1
|
Lofaro FD, Giuggioli D, Bonacorsi S, Orlandi M, Spinella A, De Pinto M, Secchi O, Ferri C, Boraldi F. BMP-4 and fetuin A in systemic sclerosis patients with or without calcinosis. Front Immunol 2024; 15:1502324. [PMID: 39697336 PMCID: PMC11653211 DOI: 10.3389/fimmu.2024.1502324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Systemic sclerosis (SSc) is a connective tissue disease at the interface between inflammation and autoimmunity progressively leading to diffuse microvascular and fibrotic involvement of the skin and of multiple internal organs. Approximately, 20-40% of SSc patients suffer from cutaneous calcinosis, a debilitating manifestation due to calcium salt deposition in soft connective tissues, causing pain, ulceration, infection, and deformities, responsible of severe functional limitations. Pathomechanisms are poorly understood as well as markers/molecules capable to predict the risk of patients to develop calcinosis. Methods An observational study was performed in 51 female patients, 25 with and 26 without calcinosis to compare clinical and laboratory parameters and to evaluate pro- and anti-calcifying circulating markers and the in vitro serum calcification potential (T50). Moreover, calcinosis samples were analyzed to characterize their mineral composition. Results and discussion Data demonstrate statistically significant differences in the prevalence of clinical manifestations and ACA and Scl70 autoantibodies in SSc patient with calcinosis compared to those without calcinosis. In SSc patients with calcinosis, serum levels of BMP-4 are higher, fetuin A might be regarded as a potential circulating prognostic marker and a negative correlation was observed between T50 and the global score of clinical manifestations, suggesting a potential predictive role of pro- and anti-calcifying molecules in SSc patients. Furthermore, calcinosis samples were characterized by the co-existence of phosphate and carbonate minerals with different stability and solubility. Further investigations on circulating markers in larger patient cohorts, especially at the early stages and throughout the natural course of the disease, may clarify their pathogenetic role in the SSc-related cutaneous calcinosis.
Collapse
Affiliation(s)
| | - Dilia Giuggioli
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Susanna Bonacorsi
- Dipartment of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Orlandi
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Amelia Spinella
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco De Pinto
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ottavio Secchi
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clodoveo Ferri
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Boraldi
- Dipartment of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
ElMenshawy N, Ibrahim Fouda M, Mofreh M, Hisham El-Etriby H, O Elnenaei M, Eissa M. Impact of CD34/CD309 expression in circulating endothelial progenitor cells on prognosis and response to bortezomib therapy in multiple myeloma. J Immunoassay Immunochem 2024; 45:481-491. [PMID: 39135454 DOI: 10.1080/15321819.2024.2388614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Multiple myeloma (MM) is a prevalent yet incurable hematologic malignancy. Despite the proven efficacy of proteasome inhibitors in treating MM, resistance to Bortezomib-based treatments persists in a subset of patients. This case control study explores the potential of circulating endothelial progenitor cells (EPCs) as biomarkers for predicting response to Proteasome Inhibitor based therapy combined with Dexamethasone in MM patients. This study was conducted on 105 MM patients receiving bortezomib plus dexamethasone therapy and 90 healthy individuals as a control group. Utilizing 8-color multi-parameter flow cytometry, we assessed the levels of circulating EPCs, identified through CD34 FITC and CD309 PE markers at diagnosis and after one treatment cycle (4 weeks). Our findings revealed that patients exhibiting poor response to therapy showed significantly higher CD34/CD309 values than those with a good response (p < 0.001). The delineation of response based on CD34/CD309 expression was established with a cutoff ≤ 0.9 for percentage (yielding 100% sensitivity and 94.1% specificity) and ≤ 12.5 for absolute value (also with 100% sensitivity and 94.1% specificity). These results underscore the potential of EPC population levels, as quantified by CD34/CD309, to serve as a predictive biomarker for immunomodulatory treatment in MM patients undergoing Proteasome Inhibitor and Dexamethasone therapy.
Collapse
Affiliation(s)
- Nadia ElMenshawy
- Clinical Pathology Department, Hematology Unit, Mansoura Medical School, Mansoura University, Mansoura, Egypt
| | - Manal Ibrahim Fouda
- Clinical Pathology Department, Hematology Unit, Mansoura Medical School, Mansoura University, Mansoura, Egypt
| | - Mohamed Mofreh
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Manal O Elnenaei
- Department of Pathology and Laboratory Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mohamed Eissa
- College of Medicine, King Khalid University, KSA and Clinical Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
3
|
Gheorghe SR, Crăciun AM, Ilyés T, Tisa IB, Sur L, Lupan I, Samasca G, Silaghi CN. Converging Mechanisms of Vascular and Cartilaginous Calcification. BIOLOGY 2024; 13:565. [PMID: 39194503 DOI: 10.3390/biology13080565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Physiological calcification occurs in bones and epiphyseal cartilage as they grow, whereas ectopic calcification occurs in blood vessels, cartilage, and soft tissues. Although it was formerly thought to be a passive and degenerative process associated with aging, ectopic calcification has been identified as an active cell-mediated process resembling osteogenesis, and an increasing number of studies have provided evidence for this paradigm shift. A significant association between vascular calcification and cardiovascular risk has been demonstrated by various studies, which have shown that arterial calcification has predictive value for future coronary events. With respect to cartilaginous calcification, calcium phosphate or hydroxyapatite crystals can form asymptomatic deposits in joints or periarticular tissues, contributing to the pathophysiology of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, tendinitis, and bursitis. The risk factors and sequence of events that initiate ectopic calcification, as well as the mechanisms that prevent the development of this pathology, are still topics of debate. Consequently, in this review, we focus on the nexus of the mechanisms underlying vascular and cartilaginous calcifications, trying to circumscribe the similarities and disparities between them to provide more clarity in this regard.
Collapse
Affiliation(s)
- Simona R Gheorghe
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra M Crăciun
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Tamás Ilyés
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Badiu Tisa
- Department of Pediatrics III, Iuliu Hatieganu University of Medicine and Pharmacy, 400217 Cluj-Napoca, Romania
| | - Lucia Sur
- Department of Pediatrics I, Iuliu Hatieganu University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Molecular Biology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Ciprian N Silaghi
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Boraldi F, Lofaro FD, Bonacorsi S, Mazzilli A, Garcia-Fernandez M, Quaglino D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024; 12:1586. [PMID: 39062158 PMCID: PMC11274439 DOI: 10.3390/biomedicines12071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Francesco Demetrio Lofaro
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Susanna Bonacorsi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Alessia Mazzilli
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Institute of Biomedical Investigation (IBIMA), University of Málaga, 29010 Málaga, Spain;
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| |
Collapse
|
5
|
Holzner G, Mateescu B, van Leeuwen D, Cereghetti G, Dechant R, Stavrakis S, deMello A. High-throughput multiparametric imaging flow cytometry: toward diffraction-limited sub-cellular detection and monitoring of sub-cellular processes. Cell Rep 2021; 34:108824. [PMID: 33691119 DOI: 10.1016/j.celrep.2021.108824] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
We present a sheathless, microfluidic imaging flow cytometer that incorporates stroboscopic illumination for blur-free fluorescence detection at ultra-high analytical throughput. The imaging platform is capable of multiparametric fluorescence quantification and sub-cellular localization of these structures down to 500 nm with microscopy image quality. We demonstrate the efficacy of the approach through the analysis and localization of P-bodies and stress granules in yeast and human cells using fluorescence and bright-field detection at analytical throughputs in excess of 60,000 and 400,000 cells/s, respectively. Results highlight the utility of our imaging flow cytometer in directly investigating phase-separated compartments within cellular environments and screening rare events at the sub-cellular level for a range of diagnostic applications.
Collapse
Affiliation(s)
- Gregor Holzner
- Institute for Chemical & Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Bogdan Mateescu
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel van Leeuwen
- Department of Biology, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Gea Cereghetti
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Reinhard Dechant
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical & Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Andrew deMello
- Institute for Chemical & Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
6
|
Boraldi F, Lofaro FD, Losi L, Quaglino D. Dermal Alterations in Clinically Unaffected Skin of Pseudoxanthoma elasticum Patients. J Clin Med 2021; 10:jcm10030500. [PMID: 33535391 PMCID: PMC7867076 DOI: 10.3390/jcm10030500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Pseudoxanthoma elasticum (PXE), due to rare sequence variants in the ABCC6 gene, is characterized by calcification of elastic fibers in several tissues/organs; however, the pathomechanisms have not been completely clarified. Although it is a systemic disorder on a genetic basis, it is not known why not all elastic fibers are calcified in the same patient and even in the same tissue. At present, data on soft connective tissue mineralization derive from studies performed on vascular tissues and/or on clinically affected skin, but there is no information on patients’ clinically unaffected skin. Methods: Skin biopsies from clinically unaffected and affected areas of the same PXE patient (n = 6) and from healthy subjects were investigated by electron microscopy. Immunohistochemistry was performed to evaluate p-SMAD 1/5/8 and p-SMAD 2/3 expression and localization. Results: In clinically unaffected skin, fragmented elastic fibers were prevalent, whereas calcified fibers were only rarely observed at the ultrastructural level. p-SMAD1/5/8 and p-SMAD2/3 were activated in both affected and unaffected skin. Conclusion: These findings further support the concept that fragmentation/degradation is necessary but not sufficient to cause calcification of elastic fibers and that additional local factors (e.g., matrix composition, mechanical forces and mesenchymal cells) contribute to create the pro-osteogenic environment.
Collapse
|
7
|
Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021; 10:cells10010131. [PMID: 33445441 PMCID: PMC7827519 DOI: 10.3390/cells10010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Correspondence:
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Interuniversity Consortium for Biotechnologies (CIB), Italy
| |
Collapse
|
8
|
Effects of whole-body cryotherapy on the innate and adaptive immune response in cyclists and runners. Immunol Res 2020; 68:422-435. [PMID: 33159311 DOI: 10.1007/s12026-020-09165-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
The study aimed to identify the effects of whole-body cryotherapy (WBC) on immunological, hormonal, and metabolic responses of non-professional male athletes. Ten cyclists and ten middle-distance runners received 3 once-a-day sessions of WBC. Before initiating and after the final WBC session, a full set of hematologic parameters, serum chemistry profile, hormones, circulating mitochondrial (mt) DNA levels, cytokines, and chemokines concentration were evaluated. The phenotype of monocyte, T cells, and B cells was analyzed. mRNA expression of 6 genes involved in inflammasome activation (NAIP, AIM2, NLRP3, PYCARD, IL-1β, and IL-18) was quantified. WBC reduced glucose and C and S protein and increased HDL, urea, insulin-like growth factor (IGF)-1, follicle-stimulating hormone, IL-18, IL-1RA, CCL2, and CXCL8. Intermediate and non-classical monocyte percentages decreased, and the CD14, CCR5, CCR2, and CXCR4 expressions changed in different subsets. Only IL-1β mRNA increased in monocytes. Finally, a redistribution of B and T cell subsets was observed, suggesting the migration of mature cells to tissue. WBC seems to induce changes in both innate and adaptive branches of the immune system, hormones, and metabolic status in non-professional male athletes, suggesting a beneficial involvement of WBC in tissue repair.
Collapse
|
9
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
10
|
Barbui T, De Stefano V, Falanga A, Finazzi G, Martinelli I, Rodeghiero F, Vannucchi AM, Barosi G. Addressing and proposing solutions for unmet clinical needs in the management of myeloproliferative neoplasm-associated thrombosis: A consensus-based position paper. Blood Cancer J 2019; 9:61. [PMID: 31395856 PMCID: PMC6687826 DOI: 10.1038/s41408-019-0225-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
This article presents the results of a group discussion among an ad hoc constituted Panel of experts aimed at highlighting unmet clinical needs (UCNs) in the management of thrombotic risk and thrombotic events associated with Philadelphia-negative myeloproliferative neoplasms (Ph-neg MPNs). With the Delphi technique, the challenges in Ph-neg MPN-associated thrombosis were selected. The most clinically relevant UCNs resulted in: (1) providing evidence of the benefits and risks of direct oral anticoagulants, (2) providing evidence of the benefits and risks of cytoreduction in patients with splanchnic vein thrombosis without hypercythemia, (3) improving knowledge of the role of the mutated endothelium in the pathogenesis of thrombosis, (4) improving aspirin dosing regimens in essential thrombocythemia, (5) improving antithrombotic management of Ph-neg MPN-associated pregnancy, (6) providing evidence for the optimal duration of anticoagulation for prophylaxis of recurrent VTE, (7) improving knowledge of the association between somatic gene mutations and risk factors for thrombosis, and (8) improving the grading system of thrombosis risk in polycythemia vera. For each of these issues, proposals for advancement in research and clinical practice were addressed. Hopefully, this comprehensive overview will serve to inform the design and implementation of new studies in the field.
Collapse
Affiliation(s)
- Tiziano Barbui
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy.
| | - Valerio De Stefano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Istituto di Ematologia, Università Cattolica, Roma, Italy
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine and the Haemostasis and Thrombosis Center, Papa Giovanni XXIII Hospital, Bergamo, Italy.,University of Milan Bicocca, Milan, Italy
| | - Guido Finazzi
- Hematology Division, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ida Martinelli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, A. Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Francesco Rodeghiero
- Hematology Project Foundation, affiliated to the Department of Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Alessandro M Vannucchi
- CRIMM-Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, Dept Experimental and Clinical medicine, and Denothe Center, University of Florence, Florence, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| |
Collapse
|
11
|
Exome sequencing and bioinformatic approaches reveals rare sequence variants involved in cell signalling and elastic fibre homeostasis: new evidence in the development of ectopic calcification. Cell Signal 2019; 59:131-140. [DOI: 10.1016/j.cellsig.2019.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022]
|
12
|
De Biasi S, Gibellini L, Feletti A, Pavesi G, Bianchini E, Lo Tartaro D, Pecorini S, De Gaetano A, Pullano R, Boraldi F, Nasi M, Pinti M, Cossarizza A. High speed flow cytometry allows the detection of circulating endothelial cells in hemangioblastoma patients. Methods 2018; 134-135:3-10. [DOI: 10.1016/j.ymeth.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
|
13
|
Boraldi F, Losi L, Quaglino D. Pigment epithelial-derived factor: a new player in the calcification of dermal elastic fibre? Br J Dermatol 2017; 177:e44-e46. [PMID: 27925161 DOI: 10.1111/bjd.15223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287-41125, Modena, Italy
| | - L Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287-41125, Modena, Italy
| | - D Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287-41125, Modena, Italy
| |
Collapse
|