1
|
Dey M, Skipar P, Bartnik E, Piątkowski J, Sulejczak D, Czarnecka AM. MicroRNA signatures in osteosarcoma: diagnostic insights and therapeutic prospects. Mol Cell Biochem 2025; 480:2065-2075. [PMID: 39419925 PMCID: PMC11961547 DOI: 10.1007/s11010-024-05135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Osteosarcoma (OSa) is the most prevalent primary malignant bone tumor in children and adolescents, characterized by complex genetic and epigenetic alterations. Traditional treatments face significant challenges due to high rates of drug resistance and lack of targeted therapies. Recent advances in microRNA (miRNA) research have opened new avenues for understanding and treating osteosarcoma. This review explores the many critical functions of miRNAs in osteosarcoma, particularly their potential for clinical use. The review highlights two key areas where miRNAs could be beneficial. Firstly, miRNAs can act as biomarkers for diagnosing osteosarcoma and predicting patient prognosis. Secondly, specific miRNAs can regulate cellular processes like proliferation, cell death, migration, and even resistance to chemotherapy drugs in osteosarcoma. This ability to target multiple pathways within cancer cells makes miRNA-based therapies highly promising. Additionally, though the interaction between miRNAs and circular RNAs (circRNAs) falls outside the scope of the paper, it has also been discussed briefly. While miRNA-based therapies offer exciting possibilities for targeting multiple pathways in osteosarcoma, challenges remain. Efficient delivery, potential off-target effects, tumor complexity, and rigorous testing are hurdles to overcome before these therapies can reach patients. Despite these challenges, continued research and collaboration among scientists, clinicians, and regulatory bodies hold the promise of overcoming them. This collaborative effort can pave the way for the development of safe and effective miRNA-based treatments for osteosarcoma.
Collapse
Affiliation(s)
- Mritunjoy Dey
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Cancer Research Institute in Warsaw, 02-781, Warsaw, Poland.
| | - Palina Skipar
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Cancer Research Institute in Warsaw, 02-781, Warsaw, Poland
- Faculty of Medicine, Warsaw Medical University, 02-091, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Cancer Research Institute in Warsaw, 02-781, Warsaw, Poland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Chen H, Gong Z, Zhou H, Han Y. Deciphering chemoresistance in osteosarcoma: Unveiling regulatory mechanisms and function through the lens of noncoding RNA. Drug Dev Res 2024; 85:e22167. [PMID: 38444106 DOI: 10.1002/ddr.22167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor and is prevalent in children, adolescents, and elderly individuals. It has the characteristics of high invasion and metastasis. Neoadjuvant chemotherapy combined with surgical resection is the most commonly used treatment for OS. However, the efficacy of OS is considerably diminished by chemotherapy resistance. In recent years, noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are hot topics in the field of chemotherapy resistance research. Several studies have demonstrated that ncRNAs are substantially associated with chemoresistance in OS. Thus, the present study overviews the abnormally expressed ncRNAs in OS and the molecular mechanisms involved in chemoresistance, with an emphasis on their function in promoting or inhibiting chemoresistance. ncRNAs are expected to become potential therapeutic targets for overcoming drug resistance and predictive biomarkers in OS, which are of great significance for enhancing the therapeutic effect and improving the prognosis.
Collapse
Affiliation(s)
- Hefen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhujun Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
4
|
Comparison of Selected Non-Coding RNAs and Gene Expression Profiles between Common Osteosarcoma Cell Lines. Cancers (Basel) 2022; 14:cancers14184533. [PMID: 36139691 PMCID: PMC9496707 DOI: 10.3390/cancers14184533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Osteosarcoma (OS) is a malignant tumour affecting mainly children and elderly people. Despite significant advances in cancer medicine, osteosarcoma patients’ survival is not improving. The primary treatment methods are established using in vitro models that rely upon the application of well-established cell lines, including U-2 OS, Saos-2 and MG-63. The molecular phenotype of these cell lines is still not fully outlined. Therefore, our study aimed to establish the expression profile of molecular markers related to osteosarcoma survival, progression and metastasis. Non-bone-related cells were used as a reference, i.e. HeLa cell line and human adipose-derived stromal cells (hASCs). Evaluated osteosarcoma cell lines showed characteristic phenotypes with unique patterns related to upregulation of MMP-7, MMP-14, BMP-7, miR-21-5p, miR-124-3p and downregulation of lncRNA MEG3. Our findings may facilitate the selection of the most reliable cellular model for pre-clinical investigations focused on developing new and satisfying methods of osteosarcoma therapy. Abstract Osteosarcoma (OS) is a bone tumour affecting adolescents and elderly people. Unfortunately, basic treatment methods are still underdeveloped, which has a high impact on the poor survivability of the patients. Studies designed to understand the underlying mechanisms of osteosarcoma development, as well as preclinical investigations aimed at establishing novel therapeutic strategies, rely significantly upon in vitro models, which apply well-established cell lines such as U-2 OS, Saos-2 and MG-63. In this study, the expression of chosen markers associated with tumour progression, metastasis and survival were identified using RT-qPCR. Levels of several onco-miRs (miR-21-5p, miR-124-3p, miR-223-3p and miR-320a-3p) and long non-coding RNA MEG3 were established. The mRNA expression of bone morphogenetic proteins (BMPs), including BMP-2, BMP-3, BMP-4, BMP-6, BMP-7, as well as their receptors: BMPR-IA, BMPR-IB and BMPR-II was also determined. Other tested markers included metalloproteinases, i.e., MMP-7 and MMP-14 and survivin (BIRC5), C-MYC, as well as CYCLIN D (CCND1). The analysis included comparing obtained profiles with transcript levels established for the osteogenic HeLa cell line and human adipose-derived stromal cells (hASCs). The tested OS cell lines were characterised by a cancer-related phenotype, such as increased expression of mRNA for BMP-7, as well as MMP-7 and MMP-14. Osteosarcoma cells differ considerably in miR-21-5p and miR-124-3p levels, which can be related to uncontrolled tumour growth. The comprehensive examination of osteosarcoma transcriptome profiles may facilitate the selection of appropriate cell models for preclinical investigations aimed at the development of new strategies for OS treatment.
Collapse
|
5
|
Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front Oncol 2022; 12:960317. [PMID: 35965519 PMCID: PMC9372369 DOI: 10.3389/fonc.2022.960317] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy has historically been the mainstay of cancer treatment, but our understanding of what drives a successful therapeutic response remains limited. The diverse response of cancer patients to chemotherapy has been attributed principally to differences in the proliferation rate of the tumor cells, but there is actually very little experimental data supporting this hypothesis. Instead, other mechanisms at the cellular level and the composition of the tumor microenvironment appear to drive chemotherapy sensitivity. In particular, the immune system is a critical determinant of chemotherapy response with the depletion or knock-out of key immune cell populations or immunological mediators completely abrogating the benefits of chemotherapy in pre-clinical models. In this perspective, we review the literature regarding the known mechanisms of action of cytotoxic chemotherapy agents and the determinants of response to chemotherapy from the level of individual cells to the composition of the tumor microenvironment. We then summarize current work toward the development of dynamic biomarkers for response and propose a model for a chemotherapy sensitive tumor microenvironment.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Scott A. Fisher
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA, Australia
- *Correspondence: W. Joost Lesterhuis,
| |
Collapse
|
6
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
7
|
The Biological Function of MicroRNAs in Bone Tumors. Int J Mol Sci 2022; 23:ijms23042348. [PMID: 35216464 PMCID: PMC8876091 DOI: 10.3390/ijms23042348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Micro ribonucleic acids (miRNAs) are small endogenous noncoding RNAs molecules that regulate gene expression post-transcriptionally. A single miRNA is able to target hundreds of specific messenger RNA (mRNAs) by binding to the 3′-untranslated regions. miRNAs regulate different biological processes such as cell proliferation, differentiation and apoptosis. Altered miRNA expression is certainly related to the development of the most common human diseases, including tumors. Osteosarcoma (OS), Ewing’s Sarcoma (ES), and Chondrosarcoma (CS) are the most common primary bone tumors which affect mainly children and adolescents. A significant dysregulation of miRNA expression, in particular of mir-34, mir-21, mir-106, mir-143, and miR-100, has been revealed in OS, ES and CS. In this context, miRNAs can act as either tumor suppressor genes or oncogenes, contributing to the initiation and progression of bone tumors. The in-depth study of these small molecules can thus help to better understand their biological functions in bone tumors. Therefore, this review aims to examine the potential role of miRNAs in bone tumors, especially OS, ES and CS, and to suggest their possible use as potential therapeutic targets for the treatment of bone tumors and as biomarkers for early diagnosis.
Collapse
|
8
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Kamptner AZM, Mayer CE, Sutterlüty H. Sprouty3, but Not Sprouty1, Expression Is Beneficial for the Malignant Potential of Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms222111944. [PMID: 34769378 PMCID: PMC8585105 DOI: 10.3390/ijms222111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Sprouty proteins are widely accepted modulators of receptor tyrosine kinase-associated pathways and fulfill diversified roles in cancerogenesis dependent on the originating cells. In this study we detected a high expression of Sprouty3 in osteosarcoma-derived cells and addressed the question of whether Sprouty3 and Sprouty1 influence the malignant phenotype of this bone tumor entity. By using adenoviruses, the Sprouty proteins were expressed in two different cell lines and their influence on cellular behavior was assessed. Growth curve analyses and Scratch assays revealed that Sprouty3 accelerates cell proliferation and migration. Additionally, more colonies were grown in Soft agar if the cells express Sprouty3. In parallel, Sprouty1 had no significant effect on the measured endpoints of the study in osteosarcoma-derived cells. The promotion of the tumorigenic capacities in the presence of Sprouty3 coincided with an increased activation of signaling as measured by evaluating the phosphorylation of extracellular signal-regulated kinases (ERKs). Ectopic expression of a mutated Sprouty3 protein, in which the tyrosine necessary for its activation was substituted, resulted in inhibited migration of the treated cells. Our findings identify Sprouty3 as a candidate for a tumor promoter in osteosarcoma.
Collapse
|
10
|
Li LZ, Wu ZZ, Lv Z. The Clinical Significance of miR-21 in Guiding Chemotherapy for Patients with Osteosarcoma. Pharmgenomics Pers Med 2021; 14:1247-1261. [PMID: 34616172 PMCID: PMC8488037 DOI: 10.2147/pgpm.s321637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The present study aims to explore the correlation between osteosarcoma (OS) chemosensitivity and the expression levels of serum and tumor tissue micro-ribonucleic acid-21 (miR-21). Methods The relevant miR-21 expression levels in 30 patients with OS were detected, and the gender, age, tumor location, pathological type, Enneking stage, and miR-21 expression changes before and after chemotherapy were retrospectively analyzed. Results Serum and tumor tissue miR21 expression levels were significantly higher in patients with OS than in control subjects; the serum miR-21 expressions before and after chemotherapy were not related to patient age and gender. The effective chemotherapy group showed significant differences in miR-21 expression levels before and after chemotherapy. Conclusion Serum and tumor tissue miR-21 expression levels in patients with OS are closely related to the effects of chemotherapy, making miR-21 a potential biomarker and therapeutic target for the diagnosis and evaluation of chemotherapy effects on patients with OS.
Collapse
Affiliation(s)
- Li-Zhi Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Zhuang-Zhuang Wu
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Zhi Lv
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| |
Collapse
|
11
|
Rezaei H, Motovali-Bashi M, Khalilian S. Identification of Novel miRNAs in the F8 Gene Via Bioinformatics Tools. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2700. [PMID: 34435059 PMCID: PMC8358171 DOI: 10.30498/ijb.2021.2700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Hemophilia A is an X-linked bleeding disorder resulting in a deficiency of plasma clotting factor VIII and caused by mutations in the FVIII gene (F8 gene).
MicroRNAs (miRNAs) in body fluids are promising biomarker candidates for Hemophilia A, due to their stability in body fluids and accessibility by non- or minimally-invasive procedures.
Therefore; Advances in miRNA analysis methods resulted in a wide range of publications on miRNAs as putative biomarkers. Objective: Here we tried to scan the F8 gene region to predict a novel miRNA and identify it as a regulator of the F8 gene. Materials and Methods: To this aim, the ability to express novel miRNAs in F8 locus was assessed via reliable bioinformatics databases such as SSCprofiler, RNAfold, miREval, FOMmiR, MaturBayes,
miRFIND, UCSC genome browser, Deep Sequencing, and miRBase. Results: Data analysis from the relevant databases offers one stem-loop structure that is predicted to express a novel miRNA Conclusions: The diagnosis of Hemophilia A with the help of these types of biomarkers is a non-invasive procedure that has been demonstrated to have a significant role in the early diagnosis of the disease.
Hopefully, the proposed candidate sequence will be confirmed in vitro and become a non-invasive biomarker in the near future
Collapse
Affiliation(s)
- Halimeh Rezaei
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Majid Motovali-Bashi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| |
Collapse
|
12
|
Son J, Lee SY. Emetine exerts anticancer effects in U2OS human osteosarcoma cells via activation of p38 and inhibition of ERK, JNK, and β-catenin signaling pathways. J Biochem Mol Toxicol 2021; 35:e22868. [PMID: 34338395 DOI: 10.1002/jbt.22868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023]
Abstract
Osteosarcoma (OS) is a primary bone neoplasm that is highly malignant. As advances in chemotherapy for the treatment of OS have stagnated, discovery of new reagents is required. Emetine is a phytochemical which can be isolated from a medicinal herb Cephaelis ipecacuanha and is traditionally used for amoebicides. Previous studies have demonstrated that emetine can possibly be repositioned for use in anticancer reagents. However, any anticancer effects and underlying mechanisms of emetine on human OS are not yet well understood. In this study, we analyzed the anticancer effects and involved cellular mechanisms after treatment with emetine to U2OS human OS cells. Emetine significantly reduced both the viability and proliferation, and induced apoptosis via activation of caspase-3 and caspase-7 in U2OS cells. Emetine effectively inhibited the migration and invasion of U2OS cells. Gelatinase activities of matrix metalloproteinase 2 (MMP-2) and MMP-9 were reduced by emetine. MMP-9 was transcriptionally inhibited, while MMP-2 was posttranscriptionally repressed, via the reduced expression of membrane-type I-matrix metalloproteinase (MT1-MMP). p38, which is closely related with induction of apoptosis, was stimulated by emetine. Extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and β-catenin, which are linked with expression of MMPs, were downregulated. Emetine exerted anticancer effects on MG63 human OS cells as well. Taken together, our study demonstrated the anticancer and antimetastatic potential of emetine in treating human OS for the first time. It is expected that emetine may be a promising drug candidate to be repositioned for chemotherapy of OS.
Collapse
Affiliation(s)
- Juhyeon Son
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Korea
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Korea
| |
Collapse
|
13
|
Yang XY, Wang YZ, Wang LL, Zhu JW, Zhao J, Zong HL, Chen CX. Bipolar electrode ratiometric electrochemiluminescence biosensing analysis based on boron nitride quantum dots and biological release system. Biosens Bioelectron 2021; 191:113393. [PMID: 34144471 DOI: 10.1016/j.bios.2021.113393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022]
Abstract
In this article, we developed a novel ECL ratiometry on a closed bipolar electrode (BPE) for the sensitively and accurately detection of miRNA-21. High quantum yield and low toxicity BNQDs was synthesized and coated at BPE cathode as an ECL emitter, while the anode of BPE was calibrated via another ECL material, Ir(df-ppy)2(pic) (Firpic). The electron neutrality at both ends of the BPE electrically coupled the reactions on each pole of the BPE. Therefore, one electrochemical sensing reaction could be quantified at one end of the BPE. By the hybridization of target miRNA-21 and hairpin, the glucose blocked in MSNs by the hairpin was released and reacted with glucose oxidase (GOD) to generate H2O2, thereby reducing the ECL signal of the cathode BNQDs/K2S2O8 system and promoting ECL signal of anode Firpic/TPrA. Further, the G-quadruplex formed by unreacted hairpin bases consumed H2O2, which not only recovered the ECL of BNQDs, but also further improved the ECL emission of Firpic. Therefore, the concentration of miRNA-21 could be measured by the ECL ratio of BNQDs and Firpic. The data showed that the detection limit was 10-15 M (S/N = 3) with the linear range of 10-15 M to 10-9 M. The strategy of the BPE-ECL ratio method based on BNQDs showed a good prospect in clinical application.
Collapse
Affiliation(s)
- Xue-Yun Yang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Yin-Zhu Wang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China.
| | - Ling-Ling Wang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Jia Wan Zhu
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Jie Zhao
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Hui-Long Zong
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Chuan-Xiang Chen
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China.
| |
Collapse
|
14
|
Arghiani N, Matin MM. miR-21: A Key Small Molecule with Great Effects in Combination Cancer Therapy. Nucleic Acid Ther 2021; 31:271-283. [PMID: 33891511 DOI: 10.1089/nat.2020.0914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of various cancers indicates the urgent need for finding accurate early diagnostic markers and more effective treatments for these malignancies. MicroRNAs (miRNAs) are small noncoding RNAs with great potentials to enter into cancer clinics as both diagnostic markers and therapeutic targets. miR-21 is elevated in many cancers, and promotes cell proliferation, metastasis, and drug resistance. In recent years, many studies have shown that targeting miR-21 combined with conventional chemotherapeutic agents could enhance their therapeutic efficacy, and overcome drug resistance and cancer recurrence both in vitro and in animal models. In this review, we first summarize the effects and importance of miR-21 in various cancers, and explore its function in drug resistance of cancer cells. Next, the challenges and prospects for clinical translation of anti-miR-21, as a therapeutic agent, will be discussed in combination cancer therapy.
Collapse
Affiliation(s)
- Nahid Arghiani
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
15
|
A Sprouty4 Mutation Identified in Kallmann Syndrome Increases the Inhibitory Potency of the Protein towards FGF and Connected Processes. Int J Mol Sci 2021; 22:ijms22042145. [PMID: 33670044 PMCID: PMC7926442 DOI: 10.3390/ijms22042145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
Kallmann syndrome is the result of innate genetic defects in the fibroblast growth factor (FGF) regulated signaling network causing diminished signal transduction. One of the rare mutations associated with the syndrome alters the Sprouty (Spry)4 protein by converting the serine at position 241 into a tyrosine. In this study, we characterize the tyrosine Spry4 mutant protein in the primary human embryonic lung fibroblasts WI-38 and osteosarcoma-derived cell line U2OS. As demonstrated in a cell signaling assay, Spry4 gains the capability of inhibiting FGF, but not epithelial growth factor (EGF)-induced signaling as a consequence of the tyrosine substitution. Additionally, migration of normal embryonic lung fibroblasts and osteosarcoma-derived cells is potently inhibited by the tyrosine Spry4 variant, while an effect of the wildtype Spry4 protein is hardly measureable. Concerning cell proliferation, the unaltered Spry4 protein is ineffective to influence the WI-38 cells, while the mutated Spry4 protein decelerates the cell doubling. In summary, these data emphasize that like the other mutations associated with Kallmann syndrome the described Spry4 mutation creates a hyperactive version of a selective inhibitory molecule and can thereby contribute to a weakened FGF signaling. Additionally, the study pinpoints a Spry4 variation expanding the applicability of Spry4 in a potential cancer therapy.
Collapse
|
16
|
Prudowsky ZD, Yustein JT. Recent Insights into Therapy Resistance in Osteosarcoma. Cancers (Basel) 2020; 13:E83. [PMID: 33396725 PMCID: PMC7795058 DOI: 10.3390/cancers13010083] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma, the most common bone malignancy of childhood, has been a challenge to treat and cure. Standard chemotherapy regimens work well for many patients, but there remain minimal options for patients with progressive or resistant disease, as clinical trials over recent decades have failed to significantly improve survival. A better understanding of therapy resistance is necessary to improve current treatments and design new strategies for future treatment options. In this review, we discuss known mechanisms and recent scientific advancements regarding osteosarcoma and its patterns of resistance against chemotherapy, radiation, and other newly-introduced therapeutics.
Collapse
Affiliation(s)
- Zachary D. Prudowsky
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Raimondi L, De Luca A, Gallo A, Costa V, Russelli G, Cuscino N, Manno M, Raccosta S, Carina V, Bellavia D, Conigliaro A, Alessandro R, Fini M, Conaldi PG, Giavaresi G. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs. Carcinogenesis 2020; 41:666-677. [PMID: 31294446 DOI: 10.1093/carcin/bgz130] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023] Open
Abstract
Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodeling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigated the micro RNA (miRNA) cargo from exosomes and their parental cells by performing small RNA sequencing through NGS Illumina platform. Hierarchical clustering highlighted a unique molecular profile of exosomal miRNA; bioinformatic analysis by DIANA-mirPath revealed that miRNAs identified take part in various biological processes and carcinogenesis. Among these miRNAs, some were already known for their involvement in the tumor microenvironment establishment, as miR-148a and miR-21-5p. Enforced expression of miR-148a and miR-21-5p in Raw264.7 and hTert immortalized umbilical vein endothelial cells recapitulated the effects induced by exosomes. Overall, our study highlighted the importance of OS exosomes in tumor microenvironment also by a specific packaging of miRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mauro Manno
- National Research Council of Italy, Institute of Byophysics, Palermo, Italy
| | - Samuele Raccosta
- National Research Council of Italy, Institute of Byophysics, Palermo, Italy
| | | | | | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | | | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
18
|
MicroRNA‑22 regulates autophagy and apoptosis in cisplatin resistance of osteosarcoma. Mol Med Rep 2020; 22:3911-3921. [PMID: 33000186 PMCID: PMC7533487 DOI: 10.3892/mmr.2020.11447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone tissue. Effective chemotherapy may improve the survival of patients with OS. MicroRNAs (miRs) serve significant roles in the regulatory function of tumorigenesis and chemosensitivity of different types of cancer. miR‑22 has been revealed to inhibit the proliferation and migration of OS cells, as well as increasing their sensitivity to cisplatin (CDDP). The mechanisms of action behind the functions of miR‑22 in OS drug resistance require investigation. Therefore, in the present study, the human OS cell lines (MG‑63, U2OS, Saos2 and OS9901) and a drug‑resistant cell line (MG‑63/CDDP) were cultured. Cell proliferation, apoptosis and autophagy assays were performed to investigate the proliferation, apoptosis and autophagy of cell lines transfected with miR‑22 mimic. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were performed to investigate the expression levels of associated genes. The results revealed that miR‑22 inhibited the proliferation of MG‑63 cells and MG‑63/CDDP cells, and enhanced the anti‑proliferative ability of CDDP. miR‑22 induced apoptosis and inhibited autophagy of MG‑63 cells and MG‑63/CDDP cells. Apoptosis‑related genes, including caspase‑3 and Bcl‑2‑associated X protein were upregulated, while B‑cell lymphoma‑2 was downregulated in both cell lines transfected with the miR‑22 mimic. Autophagy protein 5, beclin1 and microtubules‑associated protein 1 light chain 3 were downregulated in both cell lines transfected with miR‑22 mimic. Furthermore, the in vitro and in vivo expression levels of metadherin (MTDH) in the OS/OS‑CDDP‑resistant models were downregulated following transfection with the miR‑22 mimic. Therefore, the results of the present study suggested that miR‑22 promoted CDDP sensitivity by inhibiting autophagy and inducing apoptosis in OS cells, while MTDH may serve a positive role in inducing CDDP resistance of OS cells.
Collapse
|
19
|
Sikora M, Marycz K, Smieszek A. Small and Long Non-coding RNAs as Functional Regulators of Bone Homeostasis, Acting Alone or Cooperatively. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:792-803. [PMID: 32791451 PMCID: PMC7419272 DOI: 10.1016/j.omtn.2020.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
Abstract
Emerging knowledge indicates that non-coding RNAs, including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have a pivotal role in bone development and the pathogenesis of bone-related disorders. Most recently, miRNAs have started to be regarded as potential biomarkers or targets for various sets of diseases, while lncRNAs have gained attention as a new layer of gene expression control acting through versatile interactions, also with miRNAs. The rapid development of RNA sequencing techniques based on next-generation sequencing (NGS) gives us better insight into molecular pathways regulated by the miRNA-lncRNA network. In this review, we summarize the current knowledge related to the function of miRNAs and lncRNAs as regulators of genes that are crucial for proper bone metabolism and homeostasis. We have characterized important non-coding RNAs and their expression signatures, in relationship to bone. Analysis of the biological function of miRNAs and lncRNAs, as well as their network, will pave the way for a better understanding of the pathogenesis of various bone disorders. We also think that this knowledge may lead to the development of innovative diagnostic tools and therapeutic approaches for bone-related disorders.
Collapse
Affiliation(s)
- Mateusz Sikora
- Department of Experimental Biology, Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B Street, 50-375 Wroclaw, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11 Street, 55-124 Malin, Poland; Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszynski University (UKSW), Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Smieszek
- Department of Experimental Biology, Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B Street, 50-375 Wroclaw, Poland.
| |
Collapse
|
20
|
Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH, Alcaro S, Di Martino MT, Tagliaferri P, Tassone P. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic "dark matter". J Exp Clin Cancer Res 2020; 39:117. [PMID: 32563270 PMCID: PMC7305591 DOI: 10.1186/s13046-020-01622-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
The discovery of the role of non-coding RNAs (ncRNAs) in the onset and progression of malignancies is a promising frontier of cancer genetics. It is clear that ncRNAs are candidates for therapeutic intervention, since they may act as biomarkers or key regulators of cancer gene network. Recently, profiling and sequencing of ncRNAs disclosed deep deregulation in human cancers mostly due to aberrant mechanisms of ncRNAs biogenesis, such as amplification, deletion, abnormal epigenetic or transcriptional regulation. Although dysregulated ncRNAs may promote hallmarks of cancer as oncogenes or antagonize them as tumor suppressors, the mechanisms behind these events remain to be clarified. The development of new bioinformatic tools as well as novel molecular technologies is a challenging opportunity to disclose the role of the "dark matter" of the genome. In this review, we focus on currently available platforms, computational analyses and experimental strategies to investigate ncRNAs in cancer. We highlight the differences among experimental approaches aimed to dissect miRNAs and lncRNAs, which are the most studied ncRNAs. These two classes indeed need different investigation taking into account their intrinsic characteristics, such as length, structures and also the interacting molecules. Finally, we discuss the relevance of ncRNAs in clinical practice by considering promises and challenges behind the bench to bedside translation.
Collapse
Affiliation(s)
- Katia Grillone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Caterina Riillo
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Roberta Rocca
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Giuseppe Tradigo
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Department of Health Sciences, Magna Græcia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Maria Teresa Di Martino
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| |
Collapse
|
21
|
Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S, Alaee A. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 2020; 20:254. [PMID: 32565738 PMCID: PMC7302353 DOI: 10.1186/s12935-020-01342-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted.
Collapse
Affiliation(s)
- Babak Otoukesh
- Orthopedic Surgery Fellowship in Département Hospitalo-Universitaire MAMUTH « Maladies musculo-squelettiques et innovations thérapeutiques » , Université Pierre et Marie-Curie, Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Abbasi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib-O-Lah Gorgani
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Hossein Farahini
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Bahram Boddouhi
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Shayan Hosseinzadeh
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Atefe Alaee
- Department of Information Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Zhou L, Lu Y, Liu JS, Long SZ, Liu HL, Zhang J, Zhang T. The role of miR-21/RECK in the inhibition of osteosarcoma by curcumin. Mol Cell Probes 2020; 51:101534. [DOI: 10.1016/j.mcp.2020.101534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022]
|
23
|
Wang S, Ma F, Feng Y, Liu T, He S. Role of exosomal miR‑21 in the tumor microenvironment and osteosarcoma tumorigenesis and progression (Review). Int J Oncol 2020; 56:1055-1063. [PMID: 32319566 DOI: 10.3892/ijo.2020.4992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/07/2020] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most common bone tumor affecting both adolescents and children. Early detection is critical for the effective treatment of the disease. Derived from cancer cells, miR‑21 contained within exosomes in the tumor microenvironment may act on both cancer cells and the surrounding tumor microenvironment (TME), including immune cells, endothelial cells and fibroblasts. In human serum and plasm, the level of exosomal miR‑21 between osteosarcoma patients and healthy controls differs, supporting the role of miR‑21 as a biomarker for osteosarcoma. The involvement of a number of miR‑21 target genes in tumor progression suggests that miR‑21 may significantly affect the plasticity of cancer cells, leading to tumor progression, metastasis, angiogenesis and immune escape in osteosarcoma. Understanding the biogenesis and functions of exosomal miR‑21 is of great value for the diagnosis and therapy of cancer, including osteosarcoma. The present review discusses the role of miR‑21 in the tumor microenvironment, and in the development and progression of osteosarcoma, with an aim to summarize the functions of this miRNA in cancer.
Collapse
Affiliation(s)
- Shoufeng Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Fang Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Yi Feng
- Ovarian Cancer Research, Perelman School of Medicine, University of Pennsylvania, Philadephia, PA 19104, USA
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
24
|
Quan J, Dong D, Lun Y, Sun B, Sun H, Wang Q, Yuan G. Circular RNA circHIAT1 inhibits proliferation and epithelial-mesenchymal transition of gastric cancer cell lines through downregulation of miR-21. J Biochem Mol Toxicol 2020; 34:e22458. [PMID: 32020707 DOI: 10.1002/jbt.22458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Circular RNA circHIAT1 has been proved to play an antitumor role. We aimed to explore the function and mechanism of circHIAT1 in GC. MKN28 and MKN45 cells were transfected with PLCDH-circHIAT1, miR-21 mimic, and relative control. Cell viability and apoptosis were examined through Cell Counting Kit-8 and flow cytometry, respectively. CircHIAT1 expression and other relative factors were tested through quantitative reverse transcription-polymerase chain reaction and Western blot analysis, respectively. Our findings demonstrated that circHIAT1 was lowly expressed in GC tissues. After transfection with PLCDH-circHIAT1 in MKN28 and MKN45 cells, cell viability was decreased, while the expression levels of p53 and p21 were raised, as well as apoptosis. Besides this, the epithelial-mesenchymal transition process was inhibited by PLCDH-circHIAT1 transfection. Mechanistically, miR-21 expression was upregulated in GC tissues and could be negatively regulated by circHIAT1. Further experiments showed that the addition of miR-21 mimic reversed the growth inhibition effects of circHIAT1 overexpression. Moreover, circHIAT1 inhibited the activation of phosphatase and tensin homolog/phosphatidylinositol 3 kinase/protein kinase B and extracellular signal-regulated kinase signal pathways via downregulating miR-21. CircHIAT1 functioned as a tumor inhibitor in GC cells through downregulating miR-21, and could be a novel target for GC treatment.
Collapse
Affiliation(s)
- Jingzi Quan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Dongfang Dong
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Yue Lun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Bo Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Haiyuan Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Qunying Wang
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Gang Yuan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| |
Collapse
|
25
|
Hu Y, Gu J, Shen H, Shao T, Li S, Wang W, Yu Z. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma. J Clin Lab Anal 2020; 34:e23045. [PMID: 31642110 PMCID: PMC7031593 DOI: 10.1002/jcla.23045] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the association of circular RNA La-related RNA-binding protein 4 (circ-LARP4) with clinical features and prognosis in osteosarcoma patients, and further explore its effect on chemosensitivity in osteosarcoma cells. METHODS Seventy-two osteosarcoma patients with Enneking stage IIA-IIB who underwent resection were consecutively enrolled, and then, tumor tissues and non-tumor tissues were obtained. Circ-LARP4 in tumor tissue/non-tumor tissue was detected by quantitative polymerase chain reaction. After circ-LARP4 overexpression and negative control overexpression plasmid transfection, relative cell viability (%) was evaluated by Cell Counting Kit-8 in MG63 cells treated by different concentrations of cisplatin, methotrexate, and doxorubicin, and IC50 was calculated. RESULTS Circ-LARP4 was downregulated in tumor tissue compared with non-tumor tissue and had a good value in distinguishing tumor tissue from non-tumor tissue with an area under curve of 0.829 (95% CI: 0.762-0.859). Meanwhile, tumor circ-LARP4 was negatively correlated with the Enneking stage. After resection, circ-LARP4 high expression patients showed an increased tumor cell necrosis rate to adjuvant chemotherapy compared to circ-LARP4 low expression patients, and circ-LARP4 high expression correlated with prolonged disease-free survival and overall survival. In vitro experiments revealed that circ-LARP4 overexpression elevated the chemosensitivity of MG63 cells to cisplatin and doxorubicin but not methotrexate, with decreased cisplatin IC50 and doxorubicin IC50 concentrations than negative control. Besides, miR-424 overexpression attenuated the chemosensitivity in circ-LARP4 overexpression-treated MG63 cells. CONCLUSION Circ-LARP4 high expression correlates with decreased Enneking stage and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging miR-424 in osteosarcoma.
Collapse
Affiliation(s)
- Yuhang Hu
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiaao Gu
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hongtao Shen
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tuo Shao
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Song Li
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Wei Wang
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhange Yu
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
26
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
27
|
Sprouty3 and Sprouty4, Two Members of a Family Known to Inhibit FGF-Mediated Signaling, Exert Opposing Roles on Proliferation and Migration of Glioblastoma-Derived Cells. Cells 2019; 8:cells8080808. [PMID: 31374860 PMCID: PMC6721513 DOI: 10.3390/cells8080808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022] Open
Abstract
Dysregulation of receptor tyrosine kinase-induced pathways is a critical step driving the oncogenic potential of brain cancer. In this study, we investigated the role of two members of the Sprouty (Spry) family in brain cancer-derived cell lines. Using immunoblot analyses we found essential differences in the pattern of endogenous Spry3 and Spry4 expression. While Spry4 expression was mitogen-dependent and repressed in a number of cells from higher malignant brain cancers, Spry3 levels neither fluctuated in response to serum withdrawal nor were repressed in glioblastoma (GBM)-derived cell lines. In accordance to the well-known inhibitory role of Spry proteins in fibroblast growth factor (FGF)-mediated signaling, both Spry proteins were able to interfere with FGF-induced activation of the MAPK pathway although to a different extent. In response to serum solely, Spry4 exerts its role as a negative regulator of MAPK activation. Ectopic expression of Spry4 inhibited proliferation and migration of GBM-originated cells, positioning it as a tumor suppressor in brain cancer. In contrast, elevated Spry3 levels accelerated both proliferation and migration of these cell lines, while repression of Spry3 levels using shRNA caused a significant diminished growth and migration velocity rate of a GBM-derived cell line. This argues for a tumor-promoting function of Spry3 in GBMs. Based on these data we conclude that Spry3 and Spry4 fulfill different if not opposing roles within the cancerogenesis of brain malignancies.
Collapse
|
28
|
Wu L, Zhang Y, Huang Z, Gu H, Zhou K, Yin X, Xu J. MiR-409-3p Inhibits Cell Proliferation and Invasion of Osteosarcoma by Targeting Zinc-Finger E-Box-Binding Homeobox-1. Front Pharmacol 2019; 10:137. [PMID: 30846940 PMCID: PMC6393378 DOI: 10.3389/fphar.2019.00137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone cancer worldwide. There is evidence that microRNA-409 (miR-409-3p) is involved in tumorigenesis and cancer progression, however, its possible role in OS requires clarification. In the present study, we evaluated the expression level, clinical significance, and mode of action of miR-409-3p in OS. The miR-409-3p levels were diminished in the OS cells and tissues compared with associated adjacent non-tumor tissues and a non-cancer osteoplastic cell line. Low miR-409-3p expression levels were associated with clinical stage and distant metastasis in patients with OS. Resumption of miR-409-3p expression attenuated OS cell proliferation and invasion. Additionally, based on informatics analyses, we predicted that zinc-finger E-box-binding homeobox-1 (ZEB1) is a possible target of miR-409-3p. This hypothesis was confirmed using luciferase reporter assays, reverse transcription-quantitative real-time polymerase chain reaction, and Western blot analyses. The findings of the current study indicated that ZEB1 was up-regulated in the OS tissues and cell lines, and that this up-regulation was inversely proportional to miR-409-3p expression levels. Furthermore, down-regulation of ZEB1 decreased OS cell invasion and proliferation, illustrating that the tumor suppressive role of miR-409-3p in OS cells may be exerted via negative regulation of ZEB1. Taken together, our observations highlight the potential role of miR-409-3p as a tumor suppressor in OS partially through down-regulation of ZEB1 and suggest that miR-409-3p has potential applications in OS treatment.
Collapse
Affiliation(s)
- Liang Wu
- Minhang Hosptial, Fudan University, Shanghai, China
| | - Yiming Zhang
- Minhang Hosptial, Fudan University, Shanghai, China
| | | | - Huijie Gu
- Minhang Hosptial, Fudan University, Shanghai, China
| | - Kaifeng Zhou
- Minhang Hosptial, Fudan University, Shanghai, China
| | - Xiaofan Yin
- Minhang Hosptial, Fudan University, Shanghai, China
| | - Jun Xu
- Minhang Hosptial, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Drug resistance-related microRNAs in osteosarcoma: Translating basic evidence into therapeutic strategies. J Cell Mol Med 2019; 23:2280-2292. [PMID: 30724027 PMCID: PMC6433687 DOI: 10.1111/jcmm.14064] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Although the application of multiple chemotherapy brought revolutionary changes to improve overall survival of osteosarcoma patients, the existence of multidrug resistance (MDR) has become a great challenge for successful osteosarcoma treatment in recent decades. Substantial studies have revealed various underlying mechanisms of MDR in cancers. As for osteosarcoma, evidence has highlighted that microRNAs (miRNAs) can mediate in the processes of DNA damage response, apoptosis avoidance, autophagy induction, activation of cancer stem cells, and signal transduction. Besides, these drug resistance‐related miRNAs showed much promise for serving as candidates for predictive biomarkers of poor outcomes and shorter survival time, and therapeutic targets to reverse drug resistance and overcome treatment refractoriness. This review aims to demonstrate the potential molecular mechanisms of miRNAs‐regulated drug resistance in osteosarcoma, and provide insight in translating basic evidence into therapeutic strategies.
Collapse
Affiliation(s)
- Ruiling Chen
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gangyang Wang
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Zhou H, Liu H, Jiang M, Zhang S, Chen J, Fan X. Targeting MicroRNA-21 Suppresses Gastric Cancer Cell Proliferation and Migration via PTEN/Akt Signaling Axis. Cell Transplant 2019; 28:306-317. [PMID: 30700111 PMCID: PMC6425105 DOI: 10.1177/0963689719825573] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MicroRNA plays a pivotal role in various human cancers, especially in human gastric cancer. In the present study, we evaluated the effect of microRNA-21 (miR-21) on the gastric cancer cell proliferation, migration, apoptosis and the related signaling cascades. Here, we showed that down-regulation of miR-21 markedly reduced gastric cancer cell proliferation (AGS and NCI-N87 cells) in a time dependent manner. Moreover, our findings revealed that silencing miR-21 dramatically blocked gastric cancer cell migration and movement, which might be related to down-regulation of vimentin expression. We also found that down-regulation of miR-21 promoted cell apoptosis and repressed cell cycle progression. Further investigation showed that down-regulation of miR-21 significantly increased phosphatase and tensin homolog (PTEN) protein expression level, but not transcription level (mRNA level), which in turn decreased Akt phosphorylation at Thr308 and Ser473. Collectively, our results uncover that miR-21 targets PTEN/Akt signaling pathway and regulates cell proliferation, migration and apoptosis in human gastric cancer cells. Our findings may provide a therapeutic target for treatment of human gastric cancer.
Collapse
Affiliation(s)
- Hao Zhou
- 1 Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Hongyan Liu
- 1 Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Miao Jiang
- 1 Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Shaoren Zhang
- 1 Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Junfeng Chen
- 1 Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiaoming Fan
- 1 Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
31
|
Liang R, Liu Z, Chen Z, Yang Y, Li Y, Cui Z, Chen A, Long Z, Chen J, Lu J, Huang B, Li Q. Long noncoding RNA DNAJC3-AS1 promotes osteosarcoma progression via its sense-cognate gene DNAJC3. Cancer Med 2019; 8:761-772. [PMID: 30652414 PMCID: PMC6382712 DOI: 10.1002/cam4.1955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs have been proved to play essential roles in tumor development and progression. In this study, we focused on DNAJC3-AS1 and investigated its biological function and clinical significance in osteosarcoma. We detected the expression of DNAJC3-AS1 in 30 pairs of matched osteosarcoma and adjacent nontumorous specimens and osteosarcoma cell lines and analyzed association between DNAJC3-AS1 levels and clinicopathological factors. We found that DNAJC3-AS1 expression was up-regulated in osteosarcoma. High level of DNAJC3-AS1 was correlated with high differentiated degree (P = 0.018) and advanced Enneking stage (P = 0.016). Mechanistically, DNAJC3-AS1 enhanced cell proliferation, migration, and invasion in vitro and in vivo and reduced sensitivity of osteosarcoma to cisplatin. These effects of DNAJC3-AS1 were reversed by down-regulation of its sense-cognate gene DNAJC3. Thus, DNAJC3-AS1 promotes osteosarcoma development and progression by regulating DNAJC3 and might be a biomarker and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Ridong Liang
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Zezheng Liu
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Zhixu Chen
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Yang Yang
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Yuejun Li
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Zhifei Cui
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Ajuan Chen
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Zhenxue Long
- Department of Orthopedics, The People's Hospital of Baise, Baise, China
| | - Jinbin Chen
- The First Affiliated Hospital, The School of Public Health, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Lu
- The First Affiliated Hospital, The School of Public Health, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Bin Huang
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Qingchu Li
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Chen X, Lv C, Zhu X, Lin W, Wang L, Huang Z, Yang S, Sun J. MicroRNA-504 modulates osteosarcoma cell chemoresistance to cisplatin by targeting p53. Oncol Lett 2018; 17:1664-1674. [PMID: 30675226 PMCID: PMC6341607 DOI: 10.3892/ol.2018.9749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Chemoresistance implicates the therapeutic value of cisplatin and remains a primary obstacle to its clinical use. MicroRNAs (miRs) negatively modulate the expression of their target genes and are associated with the occurrence and progression of various types of tumor. The abnormal expression of miR-504 has been reported in certain types of human tumor and has been associated with tumor prognosis. However, the association between miR-504 and cisplatin in human osteosarcoma remains unclear. The present study therefore aimed to assess the in vitro effects and possible mechanism of miR-504 in cell proliferation, apoptosis and cisplatin resistance in MG63 osteosarcoma cells. The results demonstrated that miR-504 was overexpressed in osteosarcoma tissues and cells. This overexpression also induced cell proliferation, as determined by MTT and EdU staining assays. Furthermore, miR-504 suppressed cisplatin-induced apoptosis, which was demonstrated via MTT, cell morphology analysis and flow cytometry. Cisplatin-induced G1 arrest was also suppressed, which was determined by flow cytometry. The potential target genes of miR-504 were predicted using bioinformatics. p53 was confirmed to be a direct target of miR-504 using a luciferase reporter assay and western blot analysis revealed that miR-504 negatively regulated p53 expression at a molecular level. These results indicate that miR-504 contributes to cisplatin resistance in MG63 osteosarcoma cells by suppressing p53. miR-504 may therefore be a potential biomarker for cisplatin resistance in patients with osteosarcoma.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chen Lv
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiongbai Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhengxiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shengwu Yang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junying Sun
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
33
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Yang X, Wang M, Lin B, Yao D, Li J, Tang X, Li S, Liu Y, Xie R, Yu S. miR-487a promotes progression of gastric cancer by targeting TIA1. Biochimie 2018; 154:119-126. [PMID: 30144499 DOI: 10.1016/j.biochi.2018.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies as well as the third leading cause for cancer-related death. Molecular basis of GC are essential and critical for its therapeutic treatment, but still remain poorly understood. T-cell intracellular antigen-1 (TIA1) extensively involves in cancer progression, whereas its role and regulation mechanism in GC have not been revealed. In the present study, we found that TIA-1 protein level was down-regulated in GC tissues and TIA1 inhibited proliferation and promoted apoptosis of GC cells. Then, we used bioinformatics to predict miR-487a as the upstream regulator of TIA1 and we also observed an inverse correlation between miR-487a level and TIA-1 protein level in GC tissues. Next, we demonstrated that miR-487a directly targeted TIA1 via binding to its 3'-untranslated region. Furthermore, we investigated the role of miR-487a-TIA1 pathway in the growth of GC cells both in vitro and in vivo. The repression of TIA-1 by miR-487a promoted cell proliferation and suppressed cell apoptosis in vitro, and the knockdown of miR-487a had the opposite effects. Finally, we demonstrated that miR-487a promoted the development of gastric tumor growth in xenograft mice by targeting TIA-1. These effects could be partially reversed by restoring the expression of TIA-1. Overall, our results reveal that TIA1 is a tumor suppressor gene and is directly regulated by miR-487a in GC, which may offer new therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Mingda Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China; Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Bohao Lin
- Department of Cell Biology, Zunyi Medical University, Zunyi, China; Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Dongjie Yao
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Jin Li
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Xianchun Tang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Sanhua Li
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Yun Liu
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Shouyang Yu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China; Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
35
|
Hu X, Li L, Lu Y, Yu X, Chen H, Yin Q, Zhang Y. miRNA-21 inhibition inhibits osteosarcoma cell proliferation by targeting PTEN and regulating the TGF-β1 signaling pathway. Oncol Lett 2018; 16:4337-4342. [PMID: 30250537 PMCID: PMC6144926 DOI: 10.3892/ol.2018.9177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/03/2018] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to investigate the role of microRNA (miRNA)-21 in the growth of osteosarcoma. A total of 46 patients with osteosarcoma and 20 healthy controls were included in the study. The expression of miRNA-21 was detected by reverse transcription-quantitative polymerase chain reaction in tumor tissues and adjacent healthy tissues from patients with osteosarcoma, as well as the serum of patients with osteosarcoma and the healthy controls was. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic values of serum miRNA-21 for osteosarcoma at different T stages. Survival curves plotted using the Kaplan-Meier method were used to evaluate the prognostic value. miRNA-21 knockdown osteosarcoma cell lines were established and their effects on cell proliferation were explored using a Cell Counting Kit-8 assay. The effect of miRNA-21 knockdown on the protein expression of phosphatase and tensin homolog (PTEN) and transforming growth factor (TGF)-β1 was detected by western blot analysis. The expression levels of miRNA-21 in tumor tissues were significantly higher compared with the adjacent healthy tissues in the majority of patients with osteosarcoma. The serum miRNA-21 increased as the T-stage of osteosarcoma increased. Serum miRNA-21 may be used to effectively diagnose osteosarcoma and predict the prognosis of the disease. miRNA-21 knockdown inhibited the proliferation of osteosarcoma and promoted the expression of PTEN and TGF-β1 proteins in the osteosarcoma cells. However, TGF-β1 inhibitor treatment reduced the inhibitory effects of miRNA-21 knockdown on osteosarcoma cell proliferation. In conclusion, miRNA-21 inhibition may inhibit osteosarcoma cell proliferation by targeting PTEN and regulating the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoming Hu
- Department of Orthopedics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Lihua Li
- Guangdong Key Laboratory of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yao Lu
- Department of Orthopedics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Xiangui Yu
- Department of Orthopedics, Anshun City People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Hai Chen
- Department of Orthopedics, Anshun City People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Qingshui Yin
- Department of Orthopedics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yu Zhang
- Department of Orthopedics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
36
|
Zhou X, Natino D, Zhai X, Gao Z, He X. MicroRNA‑22 inhibits the proliferation and migration, and increases the cisplatin sensitivity, of osteosarcoma cells. Mol Med Rep 2018; 17:7209-7217. [PMID: 29568877 PMCID: PMC5928679 DOI: 10.3892/mmr.2018.8790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023] Open
Abstract
Osteosarcoma (OS) is the major type of primary bone tumor and is associated with a poor prognosis due to chemotherapy resistance. Accumulating evidence indicates that microRNAs (miRNAs/miRs) may influence the tumor progression of OS and cell sensitivity to chemotherapy. In the present study, a total of 7 patients with OS and 7 healthy volunteers were recruited. Reverse transcription-quantitative polymerase chain reaction and ELISA were performed to determine the expression of miRNAs and mRNAs in the serum of participants. Furthermore, the biological function of miR-22 and S100A11 was examined in MG-63 cells using Cell Counting Kit-8 assays, Transwell migration assays and western blot analysis to determine the effects on cell proliferation, migration and protein expression, respectively, while MG-63 cell sensitivity to cisplatin was assessed by measuring cell viability following cisplatin treatment and calculating the half maximal inhibitory concentration (IC50). Additionally, the association between miR-22 and S100 calcium-binding protein A11 (S100A11) was validated using a luciferase reporter assay. The results demonstrated that miR-22 expression was significantly reduced in patients with OS and the MG-63 OS cell line, compared with healthy volunteers and the normal osteoblast hFOB 1.19 cell line, respectively, while the expression of S100A11 was negatively associated with miR-22 levels in the MG-63 cell line. Furthermore, overexpression of miR-22 inhibited the proliferation and migratory ability of MG-63 cells, and increased the sensitivity of MG-63 cells to cisplatin treatment; however, overexpression of S100A11 partially attenuated the alterations in proliferation, migratory ability and chemosensitivity that were induced by miR-22 overexpression. In addition, it was confirmed that S100A11 is a direct target gene of miR-22 in MG-63 cells. In conclusion, to the best of our knowledge, the present study is the first to demonstrate that miR-22 may be a promising therapeutic target and may have potential as part of a combination treatment alongside chemotherapeutic agents for OS.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Dimple Natino
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304, USA
| | - Xu Zhai
- Emergency Department, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhongyang Gao
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
37
|
Zou Y, Yang J, Wu J, Luo C, Huang Y. miR-133b induces chemoresistance of osteosarcoma cells to cisplatin treatment by promoting cell death, migration and invasion. Oncol Lett 2018; 15:1097-1102. [PMID: 29399170 PMCID: PMC5772689 DOI: 10.3892/ol.2017.7432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/26/2017] [Indexed: 11/10/2022] Open
Abstract
As an important chemotherapeutic agent for the treatment of osteosarcoma, the effectiveness of cisplatin is considered to be due to its unique properties, which allow it to penetrate the cell membrane and form various DNA-platinum adducts, resulting in genetic alterations or DNA damage. However, chemoresistance to cisplatin remains a major challenge for its use and chemotherapeutic effects. In the present study, an isogenic model of a cisplatin resistant osteosarcoma cell line, MG63-DDP, was generated from the original MG63 cell line. The expression level of microRNA (miR)-133b in the MG63-DDP cisplatin-resistant osteosarcoma cell line was analyzed by reverse transcription-quantitative polymerase chain reaction (PCR). Cisplatin-DNA adduct formation, cell death (carboxyfluorescein succinimidyl ester/propidium iodide staining) and clonogenic survival assays (crystal violet staining) were performed, comparing various cell types. The effect of miR-133b on migration (scratch wound assay) and invasion (Transwell assay) was also evaluated. Characterization studies have previously revealed an increased level of miR-133b in MG63-DDP cells compared with normal MG63 cells. Upregulation of miR-133b was associated with the accumulation of cisplatin-DNA adducts and an increase in cisplatin-induced cell death. Furthermore, increased miR-133b expression levels enhanced the migration and invasion of MG63 cells under cisplatin stress. Concordantly, in MG63-DDP cells the neutralization of miR-133b demonstrated opposite effects, as compared with the upregulation of miR-133b. To the best of our knowledge, the present study demonstrated for the first time that cisplatin-resistant MG63 cells exhibit an increased level of miR-133b expression. The endogenous expression level of miR-133b is sufficient for inducing cisplatin resistance, which suggests that miR-133b may be a biomarker for cisplatin resistance in osteosarcoma.
Collapse
Affiliation(s)
- Yonggen Zou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiexiang Yang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jian Wu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cheng Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
38
|
Nakka M, Allen-Rhoades W, Li Y, Kelly AJ, Shen J, Taylor AM, Barkauskas DA, Yustein JT, Andrulis IL, Wunder JS, Gorlick R, Meltzer PS, Lau CC, Man TK. Biomarker significance of plasma and tumor miR-21, miR-221, and miR-106a in osteosarcoma. Oncotarget 2017; 8:96738-96752. [PMID: 29228567 PMCID: PMC5722519 DOI: 10.18632/oncotarget.18236] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/15/2017] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in children and young adults. Despite the use of surgery and multi-agent chemotherapy, osteosarcoma patients who have a poor response to chemotherapy or develop relapses have a dismal outcome. Identification of biomarkers for active disease may help to monitor tumor burden, detect early relapses, and predict prognosis in these patients. In this study, we examined whether circulating miRNAs can be used as biomarkers in osteosarcoma patients. We performed genome-wide miRNA profiling on a discovery cohort of osteosarcoma and control plasma samples. A total of 56 miRNAs were upregulated and 164 miRNAs were downregulated in osteosarcoma samples when compared to control plasma samples. miR-21, miR-221 and miR-106a were selected for further validation based on their known biological importance. We showed that all three circulating miRNAs were expressed significantly higher in osteosarcoma samples than normal samples in an independent cohort obtained from the Children's Oncology Group. Furthermore, we demonstrated that miR-21 was expressed significantly higher in osteosarcoma tumors compared with normal bone controls. More importantly, lower expressions of miR-21 and miR-221, but not miR-106a, significantly correlated with a poor outcome. In conclusion, our results indicate that miR-21, miR-221 and miR-106a were elevated in the circulation of osteosarcoma patients, whereas tumor expressions of miR-21 and miR-221 are prognostically significant. Further investigation of these miRNAs may lead to a better prognostic method and potential miRNA therapeutics for osteosarcoma.
Collapse
Affiliation(s)
- Manjula Nakka
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
| | - Wendy Allen-Rhoades
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiting Li
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
| | - Aaron J. Kelly
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jianhe Shen
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
| | - Aaron M. Taylor
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Donald A. Barkauskas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children’s Oncology Group, Monrovia, CA, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jay S. Wunder
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Paul S. Meltzer
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ching C. Lau
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tsz-Kwong Man
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
39
|
Yuan W, Wang D, Liu Y, Tian D, Wang Y, Zhang R, Yin L, Deng Z. miR‑494 inhibits cell proliferation and metastasis via targeting of CDK6 in osteosarcoma. Mol Med Rep 2017; 16:8627-8634. [PMID: 28990071 PMCID: PMC5779916 DOI: 10.3892/mmr.2017.7709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
Tumorigenesis is a multistep process involving various cell growth-associated factors. Accumulated evidence indicates that the disordered regulation of microRNAs (miRNAs) contributes to tumorigenesis. However, the detailed mechanism underlying the involvement of miRNAs in oncogenesis remains to be fully elucidated. In the present study, the repressed expression of microRNA (miR)-494 was identified in 18 patients with osteosarcoma (OS) and OS cell lines, compared with corresponding controls. To determine whether deregulated miR-494 exerts tumor-suppressive effects in the development of OS, the effects of miR-494 on cell proliferation and metastasis were evaluated. It was found that the restoration of miR-494 in MG-63 and U2OS cells led to inhibited cell proliferation and attenuated migratory propensity in vitro, determined through analysis using MTT, colony formation and Transwell assays. In addition, overexpression of miR-494 markedly suppressed the tumor volume and weight in vivo. In accordance, the ectopic expression of miR-494 induced cell cycle arrest at the G1/S phase in OS cells. Bioinformatics analysis and luciferase reporter assays were performed to investigate the potential regulatory role of miR-494, the results of which indicated that miR-494 directly targeted cyclin-dependent kinase 6 (CDK6). Of note, the data obtained through reverse transcription-quantitative polymerase chain reaction and western blot analyses suggested that the elevated expression of miR-494 resulted in reduced mRNA and protein expression levels of CDK6. Taken together, these findings indicated that the miR-494/CDK6 axis has a significant tumor-suppressive effect on OS, and maybe a diagnostic and therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Du Wang
- Department of Orthopedics, Wuhan Hospital No. 3 and Tongren Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dongdong Tian
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yang Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ranxi Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Liangjun Yin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhongliang Deng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
40
|
Chen D, Liu D, Chen Z. Potential therapeutic implications of miRNAs in osteosarcoma chemotherapy. Tumour Biol 2017; 39:1010428317705762. [PMID: 28933259 DOI: 10.1177/1010428317705762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common primary bone cancer in young adults and adolescents. Drug resistance is the main cause leading to therapeutical failure. The mechanisms of drug resistance of osteosarcoma have not been fully understood. Notably, recent researches associate microRNA with drug resistance in osteosarcoma cells, raising the awareness that targeting microRNAs may help in chemotherapy success. In this review, we summarize the mechanisms linking microRNAs to drug resistance and ongoing researches on microRNAs in drug response to osteosarcoma. In addition, the therapeutic potential of microRNAs in chemotherapy will also be discussed.
Collapse
Affiliation(s)
- Dan Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Ding Liu
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| |
Collapse
|
41
|
Pridgeon MG, Grohar PJ, Steensma MR, Williams BO. Wnt Signaling in Ewing Sarcoma, Osteosarcoma, and Malignant Peripheral Nerve Sheath Tumors. Curr Osteoporos Rep 2017. [PMID: 28647886 DOI: 10.1007/s11914-017-0377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Wnt signaling plays a central role in development and homeostasis, and its dysregulation is a common event in many types of human cancer. Here we explore in detail the contributions of Wnt signaling to the initiation and maintenance of three types of saroma: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. This review provides an overview of the Wnt signaling pathway and explores in detail the current knowledge about its role in the initiation or maintenance of three tumor types: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. RECENT FINDINGS Recent work has assessed the role(s) of Wnt signaling within these cell types. This review provides an overview of the mechanistic insights that have been gained from a number of recent studies to set the foundation for potential therapeutic applications. Wnt signaling has emerged as a potentially critical pathway in maintaining the growth of these types of tumors. Given the fact that many new inhibitors of the pathway have recently or will soon enter Phase 1 clinical trials, it is likely that assessment of their activity in these tumor types will occur in human patients.
Collapse
Affiliation(s)
- Matthew G Pridgeon
- Grand Rapids Medical Education Partners, Grand Rapids, MI, USA
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
| | - Patrick J Grohar
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
- Department of Pediatrics, Michigan State University, Grand Rapids, MI, USA
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Matthew R Steensma
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Surgery, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Bart O Williams
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
42
|
Liang W, Wei X, Li Q, Dai N, Li CY, Deng Y, Jiang X, Tan XR, Dai XY, Li MX, Xu CX, Wang D, Zhong ZY. MicroRNA-765 Enhances the Anti-Angiogenic Effect of CDDP via APE1 in Osteosarcoma. J Cancer 2017; 8:1542-1551. [PMID: 28775773 PMCID: PMC5535709 DOI: 10.7150/jca.18680] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/26/2017] [Indexed: 12/22/2022] Open
Abstract
Human osteosarcoma (HOS) is the most common malignancy in children and adolescents and has a heterogeneous presentation and high mortality. Previous studies have shown that microRNAs contribute to RNA silencing and post-transcriptional regulation of gene expression. Here, we showed that significantly increased expression of miR-765 with or without CDDP (Cisplatin) down-regulates APE1 expression and angiogenesis-related markers (VEGF, FGF2, TGFβ, and CD34). Further investigation showed that miR-765 modulates osteosarcoma cell migration and angiogenesis following treatment with cisplatin in vitro and in vivo. MiR-765 increases the anti-angiogenic effect of CDDP in human osteosarcoma. Elucidation of the mechanism of the miR-765-APE1 axis in tumor progression of HOS will be beneficial in identifying biomarkers and therapeutic target of osteosarcoma.
Collapse
Affiliation(s)
- Wei Liang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Chong-Yi Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Yi Deng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Xuan Jiang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Xiao-Rong Tan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Xiao-Yan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Meng-Xia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Cheng-Xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| | - Zhao-Yang Zhong
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing,400042, China
| |
Collapse
|
43
|
Chen LG, Xia YJ, Cui Y. Upregulation of miR-101 enhances the cytotoxic effect of anticancer drugs through inhibition of colon cancer cell proliferation. Oncol Rep 2017; 38:100-108. [PMID: 28560419 PMCID: PMC5492720 DOI: 10.3892/or.2017.5666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/09/2017] [Indexed: 12/28/2022] Open
Abstract
This study investigated the effect of miR-101 on proliferation, migration, invasion, and chemotherapy sensitivity in colon cancer cell lines HT-29 and RKO. MicroRNAs are a class of small noncoding RNA molecules, which play important roles in diverse biological processes of human cancers, such as carcinogenesis, development, differentiation, and apoptosis. The expression of miR-101 in colon cancer and adjacent non-tumor tissues were examined by quantitative real-time polymerase chain reaction. The expression of miR-101 was upregulated by recombinant adenovirus Ad-miR-101. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cloning methods. Cell migration and invasion potential were examined using Transwell migration and Matrigel invasion chamber assays. Drug sensitivity to 5-fluorouracil (5-FU) and cisplatin (DDP) was explored using MTT assays and l acridine orange/ethidium bromide double staining. The expression of miR-101 decreased in colon cancer tissues compared with adjacent non-tumor tissues. The upregulated expression of miR-101 suppressed cell proliferation and inhibited cell migration and invasion in HT-29 and RKO colon cancer cell lines. The overexpression of miR-101 promoted the inhibitory effect of 5-FU and DDP on HT-29 cells. The expression of miR-101 was downregulated in colon cancer. The upregulated expression of miR-101 inhibited proliferation and migration, and increased the sensitivity of colon cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Le-Gao Chen
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying-Jie Xia
- Key Laboratory of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying Cui
- Department of Unclear Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
44
|
Palmini G, Marini F, Brandi ML. What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma? Molecules 2017; 22:E417. [PMID: 28272374 PMCID: PMC6155266 DOI: 10.3390/molecules22030417] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Francesca Marini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| |
Collapse
|
45
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|