1
|
Tian J, Zhao J, Xu Z, Liu B, Pu J, Li H, Lei Q, Zhao Y, Zhou W, Li X, Huang X. Bioinformatics analysis to identify key invasion related genes and construct a prognostic model for glioblastoma. Sci Rep 2025; 15:10773. [PMID: 40155506 PMCID: PMC11953321 DOI: 10.1038/s41598-025-95067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor with limited therapeutic strategies and incomplete studies on its progression and mechanisms. This study aims to reveal potential prognostic marker genes associated with GBM cell invasion, and establish an effective prognostic model for GBM patients. Differentially expressed genes (DEGs) were screened from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), differentially invasive-related genes was obtained, qRT-PCR was used to verify gene expression. The risk scores of individual patients, univariate and multivariate Cox regression were analyzed to investigate the correlation between risk values and glioblastoma, Finally, the risk scores with the prognostic clinical characteristics of the patients, such as PFS, OS were used to build a comprehensive GBM prognostic model. Five DEGs (GZMB, COL22A1, MSTN, CRYGN and OSMR) were significantly associated with GBM prognosis. Pseudotemporal analysis, risk scores (PFS, OS) based on tumor cells revealed that prognostic genes were associated with tumor proliferation and progression. The final prognostic model was developed and validated with good performance with higher accuracy(C-index: 0.675), and it was found that the risk value can serve as an independent prognostic factor for patients with glioblastoma (p < 0.05). We constructed a comprehensive prognostic model related to invasion in GBM patients using genetic profiles, survival curves, immune infiltration, and radiotherapy face susceptibility. The model has good predictive ability.
Collapse
Affiliation(s)
- Jintao Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Jinxi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Zhixing Xu
- Department of Neurosurgery, The Pu'er People's Hospital, Puer, 665000, China
| | - Bohu Liu
- Department of Neurosurgery, The Kunming First People's Hospital, Kunming, 650011, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Hongwen Li
- Department of Neurosurgery, The Dali People's Hospital, Dali, 671000, China
| | - Qingchun Lei
- Department of Neurosurgery, The Pu'er People's Hospital, Puer, 665000, China
| | - Yu Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Weilin Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Xuhui Li
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
2
|
Polesskaya O, Boussaty E, Cheng R, Lamonte O, Zhou T, Du E, Sanches TM, Nguyen KM, Okamoto M, Palmer AA, Friedman R. Genome-wide association study for age-related hearing loss in CFW mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598304. [PMID: 38915500 PMCID: PMC11195089 DOI: 10.1101/2024.06.10.598304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Age-related hearing impairment is the most common cause of hearing loss and is one of the most prevalent conditions affecting the elderly globally. It is influenced by a combination of environmental and genetic factors. The mouse and human inner ears are functionally and genetically homologous. Investigating the genetic basis of age-related hearing loss (ARHL) in an outbred mouse model may lead to a better understanding of the molecular mechanisms of this condition. We used Carworth Farms White (CFW) outbred mice, because they are genetically diverse and exhibit variation in the onset and severity of ARHL. The goal of this study was to identify genetic loci involved in regulating ARHL. Hearing at a range of frequencies was measured using Auditory Brainstem Response (ABR) thresholds in 946 male and female CFW mice at the age of 1, 6, and 10 months. We obtained genotypes at 4.18 million single nucleotide polymorphisms (SNP) using low-coverage (mean coverage 0.27x) whole-genome sequencing followed by imputation using STITCH. To determine the accuracy of the genotypes we sequenced 8 samples at >30x coverage and used calls from those samples to estimate the discordance rate, which was 0.45%. We performed genetic analysis for the ABR thresholds for each frequency at each age, and for the time of onset of deafness for each frequency. The SNP heritability ranged from 0 to 42% for different traits. Genome-wide association analysis identified several regions associated with ARHL that contained potential candidate genes, including Dnah11, Rapgef5, Cpne4, Prkag2, and Nek11. We confirmed, using functional study, that Prkag2 deficiency causes age-related hearing loss at high frequency in mice; this makes Prkag2 a candidate gene for further studies. This work helps to identify genetic risk factors for ARHL and to define novel therapeutic targets for the treatment and prevention of ARHL.
Collapse
Affiliation(s)
- Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ely Boussaty
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivia Lamonte
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Thomas Zhou
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric Du
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mika Okamoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rick Friedman
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
3
|
Lulli M, Nencioni D, Papucci L, Schiavone N. Zeta-crystallin: a moonlighting player in cancer. Cell Mol Life Sci 2020; 77:965-976. [PMID: 31563996 PMCID: PMC11104887 DOI: 10.1007/s00018-019-03301-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Crystallins were firstly found as structural proteins of the eye lens. To this family belong proteins, such as ζ-crystallin, expressed ubiquitously, and endowed with enzyme activity. ζ-crystallin is a moonlighting protein endowed with two main different functions: (1) mRNA binding with stabilizing activity; (2) NADPH:quinone oxidoreductase. ζ-crystallin has been clearly demonstrated to stabilize mRNAs encoding proteins involved in renal glutamine catabolism during metabolic acidosis resulting in ammoniagenesis and bicarbonate ion production that concur to compensate such condition. ζ-crystallin binds also mRNAs encoding for antiapoptotic proteins, such as Bcl-2 in leukemia cells. On the other hand, the physiological role of its enzymatic activity is still elusive. Gathering research evidences and data mined from public databases, we provide a framework where all the known ζ-crystallin properties are called into question, making it a hypothetical pivotal player in cancer, allowing cells to hijack or subjugate the acidity response mechanism to increase their ability to resist oxidative stress and apoptosis, while fueling their glutamine addicted metabolism.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| | - Daniele Nencioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| |
Collapse
|
4
|
Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C, Ushakov K, Steel KP, Avraham KB, Hartmann AK, Felmy F, Nothwang HG. miR-96 is required for normal development of the auditory hindbrain. Hum Mol Genet 2018; 27:860-874. [DOI: 10.1093/hmg/ddy007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tina Schlüter
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Christina Berger
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Elena Rosengauer
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Pascal Fieth
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Constanze Krohs
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexander K Hartmann
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
5
|
Ebbers L, Weber M, Nothwang HG. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice. BMC Neurosci 2017; 18:75. [PMID: 29073893 PMCID: PMC5659004 DOI: 10.1186/s12868-017-0393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. RESULTS Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. CONCLUSIONS Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular factors involved in activity-dependent developmental processes in the auditory system. This would provide an important step forward concerning improved auditory rehabilitation in cases of congenital deafness.
Collapse
Affiliation(s)
- Lena Ebbers
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Maren Weber
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|