1
|
Chang Y, Lusk S, Chang A, Ward CS, Ray RS. Vglut2-based glutamatergic signaling in central noradrenergic neurons is dispensable for normal breathing and chemosensory reflexes. eLife 2024; 12:RP88673. [PMID: 39287624 PMCID: PMC11407767 DOI: 10.7554/elife.88673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS), and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three vesicular glutamate transporters (Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA-derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Savannah Lusk
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Andersen Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Russell S Ray
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- McNair Medical InstituteHoustonUnited States
| |
Collapse
|
2
|
Chang Y, Lusk S, Chang A, Ward CS, Ray RS. Vglut2-based glutamatergic signaling in central noradrenergic neurons is dispensable for normal breathing and chemosensory reflexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.16.535729. [PMID: 37090585 PMCID: PMC10120737 DOI: 10.1101/2023.04.16.535729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS) and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three Vesicular Glutamate Transporters ( Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
Collapse
|
3
|
Lusk SJ, McKinney A, Hunt PJ, Fahey PG, Patel J, Chang A, Sun JJ, Martinez VK, Zhu PJ, Egbert JR, Allen G, Jiang X, Arenkiel BR, Tolias AS, Costa-Mattioli M, Ray RS. A CRISPR toolbox for generating intersectional genetic mouse models for functional, molecular, and anatomical circuit mapping. BMC Biol 2022; 20:28. [PMID: 35086530 PMCID: PMC8796356 DOI: 10.1186/s12915-022-01227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The functional understanding of genetic interaction networks and cellular mechanisms governing health and disease requires the dissection, and multifaceted study, of discrete cell subtypes in developing and adult animal models. Recombinase-driven expression of transgenic effector alleles represents a significant and powerful approach to delineate cell populations for functional, molecular, and anatomical studies. In addition to single recombinase systems, the expression of two recombinases in distinct, but partially overlapping, populations allows for more defined target expression. Although the application of this method is becoming increasingly popular, its experimental implementation has been broadly restricted to manipulations of a limited set of common alleles that are often commercially produced at great expense, with costs and technical challenges associated with production of intersectional mouse lines hindering customized approaches to many researchers. Here, we present a simplified CRISPR toolkit for rapid, inexpensive, and facile intersectional allele production. RESULTS Briefly, we produced 7 intersectional mouse lines using a dual recombinase system, one mouse line with a single recombinase system, and three embryonic stem (ES) cell lines that are designed to study the way functional, molecular, and anatomical features relate to each other in building circuits that underlie physiology and behavior. As a proof-of-principle, we applied three of these lines to different neuronal populations for anatomical mapping and functional in vivo investigation of respiratory control. We also generated a mouse line with a single recombinase-responsive allele that controls the expression of the calcium sensor Twitch-2B. This mouse line was applied globally to study the effects of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on calcium release in the ovarian follicle. CONCLUSIONS The lines presented here are representative examples of outcomes possible with the successful application of our genetic toolkit for the facile development of diverse, modifiable animal models. This toolkit will allow labs to create single or dual recombinase effector lines easily for any cell population or subpopulation of interest when paired with the appropriate Cre and FLP recombinase mouse lines or viral vectors. We have made our tools and derivative intersectional mouse and ES cell lines openly available for non-commercial use through publicly curated repositories for plasmid DNA, ES cells, and transgenic mouse lines.
Collapse
Affiliation(s)
- Savannah J Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew McKinney
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jay Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andersen Chang
- Department of Statistics, Rice University, Houston, TX, USA
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Vena K Martinez
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut, Farmington, CT, USA
| | - Genevera Allen
- Department of Statistics, Computer Science, and Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Houston, TX, USA.
| |
Collapse
|
4
|
Liu S, Wang ZF, Su YS, Ray RS, Jing XH, Wang YQ, Ma Q. Somatotopic Organization and Intensity Dependence in Driving Distinct NPY-Expressing Sympathetic Pathways by Electroacupuncture. Neuron 2020; 108:436-450.e7. [PMID: 32791039 PMCID: PMC7666081 DOI: 10.1016/j.neuron.2020.07.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
The neuroanatomical basis behind acupuncture practice is still poorly understood. Here, we used intersectional genetic strategy to ablate NPY+ noradrenergic neurons and/or adrenal chromaffin cells. Using endotoxin-induced systemic inflammation as a model, we found that electroacupuncture stimulation (ES) drives sympathetic pathways in somatotopy- and intensity-dependent manners. Low-intensity ES at hindlimb regions drives the vagal-adrenal axis, producing anti-inflammatory effects that depend on NPY+ adrenal chromaffin cells. High-intensity ES at the abdomen activates NPY+ splenic noradrenergic neurons via the spinal-sympathetic axis; these neurons engage incoherent feedforward regulatory loops via activation of distinct adrenergic receptors (ARs), and their ES-evoked activation produces either anti- or pro-inflammatory effects due to disease-state-dependent changes in AR profiles. The revelation of somatotopic organization and intensity dependency in driving distinct autonomic pathways could form a road map for optimizing stimulation parameters to improve both efficacy and safety in using acupuncture as a therapeutic modality.
Collapse
Affiliation(s)
- Shenbin Liu
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China; Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Fu Wang
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yang-Shuai Su
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Russell S Ray
- Memory Brain Research Center and Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; McNair Medical Institute, Houston, TX, USA
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan-Qing Wang
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China; Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Fenno LE, Ramakrishnan C, Kim YS, Evans KE, Lo M, Vesuna S, Inoue M, Cheung KYM, Yuen E, Pichamoorthy N, Hong ASO, Deisseroth K. Comprehensive Dual- and Triple-Feature Intersectional Single-Vector Delivery of Diverse Functional Payloads to Cells of Behaving Mammals. Neuron 2020; 107:836-853.e11. [PMID: 32574559 PMCID: PMC7687746 DOI: 10.1016/j.neuron.2020.06.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 01/12/2023]
Abstract
The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and reading out activity patterns for cells in living organisms has enabled causal investigation in physiology and behavior; however, cell-type-specific delivery of these tools (including microbial opsins for optogenetics and genetically encoded Ca2+ indicators) has thus far fallen short of versatile targeting to cells jointly defined by many individually selected features. Here, we develop a comprehensive intersectional targeting toolbox including 39 novel vectors for joint-feature-targeted delivery of 13 molecular payloads (including opsins, indicators, and fluorophores), systematic approaches for development and optimization of new intersectional tools, hardware for in vivo monitoring of expression dynamics, and the first versatile single-virus tools (Triplesect) that enable targeting of triply defined cell types.
Collapse
Affiliation(s)
- Lief E Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kathryn E Evans
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Maisie Lo
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kathy Y M Cheung
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Elle Yuen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Alice S O Hong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
A single reporter mouse line for Vika, Flp, Dre, and Cre-recombination. Sci Rep 2018; 8:14453. [PMID: 30262904 PMCID: PMC6160450 DOI: 10.1038/s41598-018-32802-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022] Open
Abstract
Site-specific recombinases (SSR) are utilized as important genome engineering tools to precisely modify the genome of mice and other model organisms. Reporter mice that mark cells that at any given time had expressed the enzyme are frequently used for lineage tracing and to characterize newly generated mice expressing a recombinase from a chosen promoter. With increasing sophistication of genome alteration strategies, the demand for novel SSR systems that efficiently and specifically recombine their targets is rising and several SSR-systems are now used in combination to address complex biological questions in vivo. Generation of reporter mice for each one of these recombinases is cumbersome and increases the number of mouse lines that need to be maintained in animal facilities. Here we present a multi-reporter mouse line for loci-of-recombination (X) (MuX) that streamlines the characterization of mice expressing prominent recombinases. MuX mice constitutively express nuclear green fluorescent protein after recombination by either Cre, Flp, Dre or Vika recombinase, rationalizing the number of animal lines that need to be maintained. We also pioneer the use of the Vika/vox system in mice, illustrating its high efficacy and specificity, thereby facilitating future designs of sophisticated recombinase-based in vivo genome engineering strategies.
Collapse
|
7
|
Xiao LY, Yang JW, Wang XR, Ye Y, Yang NN, Yan CQ, Liu CZ. Acupuncture Rescues Cognitive Impairment and Upregulates Dopamine- β-Hydroxylase Expression in Chronic Cerebral Hypoperfusion Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5423961. [PMID: 30112399 PMCID: PMC6077593 DOI: 10.1155/2018/5423961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/05/2018] [Accepted: 06/20/2018] [Indexed: 01/22/2023]
Abstract
Alteration of dopamine (DA) and noradrenaline (NA) contributes to cognitive function. Acupuncture has been shown to affect DA and NA in chronic cerebral hypoperfusion (CCH) rats. However, the effect of acupuncture on DA-β-hydroxylase (DBH), the biosynthetic enzyme of NA, remains unknown. In CCH rats we established chronic hypoperfusion by bilateral common carotid artery occlusion (two-vessel occlusion, 2VO) and treated them with acupuncture. Acupuncture displayed beneficial effects on hippocampus-dependent memory impairments, including nonspatial and spatial memory. That is also reflected in hippocampus long-term-potentiation (LTP). Moreover, DBH expression in the hippocampus and DBH activity in cerebrospinal fluid were upregulated after acupuncture treatment. In conclusion, these in vivo findings suggest that acupuncture exerts a therapeutic effect on hippocampus-dependent memory and hippocampus LTP in CCH rats, which may be partially related to the modulation of DBH in the hippocampus.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Chaoyang District, Beijing 100029, China
| | - Jing-Wen Yang
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, China
| | - Xue-Rui Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yang Ye
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, China
| | - Na-Na Yang
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, China
| | - Chao-Qun Yan
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun-Zhi Liu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, China
| |
Collapse
|