1
|
Sanap A, Joshi K, Kheur S, Bhonde R. Stem cell secretome restore the adipo-osteo differentiation imbalance in diabetic dental pulp-derived mesenchymal stem cells. Chronic Dis Transl Med 2024; 10:340-349. [PMID: 39429485 PMCID: PMC11483546 DOI: 10.1002/cdt3.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 10/22/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) from type 2 diabetes mellitus (T2DM) individuals exhibit increased adipogenesis and decreased osteogenesis. We investigated the potential of adipose tissue-derived MSCs (ADMSCs) secretome obtained from healthy individuals in restoring the tumor necrosis factor-α (TNF-α) mediated imbalance in the adipo/osteogenic differentiation in the dental pulp-derived MSCs obtained from T2DM individuals (dDPMSCs). Methods dDPMSCs were differentiated into adipocytes and osteocytes using a standard cocktail in the presence of (a) induction cocktail, (b) induction cocktail + TNF-α, and (c) induction cocktail+ TNF-α + ADMSCs-secretome (50%) for 15 and 21 days resp. Differentiated adipocytes and osteocytes were stained by oil red O and alizarin red and analyzed by using ImageJ software. Molecular expression of the key genes involved was analyzed by using reverse-transcription polymerase chain reaction (RT-PCR). Results Treatment of TNF-α augmented the adipogenesis (9571 ± 765 vs. 19,815 ± 1585 pixel, p < 0.01) and decreased the osteogenesis (15,603 ± 1248 vs. 11,894 ± 951 pixel, p < 0.05) of dDPMSCs as evidenced by the oil red O and alizarin red staining respectively. Interestingly, dDPMSCs differentiated along with TNF-α and 50% ADMSCs secretome exhibited enhanced osteogenesis (11,894 ± 951 vs. 41,808 ± 3344 pixel, p < 0.01) and decreased adipogenesis (19,815 ± 1585 vs. 4480 ± 358 pixel, p < 0.01). Additionally, dDPMSCs differentiated along with ADMSCs secretome exhibited decreased expression of PPARg (p < 0.01), C/EBPa (p < 0.05), and FAS (p < 0.01) whereas mRNA expression of Runx2 (p < 0.05), Osterix (p < 0.01), and OCN (p < 0.05) was upregulated as revealed by the RT-PCR analysis. Conclusion ADMSCs secretome from healthy individuals restore the TNF-α influenced differentiation fate of dDPMSCs and therefore can be explored for T2DM clinical management in the future.
Collapse
Affiliation(s)
- Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and HospitalDr. D. Y. Patil Vidyapeeth, PimpriPuneIndia
| | - Kalpana Joshi
- Department of BiotechnologySinhgad College of Engineering affiliated to Savitribai Phule Pune UniversityPuneIndia
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and HospitalDr. D. Y. Patil Vidyapeeth, PimpriPuneIndia
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and HospitalDr. D. Y. Patil Vidyapeeth, PimpriPuneIndia
| |
Collapse
|
2
|
Torregrosa JV, Bover J, Rodríguez Portillo M, González Parra E, Dolores Arenas M, Caravaca F, González Casaus ML, Martín-Malo A, Navarro-González JF, Lorenzo V, Molina P, Rodríguez M, Cannata Andia J. Recommendations of the Spanish Society of Nephrology for the management of mineral and bone metabolism disorders in patients with chronic kidney disease: 2021 (SEN-MM). Nefrologia 2023; 43 Suppl 1:1-36. [PMID: 37202281 DOI: 10.1016/j.nefroe.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/26/2022] [Indexed: 05/20/2023] Open
Abstract
As in 2011, when the Spanish Society of Nephrology (SEN) published the Spanish adaptation to the Kidney Disease: Improving Global Outcomes (KDIGO) universal Guideline on Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD), this document contains an update and an adaptation of the 2017 KDIGO guidelines to our setting. In this field, as in many other areas of nephrology, it has been impossible to irrefutably answer many questions, which remain pending. However, there is no doubt that the close relationship between the CKD-MBD/cardiovascular disease/morbidity and mortality complex and new randomised clinical trials in some areas and the development of new drugs have yielded significant advances in this field and created the need for this update. We would therefore highlight the slight divergences that we propose in the ideal objectives for biochemical abnormalities in the CKD-MBD complex compared to the KDIGO suggestions (for example, in relation to parathyroid hormone or phosphate), the role of native vitamin D and analogues in the control of secondary hyperparathyroidism and the contribution of new phosphate binders and calcimimetics. Attention should also be drawn to the adoption of important new developments in the diagnosis of bone abnormalities in patients with kidney disease and to the need to be more proactive in treating them. In any event, the current speed at which innovations are taking place, while perhaps slower than we might like, globally drives the need for more frequent updates (for example, through Nefrología al día).
Collapse
Affiliation(s)
| | - Jordi Bover
- Hospital Germans Trias i Pujol, Badalona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wang Y, Bi X, Zhao H, Li Z, Zhao J, Zhou J, Huang Z, Zhang Y, Chen X, Zhang C, Cai J, Ren Y. Prognostic significance of the preoperative alkaline phosphatase‑to‑albumin ratio in patients with hepatocellular carcinoma after hepatic resection. Oncol Lett 2023; 25:147. [PMID: 36936019 PMCID: PMC10018275 DOI: 10.3892/ol.2023.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
This study aimed to investigate the prognostic value of the preoperative alkaline phosphatase-to-albumin ratio (APAR) in patients with hepatocellular carcinoma (HCC) who underwent radical hepatectomy. The clinicopathological data from 330 patients was retrospectively analyzed. Receiver operating characteristic curves of APAR for diagnostic tumor recurrence were plotted with a cut-off value of 1.74. A high preoperative APAR value was significantly associated with hepatitis B surface antigen level, tumor diameter, and tumor-node-metastasis stage. The disease-free survival (DFS) and overall survival (OS) of patients with a high preoperative APAR were shorter than those with a low APAR. The independent risk factors for DFS were an APAR ≥1.74, and macrovascular invasion or tumor thrombus. The independent risk factors for OS were an APAR ≥1.74, existing clinical symptoms, α-fetoprotein level ≥20 ng/ml, macrovascular invasion or tumor thrombus, and family history of cancer. In conclusion, a preoperative APAR (≥1.74) is an independent risk factor influencing the poor prognosis of patients with HCC after curative hepatectomy, and patients with such a result should be closely monitored.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zhiyu Li
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jianjun Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jianguo Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yefan Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chongda Zhang
- New York University Medical Center, New York University, New York, NY 10016, USA
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yijun Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Correspondence to: Dr Yijun Ren, Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China, E-mail:
| |
Collapse
|
4
|
Leifheit-Nestler M, Vogt I, Haffner D, Richter B. Phosphate Is a Cardiovascular Toxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:107-134. [DOI: 10.1007/978-3-030-91623-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Laurain A, Rubera I, Duranton C, Rutsch F, Nitschke Y, Ray E, Vido S, Sicard A, Lefthériotis G, Favre G. Alkaline Phosphatases Account for Low Plasma Levels of Inorganic Pyrophosphate in Chronic Kidney Disease. Front Cell Dev Biol 2020; 8:586831. [PMID: 33425894 PMCID: PMC7793922 DOI: 10.3389/fcell.2020.586831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/16/2020] [Indexed: 01/19/2023] Open
Abstract
Introduction Patients on dialysis and kidney transplant recipients (KTR) present the syndrome of mineral and bone disorders (MBD), which share common traits with monogenic calcifying diseases related to disturbances of the purinergic system. Low plasma levels of inorganic pyrophosphate (PPi) and ectopic vascular calcifications belong to these two conditions. This suggests that the purinergic system may be altered in chronic kidney disease with MBD. Therefore, we perform a transversal pilot study in order to compare the determinants of PPi homeostasis and the plasma levels of PPi in patients on dialysis, in KTR and in healthy people. Patients and Methods We included 10 controls, 10 patients on maintenance dialysis, 10 early KTR 3 ± 1 months after transplantation and nine late KTR 24 ± 3 months after transplantation. We measured aortic calcifications, plasma and urine levels of PPi, the renal fractional excretion of PPi (FePPi), nucleoside triphosphate hydrolase (NPP) and ALP activities in plasma. Correlations and comparisons were assessed with non-parametric tests. Results Low PPi was found in patients on dialysis [1.11 (0.88–1.35), p = 0.004], in early KTR [0.91 (0.66–0.98), p = 0.0003] and in late KTR [1.16 (1.07–1.45), p = 0.02] compared to controls [1.66 (1.31–1.72) μmol/L]. Arterial calcifications were higher in patients on dialysis than in controls [9 (1–75) vs. 399 (25–526) calcium score/cm2, p < 0.05]. ALP activity was augmented in patients on dialysis [113 (74–160), p = 0.01] and in early KTR [120 (84–142), p = 0.002] compared to controls [64 (56–70) UI/L]. The activity of NPP and FePPi were not different between groups. ALP activity was negatively correlated with PPi (r = −0.49, p = 0.001). Discussion Patients on dialysis and KTR have low plasma levels of PPi, which are partly related to high ALP activity, but neither to low NPP activity, nor to increased renal excretion of PPi. Further work is necessary to explore comprehensively the purinergic system in chronic kidney disease.
Collapse
Affiliation(s)
- Audrey Laurain
- Faculty of Medicine, Côte d'Azur University, Nice, France.,UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France.,Nephrology Department, University Hospital, Nice, France
| | - Isabelle Rubera
- UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France
| | - Christophe Duranton
- UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, Germany
| | - Elodie Ray
- Department of Vascular Medicine and Surgery, University Hospital, Nice, France
| | - Sandor Vido
- Nephrology Department, University Hospital, Nice, France
| | - Antoine Sicard
- Faculty of Medicine, Côte d'Azur University, Nice, France.,Nephrology Department, University Hospital, Nice, France
| | - Georges Lefthériotis
- Faculty of Medicine, Côte d'Azur University, Nice, France.,UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France.,Department of Vascular Medicine and Surgery, University Hospital, Nice, France
| | - Guillaume Favre
- Faculty of Medicine, Côte d'Azur University, Nice, France.,UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France.,Nephrology Department, University Hospital, Nice, France
| |
Collapse
|
6
|
Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020; 16:509-524. [PMID: 32641760 DOI: 10.1038/s41581-020-0304-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.
Collapse
|
7
|
Villa-Bellosta R. New insights into endogenous mechanisms of protection against arterial calcification. Atherosclerosis 2020; 306:68-74. [PMID: 32209233 DOI: 10.1016/j.atherosclerosis.2020.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022]
Abstract
Cardiovascular complications due to accelerated atherosclerosis and arterial stiffening are the leading cause of morbidity and mortality in the Western society. Both pathologies are frequently associated with vascular calcification. Deposits of calcium phosphate salts, mainly in form of hydroxyapatite, is the hallmark of vascular calcification. Calcification is frequently observed in atherosclerotic lesions (intimal calcification) associated with vascular smooth muscle cells (VSMCs) and macrophages. By contrast, medial calcification, occurring in the elastic region of the arteries, is almost exclusively associated with VSMCs, and is common in arteriosclerosis related to aging, diabetes, and chronic kidney disease. In extracellular fluids, a range of endogenous low- and high-molecular weight calcification inhibitors are present, including osteopontin, matrix-Gla proteins and Fetuin A. Moreover, pyrophosphate deficiency plays a key role in vascular calcification. Pyrophosphate is produced by extracellular hydrolysis of ATP and is degraded to phosphate by tissue non-specific alkaline phosphatase. Loss of function in the enzymes and transporters involved in the extracellular pyrophosphate metabolism leads to excessive deposition of calcium-phosphate salts. This review summarizes the current knowledge about endogenous mechanisms of protection against calcification in the aortic wall, focusing on the role of extracellular pyrophosphate metabolism in vascular smooth muscle cells and macrophages.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Avenida Reyes Católicos 2, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Impact of acetate- or citrate-acidified bicarbonate dialysate on ex vivo aorta wall calcification. Sci Rep 2019; 9:11374. [PMID: 31388059 PMCID: PMC6684644 DOI: 10.1038/s41598-019-47934-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/26/2019] [Indexed: 12/03/2022] Open
Abstract
Vascular calcification is highly prevalent in patients with chronic hemodialysis. Increased acetatemia during hemodialysis sessions using acetate-acidified bicarbonate has also been associated with several abnormalities, By contrast, these abnormalities were not induced by citrate-acidified bicarbonate dialysis. Moreover, citrate is biocompatible alternative to acetate in dialysis fluid. However, the effects of citrate on vascular calcification during hemodialysis had not been studied in detail. This study analyzed herein the effects of acetate- or citrate-acidified bicarbonate dialysis on vascular calcification. Citrate has been shown to inhibit calcification in urine in hemodialysis patients. Therefore, our hypothesis is that citrate-acidified bicarbonate dialysis could reduce vascular calcification. Blood samples before and after hemodialysis from patients on acetate- or citrate-acidified bicarbonate dialysis were collected in heparin-containing tubes (n = 35 and n = 25 respectively). To explore the effect of pre- and post-dialysis plasmatic bicarbonate and citrate on vascular calcification, rats aortic rings cultured ex vivo in Minimum Essential Medium containing 0.1% FBS and 45-calcium as radiotracer were used (n = 24). After 7 days of incubation aortic rings were dried, weighed and radioactivity was measured via liquid scintillation counting. Bicarbonate levels increase calcium accumulation in rat aortic wall in a dose-response manner (pH = 7.4). Moreover, citrate prevents calcium accumulation, with a mean inhibitor concentration (IC50) value of 733 µmol/L. During acetate-acidified bicarbonate dialysis, bicarbonate and citrate levels in plasma increase (22.29 ± 3.59 versus 28.63 ± 3.56 mmol/L; p < 0.001) and decrease (133.3 ± 53.6 versus 87.49 ± 32.3 µmol/L, p < 0.001), respectively. These changes in pos-hemodialysis plasma significantly (p < 0.001) alter calcium accumulation in the aortic wall (38.9% higher). Moreover, citrate-acidified bicarbonate dialysis increases post-hemodialysis citrate levels 5-fold (145 ± 79.8 versus 771.6 ± 184.3 µmol/L), reducing calcium accumulation in the aortic wall. Citrate-acidified bicarbonate dialysis reduces plasmatic calcium and pH variations during dialysis session (Δ[Ca2+] = −0.019 ± 0.089; ΔpH = 0.098 ± 0.043) respect to acetate-acidified bicarbonate dialysis (Δ[Ca2+] = 0.115 ± 0.118; ΔpH = 0.171 ± 0.078). To our knowledge, our study is the first to show that citrate protects against calcium accumulation in rat aortic walls ex vivo. Therefore, citrate-acidified bicarbonate dialysis may be an alternative approach to reduce calcification in hemodialysis patients without additional cost.
Collapse
|
9
|
Azpiazu D, Gonzalo S, Villa-Bellosta R. Tissue Non-Specific Alkaline Phosphatase and Vascular Calcification: A Potential Therapeutic Target. Curr Cardiol Rev 2019; 15:91-95. [PMID: 30381085 PMCID: PMC6520574 DOI: 10.2174/1573403x14666181031141226] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is a pathologic phenomenon consisting of calcium phosphate crystal deposition in the vascular walls. Vascular calcification has been found to be a risk factor for cardiovascular diseases, due to its correlation with cardiovascular events and mortality, and it has been associated with aging, diabetes, and chronic kidney disease. Studies of vascular calcification have focused on phosphate homeostasis, primarily on the important role of hyperphosphatemia. Moreover, vascular calcification has been associated with loss of plasma pyrophosphate, one of the main inhibitors of calcification, thus indicating the importance of the phosphate/pyrophosphate ratio. Extracellular pyrophosphate can be synthesized from extracellular ATP by ecto-nucleotide pyrophosphatase/ phosphodiesterase, whereas pyrophosphate is hydrolyzed to phosphate by tissuenonspecific alkaline phosphatase, contributing to the formation of hydroxyapatite crystals. Over the last decade, vascular calcification has been the subject of numerous reviews and studies, which have revealed new agents and activities that may aid in explaining the complex physiology of this condition. This review summarizes current knowledge about alkaline phosphatase and its role in the process of vascular calcification as a key regulator of the phosphate/pyrophosphate ratio.
Collapse
Affiliation(s)
- Daniel Azpiazu
- Fundacion Instituto de Investigacion Sanitaria, Fundacion Jimenez Diaz, Avenida Reyes Catolicos 2, Madrid, Spain
| | - Sergio Gonzalo
- Fundacion Instituto de Investigacion Sanitaria, Fundacion Jimenez Diaz, Avenida Reyes Catolicos 2, Madrid, Spain
| | - Ricardo Villa-Bellosta
- Fundacion Instituto de Investigacion Sanitaria, Fundacion Jimenez Diaz, Avenida Reyes Catolicos 2, Madrid, Spain
| |
Collapse
|
10
|
Hydrolysis of Extracellular Pyrophosphate increases in post-hemodialysis plasma. Sci Rep 2018; 8:11089. [PMID: 30038263 PMCID: PMC6056505 DOI: 10.1038/s41598-018-29432-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 07/11/2018] [Indexed: 01/25/2023] Open
Abstract
Vascular calcification (VC) is associated with significant morbidity and mortality of dialysis patients. Previous studies showed an association between loss of plasma pyrophosphate and VC. Moreover, loss of pyrophosphate occurs during dialysis in this population, suggesting that therapeutic approaches that prevent reduction of plasma pyrophosphate levels during dialysis could improve the quality of life of dialysis patients. This study found that pyrophosphate hydrolysis was 51% higher in post- than pre-dialysis plasma. Dialysis sessions modified the kinetic behavior of alkaline phosphatase, increasing its Vmax and reducing its Km, probably due to the elimination of uremic toxins during dialysis. At least 75% of alkaline phosphatase activity in human plasma was found to depend on a levamisole-sensitive enzyme probably corresponding to tissue non-specific alkaline phosphatase (TNAP). Dialysis increased total plasma protein concentration by 14% and reduced TNAP enzyme by 20%, resulting in an underestimation of pyrophosphate hydrolysis in post-dialysis plasma. Levamisole inhibited TNAP activity (IC50, 7.2 µmol/L), reducing pyrophosphate hydrolysis in plasma and increasing plasma pyrophosphate availability. Alkaline phosphatase is also found in many tissues and cells types; therefore, our results in plasma may be indicative of changes in phosphatase activity in other locations that collectively could contribute significantly to pyrophosphate hydrolysis in vivo. In conclusion, these findings demonstrate that dialysis increases pyrophosphate hydrolysis, which, taken together with previously reported increases in alkalization and calcium ion levels in post-dialysis plasma, causes VC and could be prevented by adding calcification inhibitors during dialysis.
Collapse
|
11
|
Pyrophosphate deficiency in vascular calcification. Kidney Int 2018; 93:1293-1297. [PMID: 29580636 DOI: 10.1016/j.kint.2017.11.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/22/2022]
Abstract
Pathologic cardiovascular calcification is associated with a number of conditions and is a common complication of chronic kidney disease. Because ambient calcium and phosphate levels together with properties of the vascular matrix favor calcification even under normal conditions, endogenous inhibitors such as pyrophosphate play a key role in prevention. Genetic diseases and animal models have elucidated the metabolism of extracellular pyrophosphate and demonstrated the importance of pyrophosphate deficiency in vascular calcification. Therapies based on pyrophosphate metabolism have been effective in animal models, including renal failure, and hold promise as future therapies to prevent vascular calcification.
Collapse
|
12
|
Role of pyrophosphate in vascular calcification in chronic kidney disease. Nefrologia 2017; 38:250-257. [PMID: 29137892 DOI: 10.1016/j.nefro.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 07/06/2017] [Accepted: 07/20/2017] [Indexed: 01/29/2023] Open
Abstract
Vascular calcification is a pathology characterized by the deposition of calcium-phosphate in cardiovascular structures, mainly in the form of hydroxyapatite crystals, resulting in ectopic calcification. It is correlated with increased risk of cardiovascular disease and myocardial infarction in diabetic patients and in those with chronic kidney disease (CKD). Vascular smooth muscle cells are sensitive to changes in inorganic phosphate (Pi) levels. They are able to adapt and modify some of their functions and promote changes which trigger calcification. Pi is regulated by parathyroid hormone and 1,25-dihydroxyvitamin D. Changes in the transport of Pi are the primary factor responsible for the regulation of Pi homeostasis and the calcification process. Synthesis of calcification inhibitors is the main mechanism by which cells are able to prevent vascular calcification. Extracellular pyrophosphate (PPi) is a potent endogenous inhibitor of calcium-phosphate deposition both in vivo and in vitro. Patients with CKD show lower levels of PPi and increased activity of the enzyme alkaline phosphatase. Numerous enzymes implicated in the metabolism of PPi have been associated with vascular calcifications. PPi is synthesized from extracellular ATP by nucleotide pyrophosphatase/phosphodiesterase from extracellular ATP hydrolysis. PPi is hydrolyzed into Pi by tissue-nonspecific alkaline phosphatase. ATP can be hydrolyzed to Pi via the ectonucleoside triphosphate diphosphohydrolase family. All these enzymes must be in balance, thereby preventing calcifications. However, diseases like CKD or diabetes induce alterations in their levels. Administration of PPi could open up new treatment options for these patients.
Collapse
|
13
|
Azpiazu D, González-Parra E, Ortiz A, Egido J, Villa-Bellosta R. Impact of post-dialysis calcium level on ex vivo rat aortic wall calcification. PLoS One 2017; 12:e0183730. [PMID: 28832652 PMCID: PMC5568142 DOI: 10.1371/journal.pone.0183730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Vascular calcification is a frequent complication in chronic haemodialysis patients and is associated with adverse outcomes. Serum calcium and phosphate levels and imbalances in calcification regulators are thought to contribute to the process. In this regard, the dialysate calcium concentration is a modifiable tool for modulating the risk of vascular calcification. We explored pre- and post-dialysis phosphate and calcium concentrations in stable chronic haemodialysis patients treated by dialysis with the KDIGO-suggested 1.5 mmol/L calcium dialysate to investigate the effects on ex vivo calcification of rat aortic rings. APPROACH AND RESULTS At the end of haemodialysis, mean serum calcium levels were increased in 88% of paired pre-/post-dialysis samples, while mean serum phosphate and parathyroid hormone levels were decreased. Rat aortic ring cultures grown at the same calcium and phosphate concentrations revealed that pre- and post-dialysis resulted in a similar degree of calcification. By contrast, haemodialysis with unchanged serum calcium resulted in a 5-fold reduction in calcium deposition. CONCLUSION Dialysis with the widely prescribed 1.5 mmol/L calcium dose results in persistent high serum calcification potential in a sizable proportion of patients, driven by increased post-dialysis calcium concentration. This could potentially be mitigated by individualising dialysate calcium dosage based on pre-dialysis serum calcium levels.
Collapse
Affiliation(s)
- Daniel Azpiazu
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Madrid, Spain
| | - Emilio González-Parra
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Madrid, Spain
| | - Alberto Ortiz
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Madrid, Spain
| | - Jesús Egido
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Madrid, Spain
| | - Ricardo Villa-Bellosta
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Madrid, Spain
| |
Collapse
|
14
|
Villa-Bellosta R. Impact of magnesium:calcium ratio on calcification of the aortic wall. PLoS One 2017; 12:e0178872. [PMID: 28570619 PMCID: PMC5453594 DOI: 10.1371/journal.pone.0178872] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/20/2017] [Indexed: 11/19/2022] Open
Abstract
Objective An inverse relationship between serum magnesium concentration and vascular calcification has been reported following observational clinical studies. Moreover, several studies have been suggesting a protective effect of magnesium on the vascular calcification. However, the exact mechanism remains elusive, and investigators have speculated among a myriad of potential actions. The effect of magnesium on calcification of the aortic wall is yet to be investigated. In the present study, the effects of magnesium and calcium on the metabolism of extracellular PPi, the main endogenous inhibitor of vascular calcification, were investigated in the rat aorta. Approach and results Calcium and magnesium have antagonist effects on PPi hydrolysis in the aortic wall. Km and Ki values for PPi hydrolysis in rat aortic rings were 1.1 mmol/L magnesium and 32 μmol/L calcium, respectively, but ATP hydrolysis was not affected with calcium. Calcium deposition in the rat aortic wall dramatically increased when the magnesium concentration was increased (ratio of Mg:Ca = 1:1; 1.5 mmol/L calcium and 1.5 mmol/L magnesium) respect to low magnesium concentration (ratio Mg:Ca = 1:3, 1.5 mmol/L calcium and 0.75 mmol/L magnesium). Conclusion Data from observational clinical studies showing that the serum magnesium concentration is inversely correlated with vascular calcification could be reinterpreted as a compensatory regulatory mechanism that reduces both PPi hydrolysis and vascular calcification. The impact of magnesium in vascular calcification in humans could be studied in association with calcium levels, for example, as the magnesium:calcium ratio.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Avenida Reyes Católicos 2, Madrid, Madrid, Spain
- Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Carlson N, Mortensen OH, Axelsen M, Pedersen RS, Heaf JG. Clearance of Sclerostin, Osteocalcin, Fibroblast Growth Factor 23, and Osteoprotegerin by Dialysis. Blood Purif 2017; 44:122-128. [PMID: 28554171 DOI: 10.1159/000465513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/24/2017] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Fibroblast growth factor (FGF23), sclerostin, osteocalcin, and osteoprotegerin are important factors that control mineral bone metabolism. End-stage renal disease is associated with the pronounced dysregulation of mineral bone metabolism; however, the impact and clearance of mineral bone metabolism factors during dialysis remain largely undescribed. METHODS In a cross-sectional study, 10 chronic hemodialysis patients were treated with hemodialysis for 8 h using a high-flux filter and a dialysate bath of 50% calculated total body water continuously recycled at a rate of 500 mL/min. Plasma and dialysate concentrations of FGF23, sclerostin, osteoprotegerin, and osteocalcin were measured at 1, 2, 4, 6, and 8 h permitting the estimation of dialysis clearance. RESULTS Clearance of FGF23 was 7.7 mL/min, of sclerostin was 7.6 mL/min, of osteoprotegerin was 1.2 mL/min, and of osteocalcin was 19.7 mL/min. Clearance of FGF23 was correlated to sclerostin and osteoprotegerin clearance and also to the ultrafiltration rate. Although, osteocalcin blood concentrations decreased during dialysis, they rebounded within 6 h. Overall, no significant changes in blood concentrations of the measure mineral bone metabolism factors were observed. CONCLUSIONS The intradialytic clearance of osteocalcin, FGF23, sclerostin, and osteoprotegerin occurs; however, only clearance of FGF23 is directly correlated with the ultrafiltration rate. The effects of dialytic clearance on mineral bone metabolism are, however, uncertain and intradialytic plasma concentrations of the studied substrates remained largely unchanged.
Collapse
Affiliation(s)
- Nicholas Carlson
- Department of Nephrology, Herlev Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
16
|
Villa-Bellosta R, Hamczyk MR, Andrés V. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate. PLoS One 2017; 12:e0174998. [PMID: 28362852 PMCID: PMC5376322 DOI: 10.1371/journal.pone.0174998] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. METHODS AND RESULTS High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. CONCLUSION We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Centro Nacional de Investigaciones CardiovascularesCarlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Fundación Instituto de Investigación Sanitaria Fundación Jiménez Díaz (FIIS-FJD), Madrid, Spain
| | - Magda R. Hamczyk
- Centro Nacional de Investigaciones CardiovascularesCarlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones CardiovascularesCarlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|