1
|
Patriat R, Palnitkar T, Chandrasekaran J, Sretavan K, Braun H, Yacoub E, McGovern RA, Aman J, Cooper SE, Vitek JL, Harel N. DiMANI: diffusion MRI for anatomical nuclei imaging-Application for the direct visualization of thalamic subnuclei. Front Hum Neurosci 2024; 18:1324710. [PMID: 38439939 PMCID: PMC10910100 DOI: 10.3389/fnhum.2024.1324710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
The thalamus is a centrally located and heterogeneous brain structure that plays a critical role in various sensory, motor, and cognitive processes. However, visualizing the individual subnuclei of the thalamus using conventional MRI techniques is challenging. This difficulty has posed obstacles in targeting specific subnuclei for clinical interventions such as deep brain stimulation (DBS). In this paper, we present DiMANI, a novel method for directly visualizing the thalamic subnuclei using diffusion MRI (dMRI). The DiMANI contrast is computed by averaging, voxelwise, diffusion-weighted volumes enabling the direct distinction of thalamic subnuclei in individuals. We evaluated the reproducibility of DiMANI through multiple approaches. First, we utilized a unique dataset comprising 8 scans of a single participant collected over a 3-year period. Secondly, we quantitatively assessed manual segmentations of thalamic subnuclei for both intra-rater and inter-rater reliability. Thirdly, we qualitatively correlated DiMANI imaging data from several patients with Essential Tremor with the localization of implanted DBS electrodes and clinical observations. Lastly, we demonstrated that DiMANI can provide similar features at 3T and 7T MRI, using varying numbers of diffusion directions. Our results establish that DiMANI is a reproducible and clinically relevant method to directly visualize thalamic subnuclei. This has significant implications for the development of new DBS targets and the optimization of DBS therapy.
Collapse
Affiliation(s)
- Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Tara Palnitkar
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Jayashree Chandrasekaran
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Karianne Sretavan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Henry Braun
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Robert A. McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Scott E. Cooper
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Fanty L, Yu J, Chen N, Fletcher D, Hey G, Okun M, Wong J. The current state, challenges, and future directions of deep brain stimulation for obsessive compulsive disorder. Expert Rev Med Devices 2023; 20:829-842. [PMID: 37642374 DOI: 10.1080/17434440.2023.2252732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is clinically and pathologically heterogenous, with symptoms often refractory to first-line treatments. Deep brain stimulation (DBS) for the treatment of refractory OCD provides an opportunity to adjust and individualize neuromodulation targeting aberrant circuitry underlying OCD. The tailoring of DBS therapy may allow precision in symptom control based on patient-specific pathology. Progress has been made in understanding the potential targets for DBS intervention; however, a consensus on an optimal target has not been agreed upon. AREAS COVERED A literature review of DBS for OCD was performed by querying the PubMed database. The following topics were covered: the evolution of DBS targeting in OCD, the concept of an underlying unified connectomic network, current DBS targets, challenges facing the field, and future directions which could advance personalized DBS in this challenging population. EXPERT OPINION To continue the increasing efficacy of DBS for OCD, we must further explore the optimal DBS response across clinical profiles and neuropsychiatric domains of OCD as well as how interventions targeting multiple points in an aberrant circuit, multiple aberrant circuits, or a connectivity hub impact clinical response. Additionally, biomarkers would be invaluable in programming adjustments and creating a closed-loop paradigm to address symptom fluctuation in daily life.
Collapse
Affiliation(s)
- Lauren Fanty
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Jun Yu
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Nita Chen
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Drew Fletcher
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Grace Hey
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Michael Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Josh Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
3
|
Vega-Zelaya L, Pastor J. The Network Systems Underlying Emotions: The Rational Foundation of Deep Brain Stimulation Psychosurgery. Brain Sci 2023; 13:943. [PMID: 37371421 PMCID: PMC10296681 DOI: 10.3390/brainsci13060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Science and philosophy have tried to understand the origin of emotions for centuries. However, only in the last 150 years have we started to try to understand them in a neuroscientific scope. Emotions include physiological changes involving different systems, such as the endocrine or the musculoskeletal, but they also cause a conscious experience of those changes that are embedded in memory. In addition to the cortico-striato-thalamo-cortical circuit, which is the most important of the basal ganglia, the limbic system and prefrontal circuit are primarily involved in the process of emotion perceptions, thoughts, and memories. The purpose of this review is to describe the anatomy and physiology of the different brain structures involved in circuits that underlie emotions and behaviour, underlying the symptoms of certain psychiatric pathologies. These circuits are targeted during deep brain stimulation (DBS) and knowledge of them is mandatory to understand the clinical-physiological implications for the treatment. We summarize the main outcomes of DBS treatment in several psychiatric illness such as obsessive compulsive disorder, refractory depression, erethism and other conditions, aiming to understand the rationale for selecting these neural systems as targets for DBS.
Collapse
Affiliation(s)
| | - Jesús Pastor
- Clinical Neurophysiology, Instituto de Investigación Biomédica Hospital, Universitario de La Princesa, C/Diego de León 62, 28006 Madrid, Spain;
| |
Collapse
|
4
|
Wong JK, Mayberg HS, Wang DD, Richardson RM, Halpern CH, Krinke L, Arlotti M, Rossi L, Priori A, Marceglia S, Gilron R, Cavanagh JF, Judy JW, Miocinovic S, Devergnas AD, Sillitoe RV, Cernera S, Oehrn CR, Gunduz A, Goodman WK, Petersen EA, Bronte-Stewart H, Raike RS, Malekmohammadi M, Greene D, Heiden P, Tan H, Volkmann J, Voon V, Li L, Sah P, Coyne T, Silburn PA, Kubu CS, Wexler A, Chandler J, Provenza NR, Heilbronner SR, Luciano MS, Rozell CJ, Fox MD, de Hemptinne C, Henderson JM, Sheth SA, Okun MS. Proceedings of the 10th annual deep brain stimulation think tank: Advances in cutting edge technologies, artificial intelligence, neuromodulation, neuroethics, interventional psychiatry, and women in neuromodulation. Front Hum Neurosci 2023; 16:1084782. [PMID: 36819295 PMCID: PMC9933515 DOI: 10.3389/fnhum.2022.1084782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023] Open
Abstract
The deep brain stimulation (DBS) Think Tank X was held on August 17-19, 2022 in Orlando FL. The session organizers and moderators were all women with the theme women in neuromodulation. Dr. Helen Mayberg from Mt. Sinai, NY was the keynote speaker. She discussed milestones and her experiences in developing depression DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers and researchers (from industry and academia) can freely discuss current and emerging DBS technologies as well as the logistical and ethical issues facing the field. The consensus among the DBS Think Tank X speakers was that DBS has continued to expand in scope however several indications have reached the "trough of disillusionment." DBS for depression was considered as "re-emerging" and approaching a slope of enlightenment. DBS for depression will soon re-enter clinical trials. The group estimated that globally more than 244,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: neuromodulation in Europe, Asia, and Australia; cutting-edge technologies, closed loop DBS, DBS tele-health, neuroethics, lesion therapy, interventional psychiatry, and adaptive DBS.
Collapse
Affiliation(s)
- Joshua K. Wong
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Helen S. Mayberg
- Department of Neurology, Neurosurgery, Psychiatry, and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Doris D. Wang
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Casey H. Halpern
- Richards Medical Research Laboratories, Department of Neurosurgery, Perelman School of Medicine, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, United States
| | - Lothar Krinke
- Newronika, Goose Creek, SC, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | | | | | | | | | | | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jack W. Judy
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Svjetlana Miocinovic
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Annaelle D. Devergnas
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Stephanie Cernera
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Carina R. Oehrn
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Wayne K. Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Erika A. Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Robert S. Raike
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | | | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Pankaj Sah
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Terry Coyne
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Peter A. Silburn
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Cynthia S. Kubu
- Department of Neurology, Cleveland Clinic, Cleveland, OH, United States
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Chandler
- Centre for Health Law, Policy, and Ethics, Faculty of Law, University of Ottawa, Ottawa, ON, Canada
| | - Nicole R. Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Marta San Luciano
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Coralie de Hemptinne
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jaimie M. Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Michael S. Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Cruz S, Gutiérrez-Rojas L, González-Domenech P, Díaz-Atienza F, Martínez-Ortega JM, Jiménez-Fernández S. Deep brain stimulation in obsessive-compulsive disorder: Results from meta-analysis. Psychiatry Res 2022; 317:114869. [PMID: 36240634 DOI: 10.1016/j.psychres.2022.114869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023]
Abstract
The aim of this work is to investigate the effectiveness of Deep Brain Stimulation (DBS) in patients with severe Obsessive Compulsive Disorder (OCD) who are resistant to pharmacological treatments, focusing on obsessive compulsive, depressive and anxiety symptoms as well as global function. A systematic review and meta-analysis including 25 studies (without language restrictions) from between 2003 and 2020 was performed. A total of 303 patients were evaluated twice (before and after DBS). After DBS treatment OCD patients with resistance to pharmacological treatments showed a significant improvement of obsessive-compulsive symptoms (25 studies; SMD=2.39; 95% CI, 1.91 to 2.87; P<0.0001), depression (9 studies; SMD= 1.19; 95%CI, 0.84 to 1.54; P<0.0001), anxiety (5 studies; SMD=1.00; 95%CI, 0.32 to 1.69; P=0.004) and functionality (7 studies; SMD=-3.51; 95%CI, -5.00 to -2.02; P=0.005) measured by the standardized scales: Yale Brown Obsessive Compulsive Scale (YBOCS), Hamilton Depression Rating Scale (HAM-D), Hamilton Anxiety Rating Scale (HAM-A) and Global Assessment of Function (GAF). Publication bias were discarded by using funnel plot. The main conclusions of this meta-analysis highlight the statistically significant effectiveness of DBS in patients with severe OCD who are resistant to conventional pharmacological treatments, underlying its role in global functioning apart from obsessive-compulsive symptoms.
Collapse
Affiliation(s)
- Sheila Cruz
- Child and Adolescent Mental Health Service, Jaén University Hospital Complex, Jaén, Spain
| | - Luis Gutiérrez-Rojas
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain; Psychiatry Service, Hospital San Cecilio, Granada, Spain.
| | | | - Francisco Díaz-Atienza
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain; Child and Adolescent Mental Health Service, Granada Virgen de las Nieves University Hospital, Granada, Spain
| | - José M Martínez-Ortega
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | - Sara Jiménez-Fernández
- Child and Adolescent Mental Health Service, Jaén University Hospital Complex, Jaén, Spain; Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Gadot R, Najera R, Hirani S, Anand A, Storch E, Goodman WK, Shofty B, Sheth SA. Efficacy of deep brain stimulation for treatment-resistant obsessive-compulsive disorder: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328738. [PMID: 36127157 DOI: 10.1136/jnnp-2021-328738] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/22/2022] [Indexed: 11/03/2022]
Abstract
Deep brain stimulation (DBS) is an established and growing intervention for treatment-resistant obsessive-compulsive disorder (TROCD). We assessed current evidence on the efficacy of DBS in alleviating OCD and comorbid depressive symptoms including newly available evidence from recent trials and a deeper risk of bias analysis than previously available. PubMed and EMBASE databases were systematically queried using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. We included studies reporting primary data on multiple patients who received DBS therapy with outcomes reported through the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Primary effect measures included Y-BOCS mean difference and per cent reduction as well as responder rate (≥35% Y-BOCS reduction) at last follow-up. Secondary effect measures included standardised depression scale reduction. Risk of bias assessments were performed on randomised controlled (RCTs) and non-randomised trials. Thirty-four studies from 2005 to 2021, 9 RCTs (n=97) and 25 non-RCTs (n=255), were included in systematic review and meta-analysis based on available outcome data. A random-effects model indicated a meta-analytical average 14.3 point or 47% reduction (p<0.01) in Y-BOCS scores without significant difference between RCTs and non-RCTs. At last follow-up, 66% of patients were full responders to DBS therapy. Sensitivity analyses indicated a low likelihood of small study effect bias in reported outcomes. Secondary analysis revealed a 1 standardised effect size (Hedges' g) reduction in depressive scale symptoms. Both RCTs and non-RCTs were determined to have a predominantly low risk of bias. A strong evidence base supports DBS for TROCD in relieving both OCD and comorbid depression symptoms in appropriately selected patients.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ricardo Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Samad Hirani
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Eric Storch
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Wayne K Goodman
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Zarkali A, McColgan P, Leyland LA, Lees AJ, Weil RS. Longitudinal thalamic white and grey matter changes associated with visual hallucinations in Parkinson's disease. J Neurol Neurosurg Psychiatry 2022; 93:169-179. [PMID: 34583941 PMCID: PMC8785065 DOI: 10.1136/jnnp-2021-326630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Visual hallucinations are common in Parkinson's disease (PD) and associated with worse outcomes. Large-scale network imbalance is seen in PD-associated hallucinations, but mechanisms remain unclear. As the thalamus is critical in controlling cortical networks, structural thalamic changes could underlie network dysfunction in PD hallucinations. METHODS We used whole-brain fixel-based analysis and cortical thickness measures to examine longitudinal white and grey matter changes in 76 patients with PD (15 hallucinators, 61 non-hallucinators) and 26 controls at baseline, and after 18 months. We compared white matter and cortical thickness, adjusting for age, gender, time-between-scans and intracranial volume. To assess thalamic changes, we extracted volumes for 50 thalamic subnuclei (25 each hemisphere) and mean fibre cross-section (FC) for white matter tracts originating in each subnucleus and examined longitudinal change in PD-hallucinators versus non-hallucinators. RESULTS PD hallucinators showed white matter changes within the corpus callosum at baseline and extensive posterior tract involvement over time. Less extensive cortical thickness changes were only seen after follow-up. White matter connections from the right medial mediodorsal magnocellular thalamic nucleus showed reduced FC in PD hallucinators at baseline followed by volume reductions longitudinally. After follow-up, almost all thalamic subnuclei showed tract losses in PD hallucinators compared with non-hallucinators. INTERPRETATION PD hallucinators show white matter loss particularly in posterior connections and in thalamic nuclei, over time with relatively preserved cortical thickness. The right medial mediodorsal thalamic nucleus shows both connectivity and volume loss in PD hallucinations. Our findings provide mechanistic insights into the drivers of network imbalance in PD hallucinations and potential therapeutic targets.
Collapse
Affiliation(s)
| | - Peter McColgan
- Huntington's Disease Centre, UCL Institute of Neurology, London, UK
| | | | | | - Rimona Sharon Weil
- Dementia Research Centre, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Movement Disorders Consortium, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
8
|
Naesström M, Johansson J, Hariz M, Bodlund O, Wårdell K, Blomstedt P. Distribution of electric field in patients with obsessive compulsive disorder treated with deep brain stimulation of the bed nucleus of stria terminalis. Acta Neurochir (Wien) 2022; 164:193-202. [PMID: 34652518 PMCID: PMC8761125 DOI: 10.1007/s00701-021-04991-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Background Deep brain stimulation (DBS) is being investigated as a treatment for therapy-refractory obsessive compulsive disorder (OCD). Many different brain targets are being trialled. Several of these targets such as the ventral striatum (including the nucleus accumbens (NAc)), the ventral capsule, the inferior thalamic peduncle, and the bed nucleus of stria terminalis (BNST)) belong to the same network, are anatomically very close to one another, or even overlap. Data is still missing on how various stimulation parameters in a given target will affect surrounding anatomical areas and impact the clinical outcome of DBS. Methods In a pilot study of eleven participants with DBS of the BNST, we investigate through patient-specific simulation of electric field, which anatomical areas are affected by the electric field, and if this can be related to the clinical results. Our study combined individual patient’s stimulation parameters at 12- and 24-month follow-up with image data from the preoperative MRI and postoperative CT. These data were used to calculate the distribution of electric field and create individual anatomical models of the field of stimulation. Results The individual electric stimulation fields by stimulation in the BNST were similar at both the 12- and 24-month follow-up, involving mainly anterior limb of the internal capsule (ALIC), genu of the internal capsule (IC), BNST, fornix, anteromedial globus pallidus externa (GPe), and the anterior commissure. A statistical significant correlation (p < 0.05) between clinical effect measured by the Yale-Brown Obsessive Compulsive Scale and stimulation was found at the 12-month follow-up in the ventral ALIC and anteromedial GPe. Conclusions Many of the targets under investigation for OCD are in anatomical proximity. As seen in our study, off-target effects are overlapping. Therefore, DBS in the region of ALIC, NAc, and BNST may perhaps be considered to be stimulation of the same target.
Collapse
Affiliation(s)
- Matilda Naesström
- Division of Psychiatry, Department of Clinical Sciences, Umeå University, 90187, Umeå, Sweden.
| | - Johannes Johansson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Marwan Hariz
- Unit of Deep Brain Stimulation, Department of Clinical Sciences, Umeå University, Umeå, Sweden
- Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Owe Bodlund
- Division of Psychiatry, Department of Clinical Sciences, Umeå University, 90187, Umeå, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Patric Blomstedt
- Unit of Deep Brain Stimulation, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Mar-Barrutia L, Real E, Segalás C, Bertolín S, Menchón JM, Alonso P. Deep brain stimulation for obsessive-compulsive disorder: A systematic review of worldwide experience after 20 years. World J Psychiatry 2021; 11:659-680. [PMID: 34631467 PMCID: PMC8474989 DOI: 10.5498/wjp.v11.i9.659] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Twenty years after its first use in a patient with obsessive-compulsive disorder (OCD), the results confirm that deep brain stimulation (DBS) is a promising therapy for patients with severe and resistant forms of the disorder. Nevertheless, many unknowns remain, including the optimal anatomical targets, the best stimulation parameters, the long-term (LT) effects of the therapy, and the clinical or biological factors associated with response. This systematic review of the articles published to date on DBS for OCD assesses the short and LT efficacy of the therapy and seeks to identify predictors of response.
AIM To summarize the existing knowledge on the efficacy and tolerability of DBS in treatment-resistant OCD.
METHODS A comprehensive search was conducted in the PubMed, Cochrane, Scopus, and ClinicalTrials.gov databases from inception to December 31, 2020, using the following strategy: “(Obsessive-compulsive disorder OR OCD) AND (deep brain stimulation OR DBS).” Clinical trials and observational studies published in English and evaluating the effectiveness of DBS for OCD in humans were included and screened for relevant information using a standardized collection tool. The inclusion criteria were as follows: a main diagnosis of OCD, DBS conducted for therapeutic purposes and variation in symptoms of OCD measured by the Yale-Brown Obsessive-Compulsive scale (Y-BOCS) as primary outcome. Data were analyzed with descriptive statistics.
RESULTS Forty articles identified by the search strategy met the eligibility criteria. Applying a follow-up threshold of 36 mo, 29 studies (with 230 patients) provided information on short-term (ST) response to DBS in, while 11 (with 155 patients) reported results on LT response. Mean follow-up period was 18.5 ± 8.0 mo for the ST studies and 63.7 ± 20.7 mo for the LT studies. Overall, the percentage of reduction in Y-BOCS scores was similar in ST (47.4%) and LT responses (47.2%) to DBS, but more patients in the LT reports met the criteria for response (defined as a reduction in Y-BOCS scores > 35%: ST, 60.6% vs LT, 70.7%). According to the results, the response in the first year predicts the extent to which an OCD patient will benefit from DBS, since the maximum symptom reduction was achieved in most responders in the first 12-14 mo after implantation. Reports indicate a consistent tendency for this early improvement to be maintained to the mid-term for most patients; but it is still controversial whether this improvement persists, increases or decreases in the long term. Three different patterns of LT response emerged from the analysis: 49.5% of patients had good and sustained response to DBS, 26.6% were non responders, and 22.5% were partial responders, who might improve at some point but experience relapses during follow-up. A significant improvement in depressive symptoms and global functionality was observed in most studies, usually (although not always) in parallel with an improvement in obsessive symptoms. Most adverse effects of DBS were mild and transient and improved after adjusting stimulation parameters; however, some severe adverse events including intracranial hemorrhages and infections were also described. Hypomania was the most frequently reported psychiatric side effect. The relationship between DBS and suicide risk is still controversial and requires further study. Finally, to date, no clear clinical or biological predictors of response can be established, probably because of the differences between studies in terms of the neuroanatomical targets and stimulation protocols assessed.
CONCLUSION The present review confirms that DBS is a promising therapy for patients with severe resistant OCD, providing both ST and LT evidence of efficacy.
Collapse
Affiliation(s)
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Cinto Segalás
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| |
Collapse
|
10
|
Georgiev D, Akram H, Jahanshahi M. Deep brain stimulation for psychiatric disorders: role of imaging in identifying/confirming DBS targets, predicting, and optimizing outcome and unravelling mechanisms of action. PSYCHORADIOLOGY 2021; 1:118-151. [PMID: 38665808 PMCID: PMC10917192 DOI: 10.1093/psyrad/kkab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 04/28/2024]
Abstract
Following the established application of deep brain stimulation (DBS) in the treatment of movement disorders, new non-neurological indications have emerged, such as for obsessive-compulsive disorders, major depressive disorder, dementia, Gilles de la Tourette Syndrome, anorexia nervosa, and addictions. As DBS is a network modulation surgical treatment, the development of DBS for both neurological and psychiatric disorders has been partly driven by advances in neuroimaging, which has helped explain the brain networks implicated. Advances in magnetic resonance imaging connectivity and electrophysiology have led to the development of the concept of modulating widely distributed, complex brain networks. Moreover, the increasing number of targets for treating psychiatric disorders have indicated that there may be a convergence of the effect of stimulating different targets for the same disorder, and the effect of stimulating the same target for different disorders. The aim of this paper is to review the imaging studies of DBS for psychiatric disorders. Imaging, and particularly connectivity analysis, offers exceptional opportunities to better understand and even predict the clinical outcomes of DBS, especially where there is a lack of objective biomarkers that are essential to properly guide DBS pre- and post-operatively. In future, imaging might also prove useful to individualize DBS treatment. Finally, one of the most important aspects of imaging in DBS is that it allows us to better understand the brain through observing the changes of the functional connectome under neuromodulation, which may in turn help explain the mechanisms of action of DBS that remain elusive.
Collapse
Affiliation(s)
- Dejan Georgiev
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
- Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
11
|
Acevedo N, Bosanac P, Pikoos T, Rossell S, Castle D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci 2021; 11:brainsci11070948. [PMID: 34356182 PMCID: PMC8307974 DOI: 10.3390/brainsci11070948] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023] Open
Abstract
Invasive and noninvasive neurostimulation therapies for obsessive-compulsive and related disorders (OCRD) were systematically reviewed with the aim of assessing clinical characteristics, methodologies, neuroanatomical substrates, and varied stimulation parameters. Previous reviews have focused on a narrow scope, statistical rather than clinical significance, grouped together heterogenous protocols, and proposed inconclusive outcomes and directions. Herein, a comprehensive and transdiagnostic evaluation of all clinically relevant determinants is presented with translational clinical recommendations and novel response rates. Electroconvulsive therapy (ECT) studies were limited in number and quality but demonstrated greater efficacy than previously identified. Targeting the pre-SMA/SMA is recommended for transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). TMS yielded superior outcomes, although polarity findings were conflicting, and refinement of frontal/cognitive control protocols may optimize outcomes. For both techniques, standardization of polarity, more treatment sessions (>20), and targeting multiple structures are encouraged. A deep brain stimulation (DBS) 'sweet spot' of the striatum for OCD was proposed, and CBT is strongly encouraged. Tourette's patients showed less variance and reliance on treatment optimization. Several DBS targets achieved consistent, rapid, and sustained clinical response. Analysis of fiber connectivity, as opposed to precise neural regions, should be implemented for target selection. Standardization of protocols is necessary to achieve translational outcomes.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- Correspondence:
| | - Peter Bosanac
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toni Pikoos
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
| | - David Castle
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Addiction and Mental Health, 252 College Street, Toronto, ON M5T 1R7, Canada
| |
Collapse
|
12
|
Pinckard-Dover H, Ward H, Foote KD. The Decline of Deep Brain Stimulation for Obsessive-Compulsive Disorder Following FDA Humanitarian Device Exemption Approval. Front Surg 2021; 8:642503. [PMID: 33777998 PMCID: PMC7994854 DOI: 10.3389/fsurg.2021.642503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: In February 2009, the US Food and Drug Administration (FDA) granted Humanitarian Device Exemption (HDE) for deep brain stimulation (DBS) in the anterior limb of the internal capsule (ALIC) for the treatment of severely debilitating, treatment refractory obsessive–compulsive disorder (OCD). Despite its promise as a life altering treatment for patients with otherwise refractory, severely debilitating OCD, the use of DBS for the treatment of OCD has diminished since the FDA HDE endorsement and is now rarely performed even at busy referral centers. We sought to identify factors hindering OCD patients from receiving DBS therapy. Materials and Methods: University of Florida (UF) clinical research databases were queried to identify patients evaluated as potential candidates for OCD DBS from January 1, 2002 to July 30, 2020. A retrospective review of these patients' medical records was performed to obtain demographic information, data related to their OCD, and details relevant to payment such as third-party payer, study participation, evaluation prior to or after HDE approval, and any stated factors prohibiting surgical intervention. Results: Out of 25 patients with severe OCD identified as candidates for DBS surgery during the past 18 years, 15 underwent surgery. Prior to FDA HDE approval, 6 out of 7 identified candidates were treated. After the HDE, only 9 out of 18 identified candidates were treated. Seven of the 9 were funded by Medicare, 1 paid out of pocket, and 1 had “pre-authorization” from her private insurer who ultimately refused to pay after the procedure. Among the 10 identified OCD DBS candidates who were ultimately not treated, 7 patients—all with private health insurance—were approved for surgery by the interdisciplinary team but were unable to proceed with surgery due to lack of insurance coverage, 1 decided against surgical intervention, 1 was excluded due to medical comorbidities and excessive perceived surgical risk, and no clear reason was identified for 1 patient evaluated in 2004 during our initial NIH OCD DBS trial. Conclusion: Based on compelling evidence that DBS provides substantial improvement of OCD symptoms and markedly improved functional capacity in 2 out of 3 patients with severely debilitating, treatment refractory OCD, the FDA approved this procedure under a Humanitarian Device Exemption in 2009, offering new hope to this unfortunate patient population. A careful review of our experience with OCD DBS at the University of Florida shows that since the HDE approval, only 50% of the severe OCD patients (9 of 18) identified as candidates for this potentially life altering treatment have been able to access the therapy. We found the most common limiting factor to be failure of private insurance policies to cover DBS for OCD, despite readily covering DBS for Parkinson's disease, essential tremor, and even dystonia—another HDE approved indication for DBS. We have identified an inherent discrimination in the US healthcare system against patients with medication-refractory OCD who are economically challenged and do not qualify for Medicare. We urge policy makers, insurance companies, and hospital administrations to recognize this health care disparity and seek to rectify it.
Collapse
Affiliation(s)
- Heather Pinckard-Dover
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Herbert Ward
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States.,Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| |
Collapse
|
13
|
van der Vlis TAMB, Ackermans L, Mulders AEP, Vrij CA, Schruers K, Temel Y, Duits A, Leentjens AFG. Ventral Capsule/Ventral Striatum Stimulation in Obsessive-Compulsive Disorder: Toward a Unified Connectomic Target for Deep Brain Stimulation? Neuromodulation 2020; 24:316-323. [PMID: 33368876 PMCID: PMC7986682 DOI: 10.1111/ner.13339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Introduction Obsessive‐compulsive disorder (OCD) is among the most disabling chronic psychiatric disorders and has a significant negative impact on multiple domains of quality of life. Deep brain stimulation (DBS) is a treatment option for severe therapy‐resistant OCD. Objective To provide a detailed clinical description and treatment outcome analysis in a cohort of eight refractory OCD patients receiving ventral capsule/ventral striatum (VC/VS) stimulation with the intention to validate discriminating fiber bundles previously associated with clinical response. Materials and Methods The primary outcome measure (the Yale‐Brown Obsessive Compulsive Scale [Y‐BOCS]) and secondary outcomes depressive symptoms, anxiety, and quality of life were retrospectively analyzed. DBS leads were warped into standard stereotactic space. A normative connectome was used to identify the neural network associated with clinical outcome. Results With a median stimulation duration of 26 months, patients exhibited a mean Y‐BOCS reduction of 10.5 resulting in a response rate of 63%. Modulation of a fiber bundle traversing the anterior limb of the internal capsule (ALIC) was associated with Y‐BOCS reduction. This fiber bundle connected the frontal regions to the subthalamic nucleus (STN) and was functionally identified as the hyperdirect pathway of the basal ganglia circuitry. Conclusion Our findings show that in VC/VS stimulation, the neural network associated with clinical outcome shows overlap with that of previously described for other targets namely the anterior limb of the internal capsula, the nucleus accumbens, or the STN, which supports the evolvement from the concept of an optimal gray matter target to conceiving the target as part of a symptom modulating network.
Collapse
Affiliation(s)
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anne E P Mulders
- Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Casper A Vrij
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Koen Schruers
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Annelien Duits
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Albert F G Leentjens
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
14
|
Winter L, Saryyeva A, Schwabe K, Heissler HE, Runge J, Alam M, Heitland I, Kahl KG, Krauss JK. Long-Term Deep Brain Stimulation in Treatment-Resistant Obsessive-Compulsive Disorder: Outcome and Quality of Life at Four to Eight Years Follow-Up. Neuromodulation 2020; 24:324-330. [PMID: 32667114 DOI: 10.1111/ner.13232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a severe disabling disease, and around 10% of patients are considered to be treatment-resistant (tr) in spite of guideline-based therapy. Deep brain stimulation (DBS) has been proposed as a promising treatment for patients with trOCD. However, the optimal site for stimulation is still a matter of debate, and clinical long-term follow-up observations including data on quality of life are sparse. We here present six trOCD patients who underwent DBS with electrodes placed in the bed nucleus of the stria terminalis/anterior limb of the internal capsule (BNST/ALIC), followed for four to eight years after lead implantation. MATERIALS AND METHODS In this prospective observational study, six patients (four men, two women) aged 32-51 years and suffering from severe to extreme trOCD underwent DBS of the BNST/ALIC. Symptom severity was assessed using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), and quality of life using the World Health Organization Quality of Life assessment scale (WHO-QoL BREF). Follow-up was obtained at least for four years in all patients. RESULTS With chronic DBS for four to eight years, four of the six patients had sustained improvement. Two patients remitted and two patients responded (defined as >35% symptom reduction), while the other two patients were considered nonresponders on long-term. Quality of life markedly improved in remitters and responders. We did not observe peri-interventional side effects or adverse effects of chronic stimulation. CONCLUSIONS Chronic DBS of ALIC provides long-term benefit up to four to eight years in trOCD, although not all patients take profit. Targeting the BNST was not particularly relevant since no patient appeared to benefit from direct stimulation of the BNST. Quality of life improved in DBS responders, documented by improved QoL scores and, even more important, by regaining of autonomy and improving psychosocial functioning.
Collapse
Affiliation(s)
- Lotta Winter
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hans E Heissler
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Ivo Heitland
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat Commun 2020; 11:3364. [PMID: 32620886 PMCID: PMC7335093 DOI: 10.1038/s41467-020-16734-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple surgical targets for treating obsessive-compulsive disorder with deep brain stimulation (DBS) have been proposed. However, different targets may modulate the same neural network responsible for clinical improvement. We analyzed data from four cohorts of patients (N = 50) that underwent DBS to the anterior limb of the internal capsule (ALIC), the nucleus accumbens or the subthalamic nucleus (STN). The same fiber bundle was associated with optimal clinical response in cohorts targeting either structure. This bundle connected frontal regions to the STN. When informing the tract target based on the first cohort, clinical improvements in the second could be significantly predicted, and vice versa. To further confirm results, clinical improvements in eight patients from a third center and six patients from a fourth center were significantly predicted based on their stimulation overlap with this tract. Our results show that connectivity-derived models may inform clinical improvements across DBS targets, surgeons and centers. The identified tract target is openly available in atlas form. Li et al. analyzed structural connectivity of deep brain stimulation electrodes in 50 patients suffering from obsessive-compulsive disorder operated at four centers. Connectivity to a specific tract within the anterior limb of the internal capsule was associated with optimal treatment response across cohorts, surgeons and centers.
Collapse
|
16
|
Raviv N, Staudt MD, Rock AK, MacDonell J, Slyer J, Pilitsis JG. A Systematic Review of Deep Brain Stimulation Targets for Obsessive Compulsive Disorder. Neurosurgery 2020; 87:1098-1110. [PMID: 32615588 DOI: 10.1093/neuros/nyaa249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a complex neuropsychiatric disease characterized by obsessions and compulsions. Deep brain stimulation (DBS) has demonstrated efficacy in improving symptoms in medically refractory patients. Multiple targets have been investigated. OBJECTIVE To systematically review the current level and quality of evidence supporting OCD-DBS by target region with the goal of establishing a common nomenclature. METHODS A systematic literature review was performed using the PubMed database and a patient/problem, intervention, comparison, outcome search with the terms "DBS" and "OCD." Of 86 eligible articles that underwent full-text review, 28 were included for review. Articles were excluded if the target was not specified, the focus on nonclinical outcomes, the follow-up period shorter than 3 mo, or the sample size smaller than 3 subjects. Level of evidence was assigned according to the American Association of Neurological Surgeons/Congress of Neurological Surgeons joint guideline committee recommendations. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS Selected publications included 9 randomized controlled trials, 1 cohort study, 1 case-control study, 1 cross-sectional study, and 16 case series. Striatal region targets such as the anterior limb of the internal capsule, ventral capsule/ventral striatum, and nucleus accumbens were identified, but stereotactic coordinates were similar despite differing structural names. Only 15 of 28 articles included coordinates. CONCLUSION The striatal area is the most commonly targeted region for OCD-DBS. We recommend a common nomenclature based on this review. To move the field forward to individualized therapy, active contact location relative to stereotactic coordinates and patient specific anatomical and clinical variances need to be reported.
Collapse
Affiliation(s)
- Nataly Raviv
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Michael D Staudt
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Andrew K Rock
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Jacquelyn MacDonell
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julia Slyer
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York.,Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| |
Collapse
|
17
|
Asami T, Yoshida H, Takaishi M, Nakamura R, Yoshimi A, Whitford TJ, Hirayasu Y. Thalamic shape and volume abnormalities in female patients with panic disorder. PLoS One 2018; 13:e0208152. [PMID: 30566534 PMCID: PMC6300210 DOI: 10.1371/journal.pone.0208152] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022] Open
Abstract
The thalamus is believed to play crucial role in processing viscero-sensory information, and regulating the activity of amygdala in patients with panic disorder (PD). Previous functional neuroimaging studies have detected abnormal activation in the thalamus in patients with PD compared with healthy control subjects (HC). Very few studies, however, have investigated for volumetric abnormalities in the thalamus in patients with PD. Furthermore, to the best of our knowledge, no previous study has investigated for shape abnormalities in the thalamus in patients with PD. Twenty-five patients with PD and 25 HC participants (all female) were recruited for the study. A voxel-wise volume comparison analysis and a vertex-wise shape analysis were conducted to evaluate structural abnormalities in the PD patients compared to HC. The patients with PD demonstrated significant gray matter volume reductions in the thalamus bilaterally, relative to the HC. The shape analysis detected significant inward deformation in some thalamic regions in the PD patients, including the anterior nucleus, mediodorsal nucleus, and pulvinar nucleus. PD patients showed shape deformations in key thalamic regions that are believed to play a role in regulating emotional and cognitive functions.
Collapse
Affiliation(s)
- Takeshi Asami
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Haruhisa Yoshida
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masao Takaishi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryota Nakamura
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Asuka Yoshimi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Thomas J. Whitford
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Heian Hospital, Urazoe, Japan
| |
Collapse
|
18
|
Yin D, Zhang C, Lv Q, Chen X, Zeljic K, Gong H, Zhan S, Jin H, Wang Z, Sun B. Dissociable Frontostriatal Connectivity: Mechanism and Predictor of the Clinical Efficacy of Capsulotomy in Obsessive-Compulsive Disorder. Biol Psychiatry 2018; 84:926-936. [PMID: 29778276 DOI: 10.1016/j.biopsych.2018.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Little is known about the neural mechanism and response variability underlying neurosurgical interventions for intractable obsessive-compulsive disorder (OCD). METHODS Of 81 OCD patients screened for capsulotomy identified in our institutional database, 36 patients with clinical assessment before and after capsulotomy and imaging data (9 of 36 patients without postoperative imaging data used as an independent test group), and 29 healthy control subjects were retrospectively recruited. Twenty of 36 patients (56%) responded to the lesion procedure (determined as a ≥35% reduction in Yale-Brown Obsessive Compulsive Scale [Y-BOCS] score). Seed-based (i.e., ventral and dorsal caudate, medial dorsal thalamus, and ventral and dorsal putamen) resting-state functional connectivity was used to examine alterations in frontostriatal circuitry after capsulotomy. RESULTS The Y-BOCS score significantly decreased (p < .001) after capsulotomy in OCD patients. Functional connectivity between the ventral striatum/nucleus accumbens and the dorsal anterior cingulate cortex was reduced (p < .05, corrected) after the surgical procedure. Moreover, change in connectivity significantly correlated with alteration in Y-BOCS score (r = .41, p = .033). In addition, preoperative connectivity between the dorsal caudate and the dorsal anterior cingulate cortex could differentiate nonresponders from responders and predict changes in Y-BOCS score (R2 = .23, F1,25 = 7.56, p = .011), which was generalized in an independent test group. CONCLUSIONS We demonstrated that restoration of ventral frontostriatal connectivity was associated with clinical improvement in refractory OCD, suggesting a therapeutic mechanism of capsulotomy. Moreover, preoperative variations in dorsal frontostriatal connectivity predicted clinical response, which may offer a predictor of treatment outcome.
Collapse
Affiliation(s)
- Dazhi Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - ChenCheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiming Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kristina Zeljic
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hengfen Gong
- Department of Psychiatry, Pudong District Mental Health Center, Shanghai, China
| | - Shikun Zhan
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Jin
- Department of Psychiatry, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Bomin Sun
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Borders C, Hsu F, Sweidan AJ, Matei ES, Bota RG. Deep brain stimulation for obsessive compulsive disorder: A review of results by anatomical target. Ment Illn 2018; 10:7900. [PMID: 30542526 PMCID: PMC6240923 DOI: 10.4081/mi.2018.7900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022] Open
Abstract
Studies suggest deep brain stimulation (DBS) as a treatment modality for the refractory obsessive-compulsive disorder (OCD). It is unclear where to place the DBS. Various sites are proposed for placement with the ventral capsule/ventral striatum (VC/VS) among the most studied. Herein, we aim to summarize both quantitative Yale-Brown Obsessive-Compulsive Scale (YBOCS) data and qualitative descriptions of the participants' symptoms when given. A literature search conducted via PubMed yielded 32 articles. We sought to apply a standard based on the utilization of YBOCS. This yielded 153 distinct patients. The outcome measure we focused on in this review is the latest YBOCS score reported for each patient/cohort in comparison to the location of the DBS. A total of 32 articles were found in the search results. In total, 153 distinct patients' results were reported in these studies. Across this collection of papers, a total of 9 anatomic structures were targeted. The majority of studies showed a better response at the last time point as compared to the first time point. Most patients had DBS at nucleus accumbens followed by VC/VS and the least patients had DBS at the bilateral superolateral branch of the median forebrain bundle and the bilateral basolateral amygdala. The average YBOCS improvement did not seem to directly correlate with the percentile of patients responding to the intervention. Well-controlled, randomized studies with larger sample sizes with close follow up are needed to provide a more accurate determination for placement of DBS for OCD.
Collapse
Affiliation(s)
| | - Frank Hsu
- University of California Irvine, Orange, CA, USA
| | | | | | | |
Collapse
|
20
|
Gault JM, Davis R, Cascella NG, Saks ER, Corripio-Collado I, Anderson WS, Olincy A, Thompson JA, Pomarol-Clotet E, Sawa A, Daskalakis ZJ, Lipsman N, Abosch A. Approaches to neuromodulation for schizophrenia. J Neurol Neurosurg Psychiatry 2018; 89:777-787. [PMID: 29242310 DOI: 10.1136/jnnp-2017-316946] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 11/03/2022]
Abstract
Based on the success of deep brain stimulation (DBS) for treating movement disorders, there is growing interest in using DBS to treat schizophrenia (SZ). We review the unmet needs of patients with SZ and the scientific rationale behind the DBS targets proposed in the literature in order to guide future development of DBS to treat this vulnerable patient population. SZ remains a devastating disorder despite treatment. Relapse, untreated psychosis, intolerable side effects and the lack of effective treatment for negative and cognitive symptoms contribute to poor outcome. Novel therapeutic interventions are needed to treat SZ and DBS is emerging as a potential intervention. Convergent genetic, pharmacological and neuroimaging evidence implicating neuropathology associated with psychosis is consistent with SZ being a circuit disorder amenable to striatal modulation with DBS. Many of the DBS targets proposed in the literature may modulate striatal dysregulation. Additional targets are considered for treating tardive dyskinesia and negative and cognitive symptoms. A need is identified for the concurrent development of neurophysiological biomarkers relevant to SZ pathology in order to inform DBS targeting. Finally, we discuss the current clinical trials of DBS for SZ, and their ethical considerations. We conclude that patients with severe symptoms despite treatment must have the capacity to consent for a DBS clinical trial in which risks can be estimated, but benefit is not known. In addition, psychiatric populations should have access to the potential benefits of neurosurgical advances.
Collapse
Affiliation(s)
- Judith M Gault
- Department of Neurosurgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Psychiatry, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Rachel Davis
- Department of Psychiatry, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Nicola G Cascella
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elyn R Saks
- University of Southern California Law School, Los Angeles, California, USA
| | - Iluminada Corripio-Collado
- Psychiatric Department, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edith Pomarol-Clotet
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Akira Sawa
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
21
|
Sharma M, Reeves K, Deogaonkar M, Rezai AR. Deep Brain Stimulation for Obsessive–Compulsive Disorder. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Najafi K, Fakour Y, Zarrabi H, Heidarzadeh A, Khalkhali M, Yeganeh T, Farahi H, Rostamkhani M, Najafi T, Shabafroz S, Pakdaman M. Efficacy of Transcranial Direct Current Stimulation in the Treatment: Resistant Patients who Suffer from Severe Obsessive-compulsive Disorder. Indian J Psychol Med 2017; 39:573-578. [PMID: 29200551 PMCID: PMC5688882 DOI: 10.4103/ijpsym.ijpsym_388_16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND During the past years, significant efforts have been made to explain the biological backgrounds of obsessive-compulsive disorder (OCD). Cortical-subcortical and neurotransmitter models are used for explaining the symptoms of OCD, so our hypothesis is that brain's transcranial direct current stimulation (TDCS) can regulate the brain activities of the OCD patients. Thus, based on the mentioned issues, this research seeks to investigate the efficacy of TDCS in treatment-resistant patients who suffer from severe OCD. MATERIALS AND METHODS The present study is a clinical trial research which was based on the available sampling method, 42 treatment-resistant patients who suffer from severe OCD were selected as research's samples (2015-2016). Medical intervention protocol in this study is TDCS cathode type that was done in 15 sessions for 3 consecutive weeks (each session was conducted for 30 min daily). Yale-Brown Obsessive-Compulsive Scale was used for evaluating the efficacy of TDCS method during the 1st, 5th, 10th, and 15th sessions and it was also used for checking the 1st and 3rd monthly follow-up phases. RESULTS Variance within-group analysis (repeated measure) showed that the mean differences in the different stages of evaluation are significant (seven stages of evaluation). CONCLUSION TDCS can be introduced as an appropriate, strong tool for regulating the brain - behavioral systems and it can also be introduced as a suitable alternative treatment for treatment-resistant patients who suffer from severe OCD.
Collapse
Affiliation(s)
- Kiomars Najafi
- Department of Psychiatry, Guilan University of Medical Sciences, Rasht, Iran
| | - Youssef Fakour
- Department of Psychiatry, Tehran University of Medical Sciences, Razi Hospital, Tehran, Iran
| | - Homa Zarrabi
- Department of Psychiatry, Guilan University of Medical Sciences, Rasht, Iran
| | - Abtin Heidarzadeh
- Department of Community Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Taiebeh Yeganeh
- Department of Clinical Psychology, Kharazmi University, Tehran, Iran
| | - Hasan Farahi
- Department of Psychiatry, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Tahereh Najafi
- Department of Computer Engineering, Islamic Azad University, Rasht, Iran
| | | | - Mahdiyeh Pakdaman
- Department of Clinical Psychology, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|