1
|
Chaudhari A, Axelsson C, Mattsson Hultén L, Rotter Sopasakis V. Toll-like Receptors 1, 3 and 7 Activate Distinct Genetic Features of NF-κB Signaling and γ-Protocadherin Expression in Human Cardiac Fibroblasts. Inflammation 2025:10.1007/s10753-025-02238-z. [PMID: 39828779 DOI: 10.1007/s10753-025-02238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Fibroblasts play a pivotal role in key processes within the heart, particularly in cardiac remodeling that follows both ischemic and non-ischemic injury. During remodeling, fibroblasts drive fibrosis and inflammation by reorganizing the extracellular matrix and modulating the immune response, including toll-like receptor (TLR) activation, to promote tissue stabilization. Building on findings from our prior research on heart tissue from patients with advanced coronary artery disease and aortic valve disease, this study sought to explore specific effects of TLR1, TLR3, and TLR7 activation on NF-κB signaling, proinflammatory cytokine production, and γ-protocadherin expression in cardiac fibroblasts. Human cardiac fibroblasts were exposed to agonists for TLR1, TLR3, or TLR7 for 24 h, followed by an analysis of NF-κB signaling, cytokine production, and γ-protocadherin expression. The activation of these TLRs triggered distinct responses in the NF-κB signaling pathway, with TLR3 showing a stronger activation profile compared to TLR1 and TLR7, particularly in downregulating γ-protocadherin expression. These findings highlight a potential role for TLR3 in amplifying inflammatory responses and reducing γ-protocadherin levels in cardiac fibroblasts, correlating with the enhanced inflammation and lower γ-protocadherin expression observed in diseased myocardium from patients with coronary artery disease and aortic valve disease. Consequently, TLR3 represents a potential therapeutic target for modulating immune responses in cardiovascular diseases.
Collapse
Affiliation(s)
- Aditi Chaudhari
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Camila Axelsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Victoria Rotter Sopasakis
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Peñarroya A, Lorca R, Rodríguez Reguero JJ, Gómez J, Avanzas P, Tejedor JR, Fernandez AF, Fraga MF. Epigenetic Study of Cohort of Monozygotic Twins With Hypertrophic Cardiomyopathy Due to MYBPC3 (Cardiac Myosin-Binding Protein C). J Am Heart Assoc 2024; 13:e035777. [PMID: 39470061 PMCID: PMC11935665 DOI: 10.1161/jaha.124.035777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/12/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy is an autosomal dominant cardiac disease. The mechanisms that determine its variable expressivity are poorly understood. Epigenetics could play a crucial role in bridging the gap between genotype and phenotype by orchestrating the interplay between the environment and the genome regulation. In this study we aimed to establish a possible correlation between the peripheral blood DNA methylation patterns and left ventricular hypertrophy severity in patients with hypertrophic cardiomyopathy, evaluating the potential impact of lifestyle variables and providing a biological context to the observed changes. METHODS AND RESULTS Methylation data were obtained from peripheral blood samples (Infinium MethylationEPIC BeadChip arrays). We employed multiple pair-matched models to extract genomic positions whose methylation correlates with the degree of left ventricular hypertrophy in 3 monozygotic twin pairs carrying the same founder pathogenic variant (MYBPC3 p.Gly263Ter). This model enables the isolation of the environmental influence, beyond age, on DNA methylation changes by removing the genetic background. Our results revealed a more anxious personality among more severely affected individuals. We identified 56 differentially methylated positions that exhibited moderate, proportional changes in methylation associated with left ventricular hypertrophy. These differentially methylated positions were enriched in regions regulated by repressor histone marks and tended to cluster at genes involved in left ventricular hypertrophy development, such as HOXA5, TRPC3, UCN3, or PLSCR2, suggesting that changes in peripheral blood may reflect myocardial alterations. CONCLUSIONS We present a unique pair-matched model, based on 3 monozygotic twin pairs carrying the same founder pathogenic variant and different phenotypes. This study provides further evidence of the pivotal role of epigenetics in hypertrophic cardiomyopathy variable expressivity.
Collapse
Affiliation(s)
- Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN)Spanish National Research Council (CSIC)El EntregoAsturiasSpain
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
| | - Rebeca Lorca
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética MolecularHospital Universitario Central AsturiasOviedoSpain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs)MadridSpain
- Departamento de Biología FuncionalUniversidad de OviedoOviedoSpain
| | - José Julián Rodríguez Reguero
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética MolecularHospital Universitario Central AsturiasOviedoSpain
| | - Juan Gómez
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética MolecularHospital Universitario Central AsturiasOviedoSpain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs)MadridSpain
| | - Pablo Avanzas
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética MolecularHospital Universitario Central AsturiasOviedoSpain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs)MadridSpain
- Departamento de MedicinaUniversidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)OviedoSpain
| | - Juan Ramon Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN)Spanish National Research Council (CSIC)El EntregoAsturiasSpain
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER)MadridSpain
- Institute of Oncology of Asturias (IUOPA), University of OviedoOviedoAsturiasSpain
| | - Agustín F. Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN)Spanish National Research Council (CSIC)El EntregoAsturiasSpain
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER)MadridSpain
- Institute of Oncology of Asturias (IUOPA), University of OviedoOviedoAsturiasSpain
| | - Mario F. Fraga
- Nanomaterials and Nanotechnology Research Center (CINN)Spanish National Research Council (CSIC)El EntregoAsturiasSpain
- Health Research Institute of the Principality of Asturias (ISPA)OviedoAsturiasSpain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER)MadridSpain
- Institute of Oncology of Asturias (IUOPA), University of OviedoOviedoAsturiasSpain
| |
Collapse
|
3
|
Han D, Xiong B, Zhang X, Chen C, Yao Z, Wu H, Cao J, Li J, Li P, Wang Z, Tian J. Knockdown of AMIGO2 suppresses proliferation and migration through regulating PPAR-γ in bladder cancer. Hereditas 2024; 161:21. [PMID: 38978149 PMCID: PMC11229346 DOI: 10.1186/s41065-024-00325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
PURPOSE This study aims to reveal the relationship between AMIGO2 and proliferation, migration and tumorigenicity of bladder cancer, and explore the potential molecular mechanisms. METHODS The expression level of AMIGO2 is measured by qRT-PCR and immunohistochemistry (IHC). Stable AMIGO2 knockdown cell lines T24 and 5637 were established by lentivirus transfection. Cell Counting Kit (CCK-8 assay) was produced to determine cell proliferation, flow cytometry analysis was utilized to detect cell cycle, and wound healing assay was proceeded to test migration ability of bladder cancer cells. Xenograft mouse model was established for investigating the effect of AMIGO2 on tumor formation in vivo. The RNA Sequencing technology was applied to explore the underlying mechanisms. The expression level of PPAR-γ was measured by Western Blot. RESULTS AMIGO2 was upregulated in bladder cancer cells and tissues. Inhibited expression of AMIGO2 suppresses cell proliferation and migration. Low AMIGO2 expression inhibited tumorigenicity of 5637 in nude mice. According to RNA-Seq and bioinformatics analysis, 917 DEGs were identified. The DEGs were mainly enriched in cell-cell adhesion, peroxisome proliferators-activated receptors (PPARs) signaling pathway and some other pathways. PPAR-γ is highly expressed in bladder cancer cell lines T24 and 5637, but when AMIGO2 is knocked down in T24 and 5637, the expression level of PPAR-γ is also decreased, and overexpression of PPAR-γ could reverse the suppression effect of cell proliferation and migration caused by the inhibition of AMIGO2. CONCLUSION AMIGO2 is overexpressed in bladder cancer cells and tissues. Knockdown of AMIGO2 suppresses bladder cancer cell proliferation and migration. These processes might be regulated by PPAR-γ signaling pathway.
Collapse
Affiliation(s)
- Dali Han
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Bin Xiong
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiangxiang Zhang
- Department of Urology, Gansu Provincial Hospital, Lanzhou, Gansu Province, China
| | - Chaohu Chen
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhiqiang Yao
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hao Wu
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jianpeng Li
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Pan Li
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Clinical Center of Gansu Province for Nephro-Urology, Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
4
|
Kakturskiy LV, Mikhaleva LM, Gioeva ZV, Gutyrchik NA. [The role of imbalance of myocardial cell adhesion proteins in cardiac arrhythmia and heart failure]. Arkh Patol 2024; 86:75-80. [PMID: 39434531 DOI: 10.17116/patol20248605175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A review of the literature data on the role of imbalance of cellular adhesion proteins (CAP) of the heart in the development of cardiac arrhythmias and heart failure. The CAPS of the intercalated discs belonging to the cadherin and desmin groups provide a mechanical connection of cardiomyocytes, proteins from the connexin group are responsible for the transmission of an electrical impulse. The imbalance of CAP has mainly a hereditary origin and is accompanied by the destruction of intercalated discs, blockage of impulse transmission with the development of electrical instability of the myocardium and cardiac arrhythmias, including ventricular and atrial fibrillation. This is the case with cardiomyopathies, coronary heart disease. Endothelial dysfunction also plays an essential role in atrial fibrillation, which is associated with an imbalance in the CAP of the endothelial lining of the endocardium and blood vessels.
Collapse
Affiliation(s)
- L V Kakturskiy
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - L M Mikhaleva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Z V Gioeva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - N A Gutyrchik
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
- Patrice Lumumba Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
5
|
Khvorykh GV, Sapozhnikov NA, Limborska SA, Khrunin AV. Evaluation of Density-Based Spatial Clustering for Identifying Genomic Loci Associated with Ischemic Stroke in Genome-Wide Data. Int J Mol Sci 2023; 24:15355. [PMID: 37895035 PMCID: PMC10607504 DOI: 10.3390/ijms242015355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The genetic architecture of ischemic stroke (IS), which is one of the leading causes of death worldwide, is complex and underexplored. The traditional approach for associative gene mapping is genome-wide association studies (GWASs), testing individual single-nucleotide polymorphisms (SNPs) across the genomes of case and control groups. The purpose of this research is to develop an alternative approach in which groups of SNPs are examined rather than individual ones. We proposed, validated and applied to real data a new workflow consisting of three key stages: grouping SNPs in clusters, inferring the haplotypes in the clusters and testing haplotypes for the association with phenotype. To group SNPs, we applied the clustering algorithms DBSCAN and HDBSCAN to linkage disequilibrium (LD) matrices, representing pairwise r2 values between all genotyped SNPs. These clustering algorithms have never before been applied to genotype data as part of the workflow of associative studies. In total, 883,908 SNPs and insertion/deletion polymorphisms from people of European ancestry (4929 cases and 652 controls) were processed. The subsequent testing for frequencies of haplotypes restored in the clusters of SNPs revealed dozens of genes associated with IS and suggested the complex role that protocadherin molecules play in IS. The developed workflow was validated with the use of a simulated dataset of similar ancestry and the same sample sizes. The results of classic GWASs are also provided and discussed. The considered clustering algorithms can be applied to genotypic data to identify the genomic loci associated with different qualitative traits, using the workflow presented in this research.
Collapse
Affiliation(s)
| | | | | | - Andrey V. Khrunin
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (G.V.K.); (N.A.S.); (S.A.L.)
| |
Collapse
|
6
|
da Silva-Buttkus P, Spielmann N, Klein-Rodewald T, Schütt C, Aguilar-Pimentel A, Amarie OV, Becker L, Calzada-Wack J, Garrett L, Gerlini R, Kraiger M, Leuchtenberger S, Östereicher MA, Rathkolb B, Sanz-Moreno A, Stöger C, Hölter SM, Seisenberger C, Marschall S, Fuchs H, Gailus-Durner V, Hrabě de Angelis M. Knockout mouse models as a resource for the study of rare diseases. Mamm Genome 2023; 34:244-261. [PMID: 37160609 PMCID: PMC10290595 DOI: 10.1007/s00335-023-09986-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/07/2023] [Indexed: 05/11/2023]
Abstract
Rare diseases (RDs) are a challenge for medicine due to their heterogeneous clinical manifestations and low prevalence. There is a lack of specific treatments and only a few hundred of the approximately 7,000 RDs have an approved regime. Rapid technological development in genome sequencing enables the mass identification of potential candidates that in their mutated form could trigger diseases but are often not confirmed to be causal. Knockout (KO) mouse models are essential to understand the causality of genes by allowing highly standardized research into the pathogenesis of diseases. The German Mouse Clinic (GMC) is one of the pioneers in mouse research and successfully uses (preclinical) data obtained from single-gene KO mutants for research into monogenic RDs. As part of the International Mouse Phenotyping Consortium (IMPC) and INFRAFRONTIER, the pan-European consortium for modeling human diseases, the GMC expands these preclinical data toward global collaborative approaches with researchers, clinicians, and patient groups.Here, we highlight proprietary genes that when deleted mimic clinical phenotypes associated with known RD targets (Nacc1, Bach2, Klotho alpha). We focus on recognized RD genes with no pre-existing KO mouse models (Kansl1l, Acsf3, Pcdhgb2, Rabgap1, Cox7a2) which highlight novel phenotypes capable of optimizing clinical diagnosis. In addition, we present genes with intriguing phenotypic data (Zdhhc5, Wsb2) that are not presently associated with known human RDs.This report provides comprehensive evidence for genes that when deleted cause differences in the KO mouse across multiple organs, providing a huge translational potential for further understanding monogenic RDs and their clinical spectrum. Genetic KO studies in mice are valuable to further explore the underlying physiological mechanisms and their overall therapeutic potential.
Collapse
Affiliation(s)
- Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Christine Schütt
- Institute of Experimental Genetics, Applied Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Manuela A Östereicher
- Institute of Experimental Genetics, Applied Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 25, 81377, Munich, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Claudia Stöger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany.
| |
Collapse
|
7
|
Sun H, Xu J, Hu B, Liu Y, Zhai Y, Sun Y, Sun H, Li F, Wang J, Feng A, Tang Y, Zhao J. Association of DNA Methylation Patterns in 7 Novel Genes With Ischemic Stroke in the Northern Chinese Population. Front Genet 2022; 13:844141. [PMID: 35480311 PMCID: PMC9035884 DOI: 10.3389/fgene.2022.844141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is a highly complex disorder. This study aims to identify novel methylation changes in ischemic stroke.Methods: We carried out an epigenome-wide study of ischemic stroke using an Infinium HumanMethylation 850K array (cases:controls = 4:4). 10 CpG sites in 8 candidate genes from gene ontology analytics top-ranked pathway were selected to validate 850K BeadChip results (cases:controls = 20:20). We further qualified the methylation level of promoter regions in 8 candidate genes (cases:controls = 188:188). Besides, we performed subgroup analysis, dose-response relationship and diagnostic prediction polygenic model of candidate genes.Results: In the discovery stage, we found 462 functional DNA methylation positions to be associated with ischemic stroke. Gene ontology analysis highlighted the “calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules” item, including 8 candidate genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB6/PCDHB9). In the replication stage, we identified 5 differentially methylated loci in 20 paired samples and 7 differentially methylated genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB9) in 188 paired samples. Subgroup analysis showed that the methylation level of above 7 genes remained significantly different in the male subgroup, large-artery atherosclerosis subgroup and right hemisphere subgroup. The methylation level of each gene was grouped into quartiles, and Q4 groups of the 7 genes were associated with higher risk of ischemic stroke than Q1 groups (p < 0.05). Besides, the polygenic model showed high diagnostic specificity (0.8723), sensitivity (0.883), and accuracy (0.8777).Conclusion: Our results demonstrate that DNA methylation plays a crucial part in ischemic stroke. The methylation of these 7 genes may be potential diagnostic biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Xu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Bifeng Hu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun Zhai
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyan Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongwei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamin Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Anqi Feng
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jingbo Zhao, ; Ying Tang,
| | - Jingbo Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
- *Correspondence: Jingbo Zhao, ; Ying Tang,
| |
Collapse
|
8
|
van Andel MM, Groenink M, van den Berg MP, Timmermans J, Scholte AJHA, Mulder BJM, Zwinderman AH, de Waard V. Genome-wide methylation patterns in Marfan syndrome. Clin Epigenetics 2021; 13:217. [PMID: 34895303 PMCID: PMC8665617 DOI: 10.1186/s13148-021-01204-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene (FBN1). Here, we undertook the first epigenome-wide association study (EWAS) in patients with MFS aiming at identifying DNA methylation loci associated with MFS phenotypes that may shed light on the disease process. Methods The Illumina 450 k DNA-methylation array was used on stored peripheral whole-blood samples of 190 patients with MFS originally included in the COMPARE trial. An unbiased genome-wide approach was used, and methylation of CpG-sites across the entire genome was evaluated. Additionally, we investigated CpG-sites across the FBN1-locus (15q21.1) more closely, since this is the gene defective in MFS. Differentially Methylated Positions (DMPs) and Differentially Methylated Regions (DMRs) were identified through regression analysis. Associations between methylation levels and aortic diameters and presence or absence of 21 clinical features of MFS at baseline were analyzed. Moreover, associations between aortic diameter change, and the occurrence of clinical events (death any cause, type-A or -B dissection/rupture, or aortic surgery) and methylation levels were analyzed. Results We identified 28 DMPs that are significantly associated with aortic diameters in patients with MFS. Seven of these DMPs (25%) could be allocated to a gene that was previously associated with cardiovascular diseases (HDAC4, IGF2BP3, CASZ1, SDK1, PCDHGA1, DIO3, PTPRN2). Moreover, we identified seven DMPs that were significantly associated with aortic diameter change and five DMP’s that associated with clinical events. No significant associations at p < 10–8 or p < 10–6 were found with any of the non-cardiovascular phenotypic MFS features. Investigating DMRs, clusters were seen mostly on X- and Y, and chromosome 18–22. The remaining DMRs indicated involvement of a large family of protocadherins on chromosome 5, which were not reported in MFS before. Conclusion This EWAS in patients with MFS has identified a number of methylation loci significantly associated with aortic diameters, aortic dilatation rate and aortic events. Our findings add to the slowly growing literature on the regulation of gene expression in MFS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01204-4.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janneke Timmermans
- Department of Cardiology, Radboud University Hospital, Nijmegen, The Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Mulari S, Eskin A, Lampinen M, Nummi A, Nieminen T, Teittinen K, Ojala T, Kankainen M, Vento A, Laurikka J, Kupari M, Harjula A, Tuncbag N, Kankuri E. Ischemic Heart Disease Selectively Modifies the Right Atrial Appendage Transcriptome. Front Cardiovasc Med 2021; 8:728198. [PMID: 34926599 PMCID: PMC8674465 DOI: 10.3389/fcvm.2021.728198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Although many pathological changes have been associated with ischemic heart disease (IHD), molecular-level alterations specific to the ischemic myocardium and their potential to reflect disease severity or therapeutic outcome remain unclear. Currently, diagnosis occurs relatively late and evaluating disease severity is largely based on clinical symptoms, various imaging modalities, or the determination of risk factors. This study aims to identify IHD-associated signature RNAs from the atrial myocardium and evaluate their ability to reflect disease severity or cardiac surgery outcomes. Methods and Results: We collected right atrial appendage (RAA) biopsies from 40 patients with invasive coronary angiography (ICA)-positive IHD undergoing coronary artery bypass surgery and from 8 patients ICA-negative for IHD (non-IHD) undergoing valvular surgery. Following RNA sequencing, RAA transcriptomes were analyzed against 429 donors from the GTEx project without cardiac disease. The IHD transcriptome was characterized by repressed RNA expression in pathways for cell-cell contacts and mitochondrial dysfunction. Increased expressions of the CSRNP3, FUT10, SHD, NAV2-AS4, and hsa-mir-181 genes resulted in significance with the complexity of coronary artery obstructions or correlated with a functional cardiac benefit from bypass surgery. Conclusions: Our results provide an atrial myocardium-focused insight into IHD signature RNAs. The specific gene expression changes characterized here, pave the way for future disease mechanism-based identification of biomarkers for early detection and treatment of IHD.
Collapse
Affiliation(s)
- Severi Mulari
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arda Eskin
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University (METU), Ankara, Turkey
| | - Milla Lampinen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Annu Nummi
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Nieminen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Teittinen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jari Laurikka
- Department of Cardiothoracic Surgery, Heart Center, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markku Kupari
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ari Harjula
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nurcan Tuncbag
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University (METU), Ankara, Turkey
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Sandstedt J, Vukusic K, Rekabdar E, Dellgren G, Jeppsson A, Mattsson Hultén L, Rotter Sopasakis V. Markedly reduced myocardial expression of γ-protocadherins and long non-coding RNAs in patients with heart disease. Int J Cardiol 2021; 344:149-159. [PMID: 34592247 DOI: 10.1016/j.ijcard.2021.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Adverse cardiac remodeling and tissue damage following heart disease is strongly associated with chronic low grade inflammation. The mechanisms underlying persisting inflammatory signals are not fully understood, but may involve defective and/or non-responsive transcriptional and post-transcriptional regulatory mechanisms. In the current study, we aimed to identify novel mediators and pathways involved in processes associated with inflammation in the development and maintenance of cardiac disease. METHODS AND RESULTS We performed RNA sequencing analysis of cardiac tissue from patients undergoing coronary artery bypass grafting (CABG) or aortic valve replacement (AVR) and compared with control tissue from multi-organ donors. Our results confirmed previous findings of a marked upregulated inflammatory state, but more importantly, we found pronounced reduction of non-protein coding genes, particularly long non-coding RNAs (lncRNA), including several lncRNAs known to be associated with inflammation and/or cardiovascular disease. In addition, Gene Set Enrichment Analysis revealed markedly downregulated microRNA pathways, resulting in aberrant expression of other genes, particularly γ-protocadherins. CONCLUSIONS Our data suggest that aberrant expression of non-coding gene regulators comprise crucial keys in the progression of heart disease, and may be pivotal for chronic low grade inflammation associated with cardiac dysfunction. By unmasking atypical γ-protocadherin expression as a prospective genetic biomarker of myocardial dysfunction, our study provides new insight into the complex molecular framework of heart disease. Creating new approaches to modify non-coding gene regulators, such as those identified in the current study, may define novel strategies to shift γ-protocadherin expression, thereby normalizing part of the molecular architecture associated with heart disease.
Collapse
Affiliation(s)
- Joakim Sandstedt
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Kristina Vukusic
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Elham Rekabdar
- Genomics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Victoria Rotter Sopasakis
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| |
Collapse
|
11
|
Xie J, Xu Y, Chen H, Chi M, He J, Li M, Liu H, Xia J, Guan Q, Guo Z, Yan H. Identification of population-level differentially expressed genes in one-phenotype data. Bioinformatics 2020; 36:4283-4290. [PMID: 32428201 PMCID: PMC7520039 DOI: 10.1093/bioinformatics/btaa523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Motivation For some specific tissues, such as the heart and brain, normal controls are difficult to obtain. Thus, studies with only a particular type of disease samples (one phenotype) cannot be analyzed using common methods, such as significance analysis of microarrays, edgeR and limma. The RankComp algorithm, which was mainly developed to identify individual-level differentially expressed genes (DEGs), can be applied to identify population-level DEGs for the one-phenotype data but cannot identify the dysregulation directions of DEGs. Results Here, we optimized the RankComp algorithm, termed PhenoComp. Compared with RankComp, PhenoComp provided the dysregulation directions of DEGs and had more robust detection power in both simulated and real one-phenotype data. Moreover, using the DEGs detected by common methods as the ‘gold standard’, the results showed that the DEGs detected by PhenoComp using only one-phenotype data were comparable to those identified by common methods using case-control samples, independent of the measurement platform. PhenoComp also exhibited good performance for weakly differential expression signal data. Availability and implementation The PhenoComp algorithm is available on the web at https://github.com/XJJ-student/PhenoComp. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiajing Xie
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Yang Xu
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Haifeng Chen
- Department of General Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Meirong Chi
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Jun He
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Meifeng Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Hui Liu
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Jie Xia
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Qingzhou Guan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Zheng Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Haidan Yan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| |
Collapse
|
12
|
García-Manzanares M, Tarazón E, Ortega A, Gil-Cayuela C, Martínez-Dolz L, González-Juanatey JR, Lago F, Portolés M, Roselló-Lletí E, Rivera M. XPO1 Gene Therapy Attenuates Cardiac Dysfunction in Rats with Chronic Induced Myocardial Infarction. J Cardiovasc Transl Res 2020; 13:593-600. [PMID: 31768947 PMCID: PMC7423868 DOI: 10.1007/s12265-019-09932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Transcriptomic signature of XPO1 was highly expressed and inversely related to left ventricular function in ischemic cardiomyopathy patients. We hypothesized that treatment with AAV9-shXPO1 attenuates left ventricular dysfunction and remodeling in a myocardial infarction rat model. We induced myocardial infarction by coronary ligation in Sprague-Dawley rats (n = 10), which received AAV9-shXPO1 (n = 5) or placebo AAV9-scramble (n = 5) treatment. Serial echocardiographic assessment was performed throughout the study. After myocardial infarction, AAV9-shXPO1-treated rats showed partial recovery of left ventricular fractional shortening (16.8 ± 2.8 vs 24.6 ± 4.1%, P < 0.05) and a maintained left ventricular dimension (6.17 ± 0.95 vs 4.70 ± 0.93 mm, P < 0.05), which was not observed in non-treated rats. Furthermore, lower levels of EXP-1 (P < 0.05) and lower collagen fibers and fibrosis in cardiac tissue were observed. However, no differences were found in the IL-6 or TNFR1 plasma levels of the myocardium of AAV9-shXPO1 rats. AAV9-shXPO1 administration attenuates cardiac dysfunction and remodeling in rats after myocardial infarction, producing the gene silencing of XPO1.
Collapse
Affiliation(s)
- María García-Manzanares
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Estefanía Tarazón
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Ana Ortega
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Carolina Gil-Cayuela
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Luis Martínez-Dolz
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University Hospital La Fe, Valencia, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Manuel Portolés
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain.
| | - Esther Roselló-Lletí
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Miguel Rivera
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| |
Collapse
|
13
|
Kim S, Wyckoff J, Morris AT, Succop A, Avery A, Duncan GE, Jazwinski SM. DNA methylation associated with healthy aging of elderly twins. GeroScience 2018; 40:469-484. [PMID: 30136078 PMCID: PMC6294724 DOI: 10.1007/s11357-018-0040-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
Variation in healthy aging and lifespan is ascribed more to various non-genetic factors than to inherited genetic determinants, and a major goal in aging research is to reveal the epigenetic basis of aging. One approach to this goal is to find genomic sites or regions where DNA methylation correlates with biological age. Using health data from 134 elderly twins, we calculated a frailty index as a quantitative indicator of biological age, and by applying the Infinium HumanMethylation450K BeadChip technology to their leukocyte DNA samples, we obtained quantitative DNA methylation data on genome-wide CpG sites. We analyzed the health and epigenome data by taking two independent associative approaches: the parametric regression-based approach and a non-parametric machine learning approach followed by GO ontology analysis. Our results indicate that DNA methylation at CpG sites in the promoter region of PCDHGA3 is associated with biological age. PCDHGA3 belongs to clustered protocadherin genes, which are all located in a single locus on chromosome 5 in human. Previous studies of the clustered protocadherin genes showed that (1) DNA methylation is associated with age or age-related phenotypes; (2) DNA methylation can modulate gene expression; (3) dysregulated gene expression is associated with various pathologies; and (4) DNA methylation patterns at this locus are associated with adverse lifetime experiences. All these observations suggest that DNA methylation at the clustered protocadherin genes, including PCDHGA3, is a key mediator of healthy aging.
Collapse
Affiliation(s)
- Sangkyu Kim
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Jennifer Wyckoff
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Anne-T Morris
- Virginia Commonwealth University, Mid-Atlantic Twin Registry, Richmond, VA, USA
| | | | - Ally Avery
- University of Washington Twin Registry, Seattle, WA, USA
- Washington State Twin Registry, Washington State University - Health Sciences Spokane, Spokane, WA, USA
| | - Glen E Duncan
- University of Washington Twin Registry, Seattle, WA, USA
- Washington State Twin Registry, Washington State University - Health Sciences Spokane, Spokane, WA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
14
|
Ortega A, Tarazón E, Gil-Cayuela C, Martínez-Dolz L, Lago F, González-Juanatey JR, Sandoval J, Portolés M, Roselló-Lletí E, Rivera M. ASB1 differential methylation in ischaemic cardiomyopathy: relationship with left ventricular performance in end-stage heart failure patients. ESC Heart Fail 2018; 5:732-737. [PMID: 29667349 PMCID: PMC6073036 DOI: 10.1002/ehf2.12289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 01/11/2018] [Accepted: 03/10/2018] [Indexed: 12/15/2022] Open
Abstract
Aims Ischaemic cardiomyopathy (ICM) leads to impaired contraction and ventricular dysfunction, causing high rates of morbidity and mortality. Epigenomics allows the identification of epigenetic signatures in human diseases. We analyse the differential epigenetic patterns of the ASB gene family in ICM patients and relate these alterations to their haemodynamic and functional status. Methods and results Epigenomic analysis was carried out using 16 left ventricular (LV) tissue samples, eight from ICM patients undergoing heart transplantation and eight from control (CNT) subjects without cardiac disease. We increased the sample size up to 13 ICM and 10 CNT for RNA sequencing and to 14 ICM for pyrosequencing analyses. We found a hypermethylated profile (cg11189868) in the ASB1 gene that showed a differential methylation of 0.26Δβ (P = 0.016). This result was validated by a pyrosequencing technique (0.23Δβ, P = 0.048). Notably, the methylation pattern was strongly related to LV ejection fraction (r = −0.849, P = 0.008), stroke volume (r = −0.929, P = 0.001), and end‐systolic and diastolic LV diameters (r = −0.743, P = 0.035 for both). ASB1 showed a down‐regulation in messenger RNA levels (−1.2‐fold, P = 0.039). Conclusions Our findings link a specific ASB1 methylation pattern to LV structure and performance in end‐stage ICM, opening new therapeutic opportunities and providing new insights regarding which is the functionally relevant genome in the ischaemic failing myocardium.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Estefanía Tarazón
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Sandoval
- Epigenomic Unit, Health Research Institute La Fe, Valencia, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| |
Collapse
|
15
|
Gil-Cayuela C, Ortega A, Tarazón E, Martínez-Dolz L, Cinca J, González-Juanatey JR, Lago F, Roselló-Lletí E, Rivera M, Portolés M. Myocardium of patients with dilated cardiomyopathy presents altered expression of genes involved in thyroid hormone biosynthesis. PLoS One 2018; 13:e0190987. [PMID: 29320567 PMCID: PMC5761948 DOI: 10.1371/journal.pone.0190987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
Background The association between dilated cardiomyopathy (DCM) and low thyroid hormone (TH) levels has been previously described. In these patients abnormal thyroid function is significantly related to impaired left ventricular (LV) function and increased risk of death. Although TH was originally thought to be produced exclusively by the thyroid gland, we recently reported TH biosynthesis in the human ischemic heart. Objectives Based on these findings, we evaluated whether the genes required for TH production are also altered in patients with DCM. Methods Twenty-three LV tissue samples were obtained from patients with DCM (n = 13) undergoing heart transplantation and control donors (n = 10), and used for RNA sequencing analysis. The number of LV DCM samples was increased to 23 to determine total T4 and T3 tissue levels by ELISA. Results We found that all components of TH biosynthesis are expressed in human dilated heart tissue. Expression of genes encoding thyroperoxidase (–2.57-fold, P < 0.05) and dual oxidase 2 (2.64-fold, P < 0.01), the main enzymatic system of TH production, was significantly altered in patients with DCM and significantly associated with LV remodeling parameters. Thyroxine (T4) cardiac tissue levels were significantly increased (P < 0.01), whilst triiodothyronine (T3) levels were significantly diminished (P < 0.05) in the patients. Conclusions Expression of TH biosynthesis machinery in the heart and total tissue levels of T4 and T3, are altered in patients with DCM. Given the relevance of TH in cardiac pathology, our results provide a basis for new gene-based therapeutic strategies for treating DCM.
Collapse
Affiliation(s)
- Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Ana Ortega
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Estefanía Tarazón
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Luis Martínez-Dolz
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, La Fe University Hospital, Valencia, Spain
| | - Juan Cinca
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - José Ramón González-Juanatey
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Francisca Lago
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- * E-mail: (MR); (MP); (ERL)
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- * E-mail: (MR); (MP); (ERL)
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- Members of the Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- * E-mail: (MR); (MP); (ERL)
| |
Collapse
|
16
|
Ortega A, Tarazón E, Gil-Cayuela C, García-Manzanares M, Martínez-Dolz L, Lago F, González-Juanatey JR, Cinca J, Jorge E, Portolés M, Roselló-Lletí E, Rivera M. Intercalated disc in failing hearts from patients with dilated cardiomyopathy: Its role in the depressed left ventricular function. PLoS One 2017; 12:e0185062. [PMID: 28934278 PMCID: PMC5608295 DOI: 10.1371/journal.pone.0185062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022] Open
Abstract
Alterations in myocardial structure and reduced cardiomyocyte adhesions have been previously described in dilated cardiomyopathy (DCM). We studied the transcriptome of cell adhesion molecules in these patients and their relationships with left ventricular (LV) function decay. We also visualized the intercalated disc (ID) structure and organization. The transcriptomic profile of 23 explanted LV samples was analyzed using RNA-sequencing (13 DCM, 10 control [CNT]), focusing on cell adhesion genes. Electron microscopy analysis to visualize ID structural differences and immunohistochemistry experiments of ID proteins was also performed. RT-qPCR and western blot experiments were carried out on ID components. We found 29 differentially expressed genes, most of all, constituents of the ID structure. We found that the expression of GJA3, DSP and CTNNA3 was directly associated with LV ejection fraction (r = 0.741, P = 0.004; r = 0.674, P = 0.011 and r = 0.565, P = 0.044, respectively), LV systolic (P = 0.003, P = 0.003, P = 0.028, respectively) and diastolic dimensions (P = 0.006, P = 0.001, P = 0.025, respectively). Electron microscopy micrographs showed a reduced ID convolution index and immunogold labeling of connexin 46 (GJA gene), desmoplakin (DSP gene) and catenin α-3 (CTNNA3 gene) proteins in DCM patients. Moreover, we observed that protein and mRNA levels analyzed by RT-qPCR of these ID components were diminished in DCM group. In conclusion, we report significant gene and protein expression changes and found that the ID components GJA3, DSP and CTNNA3 were highly related to LV function. Microscopic observations indicated that ID is structurally compromised in these patients. These findings give new data for understanding the ventricular depression that characterizes DCM, opening new therapeutic perspectives for these critically diseased patients.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Estefanía Tarazón
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - María García-Manzanares
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Luis Martínez-Dolz
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Francisca Lago
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Cinca
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Esther Jorge
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
Thyroid hormone biosynthesis machinery is altered in the ischemic myocardium: An epigenomic study. Int J Cardiol 2017; 243:27-33. [DOI: 10.1016/j.ijcard.2017.05.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022]
|