1
|
Du M, Wang C, Jiang Z, Cong R, Li A, Wang W, Zhang G, Li L. Genotype-by-Environment Effects of Cis-Variations in the Atgl Promoter Mediate the Divergent Pattern of Phenotypic Plasticity for Temperature Adaptation in Two Congeneric Oyster Species. Mol Ecol 2025; 34:e17623. [PMID: 39718158 DOI: 10.1111/mec.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
Phenotypic plasticity plays an essential role in adaptive evolution. However, the molecular mechanisms of how genotype-by-environment interaction (G × E) effects shape phenotypic plasticity in marine organisms remain poorly understood. The crucial temperature-responsive trait triacylglycerol (TAG) content and its major gene adipose triglyceride lipase (Atgl) expression have divergent plastic patterns in two congeneric oyster species (Crassostrea gigas and Crassostrea angulata) to adapt to relative-cold/northern and relative-warm/southern habitats, respectively. In this study, eight putative loci were identified in the Atgl promoter region (cis-variations) between wild C. gigas and C. angulata that exhibited differential environmental responsiveness (G × E). The G and G × E effects of each locus were further dissected by measuring the Atgl gene expression of different genotypes in response to temperature changes at the cellular and organismal levels. Two transcription factors, non-environmentally responsive non-POU domain-containing octamer-binding protein (Nono) and environmentally responsive heterogeneous nuclear ribonucleoprotein K (Hnrnpk), were screened for binding to g.-1804 (G locus) and g.-1919 (G + G × E locus), respectively. The specificity of Nono binding to the C. angulata allele mediated the G effects of g.-1804, and the lower environmental sensitivity of Hnrnpk in C. angulata mediated the G × E effects of g.-1919, jointly regulating the trade-offs between higher constitutive and lower plastic expression of Atgl gene expression in C. angulata. This study served as an experimental case to reveal how the genetic variations with G and (or) G × E effects propagate into the divergent pattern of plasticity in environmental adaptive traits, which provides new insights into predicting the adaptability of marine organisms to future climate changes.
Collapse
Affiliation(s)
- Mingyang Du
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaogang Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Ao Li
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
2
|
Pan J, Wang Y, Li C, Zhang S, Ye Z, Ni J, Li H, Li Y, Yue H, Ruan C, Zhao D, Jiang Y, Wu X, Shen X, Zufall RA, Zhang Y, Li W, Lynch M, Long H. Molecular basis of phenotypic plasticity in a marine ciliate. THE ISME JOURNAL 2024; 18:wrae136. [PMID: 39018220 PMCID: PMC11308186 DOI: 10.1093/ismejo/wrae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
Phenotypic plasticity, which involves phenotypic transformation in the absence of genetic change, may serve as a strategy for organisms to survive in complex and highly fluctuating environments. However, its reaction norm, molecular basis, and evolution remain unclear in most organisms, especially microbial eukaryotes. In this study, we explored these questions by investigating the reaction norm, regulation, and evolution of phenotypic plasticity in the cosmopolitan marine free-living ciliates Glauconema spp., which undergo significant phenotypic changes in response to food shortages. This study led to the de novo assembly of macronuclear genomes using long-read sequencing, identified hundreds of differentially expressed genes associated with phenotypic plasticity in different life stages, validated the function of two of these genes, and revealed that the reaction norm of body shape in response to food density follows a power-law distribution. Purifying selection may be the dominant evolutionary force acting on the genes associated with phenotypic plasticity, and the overall data support the hypothesis that phenotypic plasticity is a trait maintained by natural selection. This study provides novel insight into the developmental genetics of phenotypic plasticity in non-model unicellular eukaryotes and sheds light on the complexity and long evolutionary history of this important survival strategy.
Collapse
Affiliation(s)
- Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Simo Zhang
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jiahao Ni
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yichen Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hongwei Yue
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chenchen Ruan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Dange Zhao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yujian Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaolin Wu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Weiyi Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, United States
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Kovuri P, Yadav A, Sinha H. Role of genetic architecture in phenotypic plasticity. Trends Genet 2023; 39:703-714. [PMID: 37173192 DOI: 10.1016/j.tig.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Phenotypic plasticity, the ability of an organism to display different phenotypes across environments, is widespread in nature. Plasticity aids survival in novel environments. Herein, we review studies from yeast that allow us to start uncovering the genetic architecture of phenotypic plasticity. Genetic variants and their interactions impact the phenotype in different environments, and distinct environments modulate the impact of genetic variants and their interactions on the phenotype. Because of this, certain hidden genetic variation is expressed in specific genetic and environmental backgrounds. A better understanding of the genetic mechanisms of phenotypic plasticity will help to determine short- and long-term responses to selection and how wide variation in disease manifestation occurs in human populations.
Collapse
Affiliation(s)
- Purnima Kovuri
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
| |
Collapse
|
4
|
New malic acid producer strains of Saccharomyces cerevisiae for preserving wine acidity during alcoholic fermentation. Food Microbiol 2023; 112:104209. [PMID: 36906297 DOI: 10.1016/j.fm.2022.104209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In the context of climate change, the chemical composition of wines is characterized by a massive drop of malic acid concentration in grape berries. Then wine professionals have to find out physical and/or microbiological solutions to manage wine acidity. The aim of this study is to develop wine Saccharomyces cerevisiae strains able to produce significant amount of malic acid during the alcoholic fermentation. By applying a large phenotypic survey in small scale fermentations, the production level of malic acid in seven grape juices confirmed the importance of the grape juice in the production of malic acid during the alcoholic fermentation. Beside the grape juice effect, our results demonstrated that extreme individuals able to produce up to 3 g/L of malic acid can be selected by crossing together appropriate parental strains. A multivariate analysis of the dataset generated illustrate that the initial the amount of malic acid produced by yeast is a determining exogenous factor for controlling the final pH of wine. Interestingly most of the acidifying strains selected are particularly enriched in alleles that have been previously reported for increasing the level of malic acid at the end of the alcoholic fermentation. A small set of acidifying strains were compared with strains able to consume a large amount of malic acid previously selected. The total acidity of resulting wines was statistically different and a panelist of 28 judges was able to discriminate the two groups of strains during a free sorting task analysis.
Collapse
|
5
|
Song WH, Li JJ. The effects of intraspecific variation on forecasts of species range shifts under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159513. [PMID: 36257416 DOI: 10.1016/j.scitotenv.2022.159513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As global climate change is altering the distribution range of macroalgae across the globe, it is critical to assess its impact on species range shifts to inform the biodiversity conservation of macroalgae. Latitude/environmental gradients could cause intraspecific variability, which may result in distinct responses to climate change. It remains unclear whether geographical variation occurs in the response of species' populations to climate change. We tested this assumption using the brown alga Sargassum thunbergii, a habitat-forming macroalgae encompassing multiple divergent lineages along the Northwest Pacific. Previous studies revealed a distinct lineage of S. thunbergii in rear-edge populations. Given the phylogeographic structure and temperature gradients, we divided these populations into the southern and northern groups. We assessed the physiological responses of the two groups to temperature changes and estimated their niche differences using n-dimensional hypervolumes. A higher photosynthetic rate and antioxidative abilities were detected in the southern group of S. thunbergii than in the northern group. In addition, significant niche differentiation was detected between the two groups, suggesting the possibility for local adaptation. Given these results, we inferred that the southern group (rear-edge populations) may be more resilient to climate change. To examine climate-driven range shifts of S. thunbergii, we constructed species- and lineage-level species distribution models (SDMs). Predictions of both levels showed considerable distribution contracts along the Chinese coasts in the future. For the southern group, the lineage-level model predicted less habitat loss than the species-level model. Our results highlight the importance of considering intraspecific variation in climate change vulnerability assessments for coastal species.
Collapse
Affiliation(s)
- Wang-Hui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Jing-Jing Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
6
|
Júnior ECB, Rios VP, Dodonov P, Vilela B, Japyassú HF. Effect of behavioural plasticity and environmental properties on the resilience of communities under habitat loss and fragmentation. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Peltier E, Vion C, Abou Saada O, Friedrich A, Schacherer J, Marullo P. Flor Yeasts Rewire the Central Carbon Metabolism During Wine Alcoholic Fermentation. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733513. [PMID: 37744152 PMCID: PMC10512321 DOI: 10.3389/ffunb.2021.733513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 09/26/2023]
Abstract
The identification of natural allelic variations controlling quantitative traits could contribute to decipher metabolic adaptation mechanisms within different populations of the same species. Such variations could result from human-mediated selection pressures and participate to the domestication. In this study, the genetic causes of the phenotypic variability of the central carbon metabolism of Saccharomyces cerevisiae were investigated in the context of the enological fermentation. The genetic determinism of this trait was found out by a quantitative trait loci (QTL) mapping approach using the offspring of two strains belonging to the wine genetic group of the species. A total of 14 QTL were identified from which 8 were validated down to the gene level by genetic engineering. The allelic frequencies of the validated genes within 403 enological strains showed that most of the validated QTL had allelic variations involving flor yeast specific alleles. Those alleles were brought in the offspring by one parental strain that contains introgressions from the flor yeast genetic group. The causative genes identified are functionally linked to quantitative proteomic variations that would explain divergent metabolic features of wine and flor yeasts involving the tricarboxylic acid cycle (TCA), the glyoxylate shunt and the homeostasis of proton and redox cofactors. Overall, this work led to the identification of genetic factors that are hallmarks of adaptive divergence between flor yeast and wine yeast in the wine biotope. These results also reveal that introgressions originated from intraspecific hybridization events promoted phenotypic variability of carbon metabolism observed in wine strains.
Collapse
Affiliation(s)
- Emilien Peltier
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Charlotte Vion
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Omar Abou Saada
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Philippe Marullo
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
8
|
Peltier E, Bibi-Triki S, Dutreux F, Caradec C, Friedrich A, Llorente B, Schacherer J. Dissection of quantitative trait loci in the Lachancea waltii yeast species highlights major hotspots. G3 (BETHESDA, MD.) 2021; 11:jkab242. [PMID: 34544138 PMCID: PMC8496267 DOI: 10.1093/g3journal/jkab242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Dissecting the genetic basis of complex trait remains a real challenge. The budding yeast Saccharomyces cerevisiae has become a model organism for studying quantitative traits, successfully increasing our knowledge in many aspects. However, the exploration of the genotype-phenotype relationship in non-model yeast species could provide a deeper insight into the genetic basis of complex traits. Here, we have studied this relationship in the Lachancea waltii species which diverged from the S. cerevisiae lineage prior to the whole-genome duplication. By performing linkage mapping analyses in this species, we identified 86 quantitative trait loci (QTL) impacting the growth in a large number of conditions. The distribution of these loci across the genome has revealed two major QTL hotspots. A first hotspot corresponds to a general growth QTL, impacting a wide range of conditions. By contrast, the second hotspot highlighted a trade-off with a disadvantageous allele for drug-free conditions which proved to be advantageous in the presence of several drugs. Finally, a comparison of the detected QTL in L. waltii with those which had been previously identified for the same trait in a closely related species, Lachancea kluyveri was performed. This analysis clearly showed the absence of shared QTL across these species. Altogether, our results represent a first step toward the exploration of the genetic architecture of quantitative trait across different yeast species.
Collapse
Affiliation(s)
- Emilien Peltier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Bertrand Llorente
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
9
|
Different genetic basis for alcohol dehydrogenase activity and plasticity in a novel alcohol environment for Drosophila melanogaster. Heredity (Edinb) 2020; 125:101-109. [PMID: 32483318 DOI: 10.1038/s41437-020-0323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/08/2022] Open
Abstract
Phenotypic plasticity is known to enhance population persistence, facilitate adaptive evolution and initiate novel phenotypes in novel environments. How plasticity can contribute or hinder adaptation to different environments hinges on its genetic architecture. Even though plasticity in many traits is genetically controlled, whether and how plasticity's genetic architecture might change in novel environments is still unclear. Because much of gene expression can be environmentally influenced, each environment may trigger different sets of genes that influence a trait. Using a quantitative trait loci (QTL) approach, we investigated the genetic basis of plasticity in a classic functional trait, alcohol dehydrogenase (ADH) activity in D. melanogaster, across both historical and novel alcohol environments. Previous research in D. melanogaster has also demonstrated that ADH activity is plastic in response to alcohol concentration in substrates used by both adult flies and larvae. We found that across all environments tested, ADH activity was largely influenced by a single QTL encompassing the Adh-coding gene and its known regulatory locus, delta-1. After controlling for the allelic variation of the Adh and delta-1 loci, we found additional but different minor QTLs in the 0 and 14% alcohol environments. In contrast, we discovered no major QTL for plasticity itself, including the Adh locus, regardless of the environmental gradients. This suggests that plasticity in ADH activity is likely influenced by many loci with small effects, and that the Adh locus is not environmentally sensitive to dietary alcohol.
Collapse
|
10
|
Macêdo-Sales PA, Souza LOP, Della-Terra PP, Lozoya-Pérez NE, Machado RLD, Rocha EMDSD, Lopes-Bezerra LM, Guimarães AJ, Rodrigues AM, Mora-Montes HM, Santos ALSD, Baptista ARDS. Coinfection of domestic felines by distinct Sporothrix brasiliensis in the Brazilian sporotrichosis hyperendemic area. Fungal Genet Biol 2020; 140:103397. [PMID: 32325170 DOI: 10.1016/j.fgb.2020.103397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Microbial interactions may impact patient's diagnosis, prognosis and treatment. Sporotrichosis is a hyperendemic neglected zoonosis in Brazil, caused by Sporothrix brasiliensis. Four pairs of clinical isolates of Sporothrix were recovered from four diseased cats (CIM01-CIM04, two isolates per animal) raising the possibility of coinfection in a sporotrichosis hyperendemic area, Brazil. Each isolate of the pair had distinct pigmentation in mycological culture, and was designated as "Light" or "Dark", for low and high pigmentation, respectively. Dark isolates reacted strongly with monoclonal antibodies to melanin (p ≤ 0.05) by both ELISA and FACS quantitation, and displayed a ring pattern with some regions exhibiting higher punctuated labeling at cell wall by immunofluorescence. In turn, Light isolates reacted less intensely, with few and discrete punctuated labeling at the cell wall. PCR identified all isolates as S. brasiliensis, MAT1-2 idiomorph. Sequencing of β-tubulin and calmodulin genes followed by phylogenetic analysis placed all eight isolates within the same cluster as others from the Brazilian hyperendemic area. The ability of these strains to stimulate cytokine production by human PBMCs (Peripheral blood mononuclear cells) was also analyzed. CIM01 and CIM03 Light and Dark isolates showed similar cytokine profiles to the control strain, while CIM02 and CIM04 behaved differently (p < 0.001), suggesting that differences in the surface of the isolates can influence host-fungus interaction. MICs for amphotericin B, terbinafine, caspofungin, micafungin, itraconazole, fluconazole, and voriconazole were obtained (CLSI M38-A2/M27-A3). Pairwise comparisons showed distinct MICs between Sporothrix Light and Dark isolates, higher than at least two-fold dilutions, to at least one of the antifungals tested. Isolates from the same pair displayed discrepancies in relation to fungistatic or fungicidal drug activity, notably after itraconazole exposure. Since S. brasiliensis Light and Dark isolates show disparate phenotypic parameters it is quite possible that coinfection represents a common occurrence in the hyperendemic area, with potential clinical implications on feline sporotrichosis dynamics. Alternatively, future studies will address if this specie may have, as reported for other fungi, broad phenotypic plasticity.
Collapse
Affiliation(s)
| | - Lucieri Olegario Pereira Souza
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paula Portella Della-Terra
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Nancy Edith Lozoya-Pérez
- Department of Biology, Division of Exact and Natural Sciences, Universidad de Guanajuato, Gto, Mexico
| | | | | | | | - Allan Jefferson Guimarães
- Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói, RJ, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Héctor Manuel Mora-Montes
- Department of Biology, Division of Exact and Natural Sciences, Universidad de Guanajuato, Gto, Mexico
| | - André Luis Souza Dos Santos
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
11
|
Marshall MM, Remington DL, Lacey EP. Two reproductive traits show contrasting genetic architectures in Plantago lanceolata. Mol Ecol 2019; 29:272-291. [PMID: 31793079 DOI: 10.1111/mec.15320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
In many species, temperature-sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large-effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool- and warm-temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype-by-sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single-environment values for both traits. We identified a large-effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller-effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.
Collapse
Affiliation(s)
- Matthew M Marshall
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - David L Remington
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Elizabeth P Lacey
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
12
|
Peltier E, Friedrich A, Schacherer J, Marullo P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front Genet 2019; 10:683. [PMID: 31396264 PMCID: PMC6664092 DOI: 10.3389/fgene.2019.00683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is certainly the prime industrial microorganism and is related to many biotechnological applications including food fermentations, biofuel production, green chemistry, and drug production. A noteworthy characteristic of this species is the existence of subgroups well adapted to specific processes with some individuals showing optimal technological traits. In the last 20 years, many studies have established a link between quantitative traits and single-nucleotide polymorphisms found in hundreds of genes. These natural variations constitute a pool of QTNs (quantitative trait nucleotides) that modulate yeast traits of economic interest for industry. By selecting a subset of genes functionally validated, a total of 284 QTNs were inventoried. Their distribution across pan and core genome and their frequency within the 1,011 Saccharomyces cerevisiae genomes were analyzed. We found that 150 of the 284 QTNs have a frequency lower than 5%, meaning that these variants would be undetectable by genome-wide association studies (GWAS). This analysis also suggests that most of the functional variants are private to a subpopulation, possibly due to their adaptive role to specific industrial environment. In this review, we provide a literature survey of their phenotypic impact and discuss the opportunities and the limits of their use for industrial strain selection.
Collapse
Affiliation(s)
- Emilien Peltier
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Anne Friedrich
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Philippe Marullo
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
13
|
Rong M, Zheng X, Ye M, Bai J, Xie X, Jin Y, He X. Phenotypic Plasticity of Staphylococcus aureus in Liquid Medium Containing Vancomycin. Front Microbiol 2019; 10:809. [PMID: 31057516 PMCID: PMC6477096 DOI: 10.3389/fmicb.2019.00809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Phenotypic plasticity enables individuals to develop different phenotypes in a changing environment and promotes adaptive evolution. Genome-wide association study (GWAS) facilitates the study of the genetic basis of bacterial phenotypes, and provides a new opportunity for bacterial phenotypic plasticity research. To investigate the relationship between growth plasticity and genotype in bacteria, 41 Staphylococcus aureus strains, including 29 vancomycin-intermediate S. aureus (VISA) strains, were inoculated in the absence or presence of vancomycin for 48 h. Growth curves and maximum growth rates revealed that strains with the same minimum inhibitory concentration (MIC) showed different levels of plasticity in response to vancomycin. A bivariate GWAS was performed to map single-nucleotide polymorphisms (SNPs) associated with growth plasticity. In total, 227 SNPs were identified from 14 time points, while 15 high-frequency SNPs were mapped to different annotated genes. The P-values and growth variations between the two cultures suggest that non-coding region (SNP 738836), ebh (SNP 1394043), drug transporter (SNP 264897), and pepV (SNP 1775112) play important roles in the growth plasticity of S. aureus. Our study provides an alternative strategy for dissecting the adaptive growth of S. aureus in vancomycin and highlights the feasibility of bivariate GWAS in bacterial phenotypic plasticity research.
Collapse
Affiliation(s)
- Mengdi Rong
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xuyang Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jun Bai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
14
|
Brilhante RSN, Alencar LPD, Bandeira SP, Sales JA, Evangelista AJDJ, Serpa R, Cordeiro RDA, Pereira-Neto WDA, Sidrim JJC, Castelo-Branco DDSCM, Rocha MFG. Exposure of Candida parapsilosis complex to agricultural azoles: An overview of the role of environmental determinants for the development of resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1231-1238. [PMID: 30308811 DOI: 10.1016/j.scitotenv.2018.09.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/21/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
This work investigated the phenotypic behavior of Candida parapsilosis species complex in response to exposure to agricultural azoles and fluconazole. Three fluconazole-susceptible strains of C. parapsilosis sensu stricto, C. orthopsilosis and C. metapsilosis were used. Initial minimum inhibitory concentrations (iMICs) for agricultural and clinical azoles were determined by broth microdilution. Then, the strains were exposed to tebuconazole, tetraconazole and fluconazole for 15 days, at concentrations that were two-folded daily, starting at one-eighth the iMIC (iMIC/8) up to 64 times iMIC (64xiMIC). After 15-day-exposure, antifungal susceptibility, biofilm formation, CDR, MDR and ERG expression were evaluated. The three cryptic species developed tolerance to the antifungals they were exposed and presented reduction (P < 0.05) in fluconazole susceptibility. In addition, C. parapsilosis sensu stricto and C. metapsilosis also presented reduced susceptibility to voriconazole, after fluconazole exposure. Azole exposure decreased (P < 0.05) biofilm production by C. parapsilosis sensu stricto and C. orthopsilosis and increased (P < 0.05) the expression of ERG11 in all tested strains. The results show that exposure to agricultural azoles and fluconazole induces changes in the phenotypic behavior and gene expression by the three cryptic species of C. parapsilosis complex, highlighting the importance of environmental determinants for the development of antifungal resistance.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas Pereira de Alencar
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jamille Alencar Sales
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Antônio José de Jesus Evangelista
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosana Serpa
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil; School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
15
|
Peltier E, Sharma V, Martí Raga M, Roncoroni M, Bernard M, Jiranek V, Gibon Y, Marullo P. Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices. BMC Genomics 2018; 19:772. [PMID: 30409183 PMCID: PMC6225642 DOI: 10.1186/s12864-018-5145-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022] Open
Abstract
Background The ability of a genotype to produce different phenotypes according to its surrounding environment is known as phenotypic plasticity. Within different individuals of the same species, phenotypic plasticity can vary greatly. This contrasting response is caused by gene-by-environment interactions (GxE). Understanding GxE interactions is particularly important in agronomy, since selected breeds and varieties may have divergent phenotypes according to their growing environment. Industrial microbes such as Saccharomyces cerevisiae are also faced with a large range of fermentation conditions that affect their technological properties. Finding the molecular determinism of such variations is a critical task for better understanding the genetic bases of phenotypic plasticity and can also be helpful in order to improve breeding methods. Results In this study we implemented a QTL mapping program using two independent cross (~ 100 progeny) in order to investigate the molecular basis of yeast phenotypic response in a wine fermentation context. Thanks to whole genome sequencing approaches, both crosses were genotyped, providing saturated genetic maps of thousands of markers. Linkage analyses allowed the detection of 78 QTLs including 21 with significant interaction with the environmental conditions. Molecular dissection of a major QTL demonstrated that the sulfite pump Ssu1p has a pleiotropic effect and impacts the phenotypic plasticity of several traits. Conclusions The detection of QTLs and their interactions with environment emphasizes the complexity of yeast industrial traits. The validation of the interaction of SSU1 allelic variants with the nature of the fermented juice increases knowledge about the impact of the sulfite pump during fermentation. All together these results pave the way for exploiting and deciphering the genetic determinism of phenotypic plasticity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5145-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emilien Peltier
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France. .,Biolaffort, Bordeaux, France.
| | - Vikas Sharma
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France
| | - Maria Martí Raga
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Tarragona, Spain
| | - Miguel Roncoroni
- Wine Science Programme, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Margaux Bernard
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Biolaffort, Bordeaux, France
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Urrbrae, South Australia, 5064, Australia
| | - Yves Gibon
- INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, F-33883, Villenave d'Ornon, France
| | - Philippe Marullo
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Biolaffort, Bordeaux, France
| |
Collapse
|
16
|
Yadav A, Sinha H. Gene-gene and gene-environment interactions in complex traits in yeast. Yeast 2018; 35:403-416. [PMID: 29322552 DOI: 10.1002/yea.3304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 12/23/2017] [Indexed: 01/05/2023] Open
Abstract
One of the fundamental questions in biology is how the genotype regulates the phenotype. An increasing number of studies indicate that, in most cases, the effect of a genetic locus on the phenotype is context-dependent, i.e. it is influenced by the genetic background and the environment in which the phenotype is measured. Still, the majority of the studies, in both model organisms and humans, that map the genetic regulation of phenotypic variation in complex traits primarily identify additive loci with independent effects. This does not reflect an absence of the contribution of genetic interactions to phenotypic variation, but instead is a consequence of the technical limitations in mapping gene-gene interactions (GGI) and gene-environment interactions (GEI). Yeast, with its detailed molecular understanding, diverse population genomics and ease of genetic manipulation, is a unique and powerful resource to study the contributions of GGI and GEI in the regulation of phenotypic variation. Here we review studies in yeast that have identified GGI and GEI that regulate phenotypic variation, and discuss the contribution of these findings in explaining missing heritability of complex traits, and how observations from these GGI and GEI studies enhance our understanding of the mechanisms underlying genetic robustness and adaptability that shape the architecture of the genotype-phenotype map.
Collapse
Affiliation(s)
- Anupama Yadav
- Center for Cancer Systems Biology, and Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.,Robert Bosch Centre for Data Sciences and Artificial Intelligence, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
17
|
Jolly MK, Tripathi SC, Somarelli JA, Hanash SM, Levine H. Epithelial/mesenchymal plasticity: how have quantitative mathematical models helped improve our understanding? Mol Oncol 2017; 11:739-754. [PMID: 28548388 PMCID: PMC5496493 DOI: 10.1002/1878-0261.12084] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
Phenotypic plasticity, the ability of cells to reversibly alter their phenotypes in response to signals, presents a significant clinical challenge to treating solid tumors. Tumor cells utilize phenotypic plasticity to evade therapies, metastasize, and colonize distant organs. As a result, phenotypic plasticity can accelerate tumor progression. A well‐studied example of phenotypic plasticity is the bidirectional conversions among epithelial, mesenchymal, and hybrid epithelial/mesenchymal (E/M) phenotype(s). These conversions can alter a repertoire of cellular traits associated with multiple hallmarks of cancer, such as metabolism, immune evasion, invasion, and metastasis. To tackle the complexity and heterogeneity of these transitions, mathematical models have been developed that seek to capture the experimentally verified molecular mechanisms and act as ‘hypothesis‐generating machines’. Here, we discuss how these quantitative mathematical models have helped us explain existing experimental data, guided further experiments, and provided an improved conceptual framework for understanding how multiple intracellular and extracellular signals can drive E/M plasticity at both the single‐cell and population levels. We also discuss the implications of this plasticity in driving multiple aggressive facets of tumor progression.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
18
|
The Genomic Architecture of Interactions Between Natural Genetic Polymorphisms and Environments in Yeast Growth. Genetics 2016; 205:925-937. [PMID: 27903611 DOI: 10.1534/genetics.116.195487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Gene-environment interaction (G×E) refers to the phenomenon that the same mutation has different phenotypic effects in different environments. Although quantitative trait loci (QTLs) exhibiting G×E have been reported, little is known about the general properties of G×E, and those of its underlying QTLs. Here, we use the genotypes of 1005 segregants from a cross between two Saccharomyces cerevisiae strains, and the growth rates of these segregants in 47 environments, to identify growth rate QTLs (gQTLs) in each environment, and QTLs that have different growth effects in each pair of environments (g×eQTLs) . The average number of g×eQTLs identified between two environments is 0.58 times the number of unique gQTLs identified in these environments, revealing a high abundance of G×E. Eighty-seven percent of g×eQTLs belong to gQTLs, supporting the practice of identifying g×eQTLs from gQTLs. Most g×eQTLs identified from gQTLs have concordant effects between environments, but, as the effect size of a mutation in one environment enlarges, the probability of antagonism in the other environment increases. Antagonistic g×eQTLs are enriched in dissimilar environments. Relative to gQTLs, g×eQTLs tend to occur at intronic and synonymous sites. The gene ontology (GO) distributions of gQTLs and g×eQTLs are significantly different, as are those of antagonistic and concordant g×eQTLs. Simulations based on the yeast data showed that ignoring G×E causes substantial missing heritability. Together, our findings reveal the genomic architecture of G×E in yeast growth, and demonstrate the importance of G×E in explaining phenotypic variation and missing heritability.
Collapse
|