine (Cardiology), Johns Hopkins University, Baltimore, MD
| | | | - David W Hunter
- Medicine (Cardiology), Johns Hopkins University, Baltimore, MD
| | | | - Matt T Oberdier
- Medicine (Cardiology), Johns Hopkins University, Baltimore, MD
| | | |
Collapse
|
9
|
Alter BJ, Santosa H, Nguyen QH, Huppert TJ, Wasan AD. Offset analgesia is associated with opposing modulation of medial versus dorsolateral prefrontal cortex activations: A functional near-infrared spectroscopy study. Mol Pain 2022; 18:17448069221074991. [PMID: 35083928 PMCID: PMC9047820 DOI: 10.1177/17448069221074991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/02/2022] Open
Abstract
Offset analgesia is defined by a dramatic drop in perceived pain intensity with a relatively small decrease in noxious input. Although functional magnetic resonance imaging studies implicate subcortical descending inhibitory circuits during offset analgesia, the role of cortical areas remains unclear. The current study identifies cortical correlates of offset analgesia using functional near infrared spectroscopy (fNIRS). Twenty-four healthy volunteers underwent fNIRS scanning during offset (OS) and control (Con) heat stimuli applied to the forearm. After controlling for non-neural hemodynamic responses in superficial tissues, widespread increases in cortical oxygenated hemoglobin concentration were observed, reflecting cortical activation during heat pain. OS-Con contrasts revealed deactivations in bilateral medial prefrontal cortex (mPFC) and bilateral somatosensory cortex (SSC) associated with offset analgesia. Right dorsolateral prefrontal cortex (dlPFC) showed activation only during OS. These data demonstrate opposing cortical activation patterns during offset analgesia and support a model in which right dlPFC underlies ongoing evaluation of pain intensity change. With predictions of decreasing pain intensity, right dlPFC activation likely inhibits ascending noxious input via subcortical pathways resulting in SSC and mPFC deactivation. This study identifies cortical circuitry underlying offset analgesia and introduces the use of fNIRS to study pain modulation in an outpatient clinical environment.
Collapse
Affiliation(s)
- Benedict J. Alter
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Hendrik Santosa
- Department of Radiology, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Quynh H. Nguyen
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Theodore J. Huppert
- Department of Electrical and
Computer Engineering, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Ajay D. Wasan
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of
Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Green S, Karunakaran KD, Labadie R, Kussman B, Mizrahi-Arnaud A, Morad AG, Berry D, Zurakowski D, Micheli L, Peng K, Borsook D. fNIRS brain measures of ongoing nociception during surgical incisions under anesthesia. NEUROPHOTONICS 2022; 9:015002. [PMID: 35111876 PMCID: PMC8794294 DOI: 10.1117/1.nph.9.1.015002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) has evaluated pain in awake and anesthetized states. Aim: We evaluated fNIRS signals under general anesthesia in patients undergoing knee surgery for anterior cruciate ligament repair. Approach: Patients were split into groups: those with regional nerve block (NB) and those without (non-NB). Continuous fNIRS measures came from three regions: the primary somatosensory cortex (S1), known to be involved in evaluation of nociception, the lateral prefrontal cortex (BA9), and the polar frontal cortex (BA10), both involved in higher cortical functions (such as cognition and emotion). Results: Our results show three significant differences in fNIRS signals to incision procedures between groups: (1) NB compared with non-NB was associated with a greater net positive hemodynamic response to pain procedures in S1; (2) dynamic correlation between the prefrontal cortex (PreFC) and S1 within 1 min of painful procedures are anticorrelated in NB while positively correlated in non-NB; and (3) hemodynamic measures of activation were similar at two separate time points during surgery (i.e., first and last incisions) in PreFC and S1 but showed significant differences in their overlap. Comparing pain levels immediately after surgery and during discharge from postoperative care revealed no significant differences in the pain levels between NB and non-NB. Conclusion: Our data suggest multiple pain events that occur during surgery using devised algorithms could potentially give a measure of "pain load." This may allow for evaluation of central sensitization (i.e., a heightened state of the nervous system where noxious and non-noxious stimuli is perceived as painful) to postoperative pain levels and the resulting analgesic consumption. This evaluation could potentially predict postsurgical chronic neuropathic pain.
Collapse
Affiliation(s)
- Stephen Green
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Keerthana Deepti Karunakaran
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Robert Labadie
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Barry Kussman
- Boston Children’s Hospital, Harvard Medical School, Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Arielle Mizrahi-Arnaud
- Boston Children’s Hospital, Harvard Medical School, Division of Perioperative Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Andrea Gomez Morad
- Boston Children’s Hospital, Harvard Medical School, Division of Perioperative Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Delany Berry
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - David Zurakowski
- Boston Children’s Hospital, Harvard Medical School, Division of Biostatistics, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Lyle Micheli
- Boston Children’s Hospital, Harvard Medical School, Sports Medicine Division, Department of Orthopedic Surgery, Boston, Massachusetts, United States
| | - Ke Peng
- Université de Montréal, Département en Neuroscience, Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Departments of Psychiatry and Radiology, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Hu XS, Nascimento TD, DaSilva AF. Shedding light on pain for the clinic: a comprehensive review of using functional near-infrared spectroscopy to monitor its process in the brain. Pain 2021; 162:2805-2820. [PMID: 33990114 PMCID: PMC8490487 DOI: 10.1097/j.pain.0000000000002293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain is a complex experience that involves sensation, emotion, and cognition. The subjectivity of the traditional pain measurement tools has expedited the interest in developing neuroimaging techniques to monitor pain objectively. Among noninvasive neuroimaging techniques, functional near-infrared spectroscopy (fNIRS) has balanced spatial and temporal resolution; yet, it is portable, quiet, and cost-effective. These features enable fNIRS to image the cortical mechanisms of pain in a clinical environment. In this article, we evaluated pain neuroimaging studies that used the fNIRS technique in the past decade. Starting from the experimental design, we reviewed the regions of interest, probe localization, data processing, and primary findings of these existing fNIRS studies. We also discussed the fNIRS imaging's potential as a brain surveillance technique for pain, in combination with artificial intelligence and extended reality techniques. We concluded that fNIRS is a brain imaging technique with great potential for objective pain assessment in the clinical environment.
Collapse
Affiliation(s)
- Xiao-Su Hu
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Thiago D. Nascimento
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Alexandre F. DaSilva
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| |
Collapse
|
12
|
Rhythmic Change of Cortical Hemodynamic Signals Associated with Ongoing Nociception in Awake and Anesthetized Individuals: An Exploratory Functional Near Infrared Spectroscopy Study. Anesthesiology 2021; 135:877-892. [PMID: 34610092 DOI: 10.1097/aln.0000000000003986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Patients undergoing surgical procedures are vulnerable to repetitive evoked or ongoing nociceptive barrage. Using functional near infrared spectroscopy, the authors aimed to evaluate the cortical hemodynamic signal power changes during ongoing nociception in healthy awake volunteers and in surgical patients under general anesthesia. The authors hypothesized that ongoing nociception to heat or surgical trauma would induce reductions in the power of cortical low-frequency hemodynamic oscillations in a similar manner as previously reported using functional magnetic resonance imaging for ongoing pain. METHODS Cortical hemodynamic signals during noxious stimuli from the fontopolar cortex were evaluated in two groups: group 1, a healthy/conscious group (n = 15, all males) where ongoing noxious and innocuous heat stimulus was induced by a contact thermode to the dorsum of left hand; and group 2, a patient/unconscious group (n = 13, 3 males) receiving general anesthesia undergoing knee surgery. The fractional power of low-frequency hemodynamic signals was compared across stimulation conditions in the healthy awake group, and between patients who received standard anesthesia and those who received standard anesthesia with additional regional nerve block. RESULTS A reduction of the total fractional power in both groups-specifically, a decrease in the slow-5 frequency band (0.01 to 0.027 Hz) of oxygenated hemoglobin concentration changes over the frontopolar cortex-was observed during ongoing noxious stimuli in the healthy awake group (paired t test, P = 0.017; effect size, 0.70), and during invasive procedures in the surgery group (paired t test, P = 0.003; effect size, 2.16). The reduction was partially reversed in patients who received a regional nerve block that likely diminished afferent nociceptive activity (two-sample t test, P = 0.002; effect size, 2.34). CONCLUSIONS These results suggest common power changes in slow-wave cortical hemodynamic oscillations during ongoing nociceptive processing in conscious and unconscious states. The observed signal may potentially promote future development of a surrogate signal to assess ongoing nociception under general anesthesia. EDITOR’S PERSPECTIVE
Collapse
|
13
|
Wang Y, Zhang L, Dong W, Zhang R. Effects of Kangaroo Mother Care on Repeated Procedural Pain and Cerebral Oxygenation in Preterm Infants. Am J Perinatol 2021; 40:867-873. [PMID: 34192768 DOI: 10.1055/s-0041-1731650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The study aimed to investigate the effects of kangaroo mother care (KMC) on repeated procedural pain and cerebral oxygenation in preterm infants. STUDY DESIGN Preterm infants of 31 to 33 weeks of gestational age were randomly divided into an intervention group (n = 36) and a control group (n = 37). Premature infant pain profile (PIPP) scores, heart rate, oxygen saturation, regional cerebral tissue oxygenation saturation (rcSO2), and cerebral fractional tissue oxygen extraction (cFTOE) were evaluated during repeated heel stick procedures. Each heel stick procedure included three phases: baseline, blood collection, and recovery. KMC was given to the intervention group 30 minutes before baseline until the end of the recovery phase. RESULTS Compared with the control group, the intervention group showed lower PIPP scores and heart rates, higher oxygen saturation, and rcSO2 from the blood collection to recovery phases during repeated heel sticks. Moreover, there were significant changes in cFTOE for the control group, but not the intervention group associated with repeated heel stick procedures. CONCLUSION The analgesic effect of KMC is sustained over repeated painful procedures in preterm infants, and it is conducive to stabilizing cerebral oxygenation, which may protect the development of brain function. KEY POINTS · KMC stabilizes cerebral oxygenation during repeated heel sticks in preterm infants.. · The analgesic effect of KMC is sustained over repeated painful procedures in preterm infants.. · KMC may protect the development of brain function..
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Linping Zhang
- Pediatrics Teaching and Research Section, Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Zhang
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Chen T, Zhao C, Pan X, Qu J, Wei J, Li C, Liang Y, Zhang X. Decoding different working memory states during an operation span task from prefrontal fNIRS signals. BIOMEDICAL OPTICS EXPRESS 2021; 12:3495-3511. [PMID: 34221675 PMCID: PMC8221954 DOI: 10.1364/boe.426731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We propose an effective and practical decoding method of different mental states for potential applications for the design of brain-computer interfaces, prediction of cognitive behaviour, and investigation of cognitive mechanism. Functional near infrared spectroscopy (fNIRS) signals that interrogated the prefrontal and parietal cortices and were evaluated by generalized linear model were recorded when nineteen healthy adults performed the operation span (OSPAN) task. The oxygenated hemoglobin changes during OSPAN, response, and rest periods were classified with a support vector machine (SVM). The relevance vector regression algorithm was utilized for prediction of cognitive performance based on multidomain features of fNIRS signals from the OSPAN task. We acquired decent classification accuracies for OSPAN vs. response (above 91.2%) and for OSPAN vs. rest (above 94.7%). Eight of the ten cognitive testing scores could be predicted from the combination of OSPAN and response features, which indicated the brain hemodynamic responses contain meaningful information suitable for predicting cognitive performance.
Collapse
Affiliation(s)
- Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Cui Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xingyu Pan
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Junda Qu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Karunakaran KD, Peng K, Berry D, Green S, Labadie R, Kussman B, Borsook D. NIRS measures in pain and analgesia: Fundamentals, features, and function. Neurosci Biobehav Rev 2020; 120:335-353. [PMID: 33159918 DOI: 10.1016/j.neubiorev.2020.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Current pain assessment techniques based only on clinical evaluation and self-reports are not objective and may lead to inadequate treatment. Having a functional biomarker will add to the clinical fidelity, diagnosis, and perhaps improve treatment efficacy in patients. While many approaches have been deployed in pain biomarker discovery, functional near-infrared spectroscopy (fNIRS) is a technology that allows for non-invasive measurement of cortical hemodynamics. The utility of fNIRS is especially attractive given its ability to detect specific changes in the somatosensory and high-order cortices as well as its ability to measure (1) brain function similar to functional magnetic resonance imaging, (2) graded responses to noxious and innocuous stimuli, (3) analgesia, and (4) nociception under anesthesia. In this review, we evaluate the utility of fNIRS in nociception/pain with particular focus on its sensitivity and specificity, methodological advantages and limitations, and the current and potential applications in various pain conditions. Everything considered, fNIRS technology could enhance our ability to evaluate evoked and persistent pain across different age groups and clinical populations.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| | - Ke Peng
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States; Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, QC, Canada
| | - Delany Berry
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Stephen Green
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Robert Labadie
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Barry Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
16
|
A Functional Near-Infrared Spectroscopy Study on the Cortical Haemodynamic Responses During the Maastricht Acute Stress Test. Sci Rep 2019; 9:13459. [PMID: 31530845 PMCID: PMC6748987 DOI: 10.1038/s41598-019-49826-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/30/2019] [Indexed: 11/09/2022] Open
Abstract
In order to better understand stress responses, neuroimaging studies have investigated the underlying neural correlates of stress. Amongst other brain regions, they highlight the involvement of the prefrontal cortex. The aim of the present study was to explore haemodynamic changes in the prefrontal cortex during the Maastricht Acute Stress Test (MAST) using mobile functional Near-Infrared Spectroscopy (fNIRS), examining the stress response in an ecological environment. The MAST includes a challenging mental arithmic task and a physically stressful ice-water task. In a between-subject design, participants either performed the MAST or a non-stress control condition. FNIRS data were recorded throughout the test. Additionally, subjective stress ratings, heart rate and salivary cortisol were evaluated, confirming a successful stress induction. The fNIRS data indicated significantly increased neural activity of brain regions of the dorsolateral prefrontal cortex (dlPFC) and the orbitofrontal cortex (OFC) in response to the MAST, compared to the control condition. Furthermore, the mental arithmetic task indicated an increase in neural activity in brain regions of the dlPFC and OFC; whereas the physically stressful hand immersion task indicated a lateral decrease of neural activity in the left dlPFC. The study highlights the potential use of mobile fNIRS in clinical and applied (stress) research.
Collapse
|
17
|
Sharini H, Fooladi M, Masjoodi S, Jalalvandi M, Yousef Pour M. Identification of the Pain Process by Cold Stimulation: Using Dynamic Causal Modeling of Effective Connectivity in Functional Near-Infrared Spectroscopy (fNIRS). Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Fernandez Rojas R, Liao M, Romero J, Huang X, Ou KL. Cortical Network Response to Acupuncture and the Effect of the Hegu Point: An fNIRS Study. SENSORS 2019; 19:s19020394. [PMID: 30669377 PMCID: PMC6359459 DOI: 10.3390/s19020394] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 11/16/2022]
Abstract
Acupuncture is a practice of treatment based on influencing specific points on the body by inserting needles. According to traditional Chinese medicine, the aim of acupuncture treatment for pain management is to use specific acupoints to relieve excess, activate qi (or vital energy), and improve blood circulation. In this context, the Hegu point is one of the most widely-used acupoints for this purpose, and it has been linked to having an analgesic effect. However, there exists considerable debate as to its scientific validity. In this pilot study, we aim to identify the functional connectivity related to the three main types of acupuncture manipulations and also identify an analgesic effect based on the hemodynamic response as measured by functional near-infrared spectroscopy (fNIRS). The cortical response of eleven healthy subjects was obtained using fNIRS during an acupuncture procedure. A multiscale analysis based on wavelet transform coherence was employed to assess the functional connectivity of corresponding channel pairs within the left and right somatosensory region. The wavelet analysis was focused on the very-low frequency oscillations (VLFO, 0.01–0.08 Hz) and the low frequency oscillations (LFO, 0.08–0.15 Hz). A mixed model analysis of variance was used to appraise statistical differences in the wavelet domain for the different acupuncture stimuli. The hemodynamic response after the acupuncture manipulations exhibited strong activations and distinctive cortical networks in each stimulus. The results of the statistical analysis showed significant differences (p<0.05) between the tasks in both frequency bands. These results suggest the existence of different stimuli-specific cortical networks in both frequency bands and the anaesthetic effect of the Hegu point as measured by fNIRS.
Collapse
Affiliation(s)
- Raul Fernandez Rojas
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Mingyu Liao
- Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| | - Julio Romero
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Xu Huang
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Keng-Liang Ou
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan.
- School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan.
- Department of Prosthodontics, Faculty of Dentistry, Hasanuddin University, Makassar 90245, Indonesia.
- Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Oral Hygiene Care, Ching Kuo Institute of Management and Health, Keelung 203, Taiwan.
- 3D Global Biotech Inc., New Taipei City 221, Taiwan.
| |
Collapse
|
19
|
Borsook D, Youssef AM, Simons L, Elman I, Eccleston C. When pain gets stuck: the evolution of pain chronification and treatment resistance. Pain 2018; 159:2421-2436. [PMID: 30234696 PMCID: PMC6240430 DOI: 10.1097/j.pain.0000000000001401] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is well-recognized that, despite similar pain characteristics, some people with chronic pain recover, whereas others do not. In this review, we discuss possible contributions and interactions of biological, social, and psychological perturbations that underlie the evolution of treatment-resistant chronic pain. Behavior and brain are intimately implicated in the production and maintenance of perception. Our understandings of potential mechanisms that produce or exacerbate persistent pain remain relatively unclear. We provide an overview of these interactions and how differences in relative contribution of dimensions such as stress, age, genetics, environment, and immune responsivity may produce different risk profiles for disease development, pain severity, and chronicity. We propose the concept of "stickiness" as a soubriquet for capturing the multiple influences on the persistence of pain and pain behavior, and their stubborn resistance to therapeutic intervention. We then focus on the neurobiology of reward and aversion to address how alterations in synaptic complexity, neural networks, and systems (eg, opioidergic and dopaminergic) may contribute to pain stickiness. Finally, we propose an integration of the neurobiological with what is known about environmental and social demands on pain behavior and explore treatment approaches based on the nature of the individual's vulnerability to or protection from allostatic load.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
- Departments of Anesthesia (BCH), Psychiatry (MGH, McLean) and Radiology (MGH)
| | - Andrew M Youssef
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
| | - Laura Simons
- Department of Anesthesia, Stanford University, Palo Alto, CA
| | | | - Christopher Eccleston
- Centre for Pain Research, University of Bath, UK
- Department of Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
20
|
Peng K, Yücel MA, Steele SC, Bittner EA, Aasted CM, Hoeft MA, Lee A, George EE, Boas DA, Becerra L, Borsook D. Morphine Attenuates fNIRS Signal Associated With Painful Stimuli in the Medial Frontopolar Cortex (medial BA 10). Front Hum Neurosci 2018; 12:394. [PMID: 30349466 PMCID: PMC6186992 DOI: 10.3389/fnhum.2018.00394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022] Open
Abstract
Functional near infrared spectroscopy (fNIRS) is a non-invasive optical imaging method that provides continuous measure of cortical brain functions. One application has been its use in the evaluation of pain. Previous studies have delineated a deoxygenation process associated with pain in the medial anterior prefrontal region, more specifically, the medial Brodmann Area 10 (BA 10). Such response to painful stimuli has been consistently observed in awake, sedated and anesthetized patients. In this study, we administered oral morphine (15 mg) or placebo to 14 healthy male volunteers with no history of pain or opioid abuse in a crossover double blind design, and performed fNIRS scans prior to and after the administration to assess the effect of morphine on the medial BA 10 pain signal. Morphine is the gold standard for inhibiting nociceptive processing, most well described for brain effects on sensory and emotional regions including the insula, the somatosensory cortex (the primary somatosensory cortex, S1, and the secondary somatosensory cortex, S2), and the anterior cingulate cortex (ACC). Our results showed an attenuation effect of morphine on the fNIRS-measured pain signal in the medial BA 10, as well as in the contralateral S1 (although observed in a smaller number of subjects). Notably, the extent of signal attenuation corresponded with the temporal profile of the reported plasma concentration for the drug. No clear attenuation by morphine on the medial BA 10 response to innocuous stimuli was observed. These results provide further evidence for the role of medial BA 10 in the processing of pain, and also suggest that fNIRS may be used as an objective measure of drug-brain profiles independent of subjective reports.
Collapse
Affiliation(s)
- Ke Peng
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Meryem A. Yücel
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
| | - Sarah C. Steele
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Edward A. Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Christopher M. Aasted
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark A. Hoeft
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Arielle Lee
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Edward E. George
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David A. Boas
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Mele C. The Use of Near Infrared Spectroscopy to Assess Infant Pain. J Pediatr Nurs 2018; 39:85-88. [PMID: 29321105 DOI: 10.1016/j.pedn.2017.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Cheryl Mele
- Children Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Olbrecht VA, Jiang Y, Viola L, Walter CM, Liu H, Kurth CD. Characterization of the functional near-infrared spectroscopy response to nociception in a pediatric population. Paediatr Anaesth 2018; 28:103-111. [PMID: 29280254 DOI: 10.1111/pan.13301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Near-infrared spectroscopy can interrogate functional optical signal changes in regional brain oxygenation and blood volume to nociception analogous to functional magnetic resonance imaging. AIMS This exploratory study aimed to characterize the near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin from the brain in response to nociceptive stimulation of varying intensity and duration, and after analgesic and neuromuscular paralytic in a pediatric population. METHODS We enrolled children 6 months-21 years during propofol sedation before surgery. The near-infrared spectroscopy sensor was placed on the forehead and nociception was produced from an electrical current applied to the wrist. We determined the near-infrared spectroscopy signal response to increasing current intensity and duration, and after fentanyl, sevoflurane, and neuromuscular paralytic. Heart rate and arm movement during electrical stimulation was also recorded. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin were calculated as optical density*time (area under curve). RESULTS During electrical stimulation, nociception was evident: tachycardia and arm withdrawal was observed that disappeared after fentanyl and sevoflurane, whereas after paralytic, tachycardia persisted while arm withdrawal disappeared. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin increased during stimulation and decreased after stimulation; the areas under the curves were greater for stimulations 30 mA vs 15 mA (13.9 [5.6-22.2], P = .0021; 5.6 [0.8-10.5], P = .0254, and 19.8 [10.5-29.1], P = .0002 for HbO2 , Hb, and HbT , respectively), 50 Hz vs 1 Hz (17.2 [5.8-28.6], P = .0046; 7.5 [0.7-14.3], P = .0314, and 21.9 [4.2-39.6], P = .0177 for HbO2 , Hb, and HbT , respectively) and 45 seconds vs 15 seconds (16.3 [3.4-29.2], P = .0188 and 22.0 [7.5-36.5], P = .0075 for HbO2 and HbT , respectively); the areas under the curves were attenuated by analgesics but not by paralytic. CONCLUSION Near-infrared spectroscopy detected functional activation to nociception in a broad pediatric population. The near-infrared spectroscopy response appears to represent nociceptive processing because the signals increased with noxious stimulus intensity and duration, and were blocked by analgesics but not paralytics.
Collapse
Affiliation(s)
- Vanessa A Olbrecht
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yifei Jiang
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Luigi Viola
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Charlotte M Walter
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Charles D Kurth
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
23
|
Peng K, Yücel MA, Aasted CM, Steele SC, Boas DA, Borsook D, Becerra L. Using prerecorded hemodynamic response functions in detecting prefrontal pain response: a functional near-infrared spectroscopy study. NEUROPHOTONICS 2018; 5:011018. [PMID: 29057285 PMCID: PMC5641587 DOI: 10.1117/1.nph.5.1.011018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/26/2017] [Indexed: 05/03/2023]
Abstract
Currently, there is no method for providing a nonverbal objective assessment of pain. Recent work using functional near-infrared spectroscopy (fNIRS) has revealed its potential for objective measures. We conducted two fNIRS scans separated by 30 min and measured the hemodynamic response to the electrical noxious and innocuous stimuli over the anterior prefrontal cortex (aPFC) in 14 subjects. Based on the estimated hemodynamic response functions (HRFs), we first evaluated the test-retest reliability of using fNIRS in measuring the pain response over the aPFC. We then proposed a general linear model (GLM)-based detection model that employs the subject-specific HRFs from the first scan to detect the pain response in the second scan. Our results indicate that fNIRS has a reasonable reliability in detecting the hemodynamic changes associated with noxious events, especially in the medial portion of the aPFC. Compared with a standard HRF with a fixed shape, including the subject-specific HRFs in the GLM allows for a significant improvement in the detection sensitivity of aPFC pain response. This study supports the potential application of individualized analysis in using fNIRS and provides a robust model to perform objective determination of pain perception.
Collapse
Affiliation(s)
- Ke Peng
- Harvard Medical School, Center for Pain and the Brain, Boston, Massachusetts, United States
- Boston Children’s Hospital and Harvard Medical School, Department of Anesthesiology, Perioperative and Pain Medicine, Boston, Massachusetts, United States
- Massachusetts General Hospital and Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to: Ke Peng, E-mail: Ke.
| | - Meryem A. Yücel
- Massachusetts General Hospital and Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Christopher M. Aasted
- Harvard Medical School, Center for Pain and the Brain, Boston, Massachusetts, United States
- Boston Children’s Hospital and Harvard Medical School, Department of Anesthesiology, Perioperative and Pain Medicine, Boston, Massachusetts, United States
- Massachusetts General Hospital and Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Sarah C. Steele
- Harvard Medical School, Center for Pain and the Brain, Boston, Massachusetts, United States
- Boston Children’s Hospital and Harvard Medical School, Department of Anesthesiology, Perioperative and Pain Medicine, Boston, Massachusetts, United States
- Massachusetts General Hospital and Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - David A. Boas
- Massachusetts General Hospital and Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Boston University, Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - David Borsook
- Harvard Medical School, Center for Pain and the Brain, Boston, Massachusetts, United States
- Boston Children’s Hospital and Harvard Medical School, Department of Anesthesiology, Perioperative and Pain Medicine, Boston, Massachusetts, United States
- Massachusetts General Hospital and Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Lino Becerra
- Harvard Medical School, Center for Pain and the Brain, Boston, Massachusetts, United States
- Boston Children’s Hospital and Harvard Medical School, Department of Anesthesiology, Perioperative and Pain Medicine, Boston, Massachusetts, United States
- Massachusetts General Hospital and Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
24
|
Peng K, Steele SC, Becerra L, Borsook D. Brodmann area 10: Collating, integrating and high level processing of nociception and pain. Prog Neurobiol 2017; 161:1-22. [PMID: 29199137 DOI: 10.1016/j.pneurobio.2017.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
Multiple frontal cortical brain regions have emerged as being important in pain processing, whether it be integrative, sensory, cognitive, or emotional. One such region, Brodmann Area 10 (BA 10), is the largest frontal brain region that has been shown to be involved in a wide variety of functions including risk and decision making, odor evaluation, reward and conflict, pain, and working memory. BA 10, also known as the anterior prefrontal cortex, frontopolar prefrontal cortex or rostral prefrontal cortex, is comprised of at least two cytoarchitectonic sub-regions, medial and lateral. To date, the explicit role of BA 10 in the processing of pain hasn't been fully elucidated. In this paper, we first review the anatomical pathways and functional connectivity of BA 10. Numerous functional imaging studies of experimental or clinical pain have also reported brain activations and/or deactivations in BA 10 in response to painful events. The evidence suggests that BA 10 may play a critical role in the collation, integration and high-level processing of nociception and pain, but also reveals possible functional distinctions between the subregions of BA 10 in this process.
Collapse
Affiliation(s)
- Ke Peng
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States.
| | - Sarah C Steele
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| |
Collapse
|
25
|
Mukaihara K, Hasegawa-Moriyama M, Kanmura Y. Contralateral cerebral hemoglobin oxygen saturation changes in patients undergoing thoracotomy with general anesthesia with or without paravertebral block: a randomized controlled trial. J Anesth 2017; 31:829-836. [DOI: 10.1007/s00540-017-2402-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/10/2017] [Indexed: 01/06/2023]
|
26
|
Colon E, Bittner EA, Kussman B, McCann ME, Soriano S, Borsook D. Anesthesia, brain changes, and behavior: Insights from neural systems biology. Prog Neurobiol 2017; 153:121-160. [PMID: 28189740 DOI: 10.1016/j.pneurobio.2017.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 02/08/2023]
Abstract
Long-term consequences of anesthetic exposure in humans are not well understood. It is possible that alterations in brain function occur beyond the initial anesthetic administration. Research in children and adults has reported cognitive and/or behavioral changes after surgery and general anesthesia that may be short lived in some patients, while in others, such changes may persist. The changes observed in humans are corroborated by a large body of evidence from animal studies that support a role for alterations in neuronal survival (neuroapoptosis) or structure (altered dendritic and glial morphology) and later behavioral deficits at older age after exposure to various anesthetic agents during fetal or early life. The potential of anesthetics to induce long-term alterations in brain function, particularly in vulnerable populations, warrants investigation. In this review, we critically evaluate the available preclinical and clinical data on the developing and aging brain, and in known vulnerable populations to provide insights into potential changes that may affect the general population of patients in a more, subtle manner. In addition this review summarizes underlying processes of how general anesthetics produce changes in the brain at the cellular and systems level and the current understanding underlying mechanisms of anesthetics agents on brain systems. Finally, we present how neuroimaging techniques currently emerge as promising approaches to evaluate and define changes in brain function resulting from anesthesia, both in the short and the long-term.
Collapse
Affiliation(s)
- Elisabeth Colon
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston MA 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Edward A Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Barry Kussman
- Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Mary Ellen McCann
- Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Sulpicio Soriano
- Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - David Borsook
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston MA 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
27
|
Aasted CM, Yücel MA, Steele SC, Peng K, Boas DA, Becerra L, Borsook D. Frontal Lobe Hemodynamic Responses to Painful Stimulation: A Potential Brain Marker of Nociception. PLoS One 2016; 11:e0165226. [PMID: 27806119 PMCID: PMC5091745 DOI: 10.1371/journal.pone.0165226] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/07/2016] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study was to use functional near-infrared spectroscopy (fNIRS) to examine patterns of both activation and deactivation that occur in the frontal lobe in response to noxious stimuli. The frontal lobe was selected because it has been shown to be activated by noxious stimuli in functional magnetic resonance imaging studies. The brain region is located behind the forehead which is devoid of hair, providing a relative ease of placement for fNIRS probes on this area of the head. Based on functional magnetic resonance imaging studies showing blood-oxygenation-level dependent changes in the frontal lobes, we evaluated functional near-infrared spectroscopy measures in response to two levels of electrical pain in awake, healthy human subjects (n = 10; male = 10). Each subject underwent two recording sessions separated by a 30-minute resting period. Data collected from 7 subjects were analyzed, containing a total of 38/36 low/high intensity pain stimuli for the first recording session and 27/31 pain stimuli for the second session. Our results show that there is a robust and significant deactivation in sections of the frontal cortices. Further development and definition of the specificity and sensitivity of the approach may provide an objective measure of nociceptive activity in the brain that can be easily applied in the surgical setting.
Collapse
Affiliation(s)
- Christopher M Aasted
- Center for Pain and the Brain, Harvard Medical School; Boston, Massachusetts, United States of America.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts, United States of America.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, United States of America
| | - Meryem A Yücel
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, United States of America
| | - Sarah C Steele
- Center for Pain and the Brain, Harvard Medical School; Boston, Massachusetts, United States of America.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts, United States of America.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, United States of America
| | - Ke Peng
- Center for Pain and the Brain, Harvard Medical School; Boston, Massachusetts, United States of America.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts, United States of America.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, United States of America
| | - David A Boas
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, United States of America
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School; Boston, Massachusetts, United States of America.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts, United States of America.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, United States of America
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School; Boston, Massachusetts, United States of America.,Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts, United States of America.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, United States of America
| |
Collapse
|