1
|
Izzo LT, Reyes T, Meesala S, Ireland AS, Yang S, Sunil HS, Cheng XC, Tserentsoodol N, Hawgood SB, Patz EF, Witt BL, Tyson DR, O’Donnell KA, Oliver TG. KLF4 promotes a KRT13+ hillock-like state in squamous lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.641898. [PMID: 40161723 PMCID: PMC11952405 DOI: 10.1101/2025.03.10.641898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Lung squamous cell carcinoma (LUSC) is basal-like subtype of lung cancer with limited treatment options. While prior studies have identified tumor-propagating cell states in squamous tumors, the broader landscape of intra-tumoral heterogeneity within LUSC remains poorly understood. Here, we employ Sox2-driven mouse models, organoid cultures, and single-cell transcriptomic analyses to uncover previously unrecognized levels of cell fate diversity within LUSC. Specifically, we identify a KRT13+ hillock-like population of slower-dividing tumor cells characterized by immunomodulatory gene expression signatures. The tumor hillock-like state is conserved across multiple animal models and is present in the majority of human LUSCs as well as head and neck and esophageal squamous tumors. Our findings shed light on the cellular origins of lung hillock-like states: normal club cells give rise to tumors with luminal hillock-like populations, while basal-like tumor-propagating cells transition into basal hillock-like states, resembling homeostatic cellular responses to lung injury. Mechanistically, we identify KLF4 as a key transcriptional regulator of the hillock-like state, both necessary and sufficient to induce KRT13 expression. Together, these results provide new molecular insights into cell fate plasticity that underlies intra-tumoral heterogeneity in LUSC, offering potential avenues for new therapeutic strategies.
Collapse
Affiliation(s)
- Luke T. Izzo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Tony Reyes
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Srijan Meesala
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Steven Yang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Hari Shankar Sunil
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiao Chun Cheng
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Nomi Tserentsoodol
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Edward F. Patz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Radiology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Kathryn A. O’Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Lead contact: Trudy G. Oliver
| |
Collapse
|
2
|
Yu W, Wang C, Shang Z, Tian J. Unveiling novel insights in prostate cancer through single-cell RNA sequencing. Front Oncol 2023; 13:1224913. [PMID: 37746302 PMCID: PMC10514910 DOI: 10.3389/fonc.2023.1224913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a cutting-edge technology that provides insights at the individual cell level. In contrast to traditional bulk RNA-seq, which captures gene expression at an average level and may overlook important details, scRNA-seq examines each individual cell as a fundamental unit and is particularly well-suited for identifying rare cell populations. Analogous to a microscope that distinguishes various cell types within a tissue sample, scRNA-seq unravels the heterogeneity and diversity within a single cell species, offering great potential as a leading sequencing method in the future. In the context of prostate cancer (PCa), a disease characterized by significant heterogeneity and multiple stages of progression, scRNA-seq emerges as a powerful tool for uncovering its intricate secrets.
Collapse
Affiliation(s)
| | | | - Zhiqun Shang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jing Tian
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Zhang M, Zhu J, Zhang P, Li L, Min M, Li T, He W. Development and validation of cancer-associated fibroblasts-related gene landscape in prognosis and immune microenvironment of bladder cancer. Front Oncol 2023; 13:1174252. [PMID: 37397364 PMCID: PMC10309557 DOI: 10.3389/fonc.2023.1174252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Backgrounds Bladder cancer (BLCA) is one of the most prevalent cancers of the genitourinary system, the clinical outcomes of patients with BLCA are bad, and the morbidity rate is high. One of the key components of the tumor microenvironment (TME) is cancer-associated fibroblasts (CAFs) which are critically involved in BLCA tumorigenesis. Previous studies have shown the involvement of CAFs in tumor growth, cancer progression, immune evasion, angiogenesis, and chemoresistance in several cancers such as breast, colon, pancreatic, ovarian, and prostate cancers. However, only a few studies have shown the role of CAFs in the occurrence and development of BLCA. Methods We have retrieved and merged the data on RNA-sequencing of patients with BLCA from databases including "the Cancer Genome Atlas" and "Gene Expression Omnibus." Next, we compared the differences in CAFs-related genes (CRGs) expression between normal and BLCA tissues. Based on CRGs expression, we randomly divided patients into two groups. Next, we determined the correlation between CAFs subtypes and differentially expressed CRGs (DECRGs) between the two subtypes. Furthermore, the "Gene Ontology" and "Kyoto Encyclopedia of Genes and Genomes pathway" enrichment analyses were conducted to determine the functional characteristics between the DECRGs and clinicopathology. Results We identified five genes (POF1B, ARMCX1, ALDOC, C19orf33, and KRT13) using multivariate COX regression and "Least Absolute Shrinkage and Selection Operator (LASSO) COX regression analysis" for developing a prognostic model and calculating the CRGs-risk score. The TME, mutation, CSC index, and drug sensitivity were also analyzed. Conclusion We constructed a novel five- CRGs prognostic model, which sheds light on the roles of CAFs in BLCA.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Zhang
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Lingxun Li
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Min Min
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Takenaka W, Yokoyama Y, Ikehata K, Kouda S, Hirose H, Minami K, Hamada Y, Mori S, Koizumi M, Yamamoto H. KRT13 is upregulated in pancreatic cancer stem-like cells and associated with radioresistance. JOURNAL OF RADIATION RESEARCH 2023; 64:284-293. [PMID: 36610719 PMCID: PMC10036105 DOI: 10.1093/jrr/rrac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Pancreatic cancer is one of the most aggressive cancers and the seventh leading cause of cancer-associated death in the world. Radiation is performed as an adjuvant therapy as well as anti-cancer drugs. Because cancer stem-like cells (CSCs) are considered to be radioresistant and cause recurrence and metastasis, understanding their properties is required for the development of novel therapeutic strategies. To investigate the CSC properties of pancreatic cancer cells, we used a pancreatic CSC model, degron (++) cells, which have low proteasome activity. Degron (++) cells displayed radioresistance in comparison with control cells. Using Ribonucleic acid (RNA) sequencing, we successfully identified KRT13 as a candidate gene responsible for radioresistance. Knockdown of KRT13 sensitized the degron (++) cells to radiation. Furthermore, a database search revealed that KRT13 is upregulated in pancreatic cancer cell lines and that high expression of KRT13 is associated with poorer prognosis. These results indicate that a combination therapy of KRT13 knockdown and radiation could hold therapeutic promise in pancreatic cancer.
Collapse
Affiliation(s)
- Wataru Takenaka
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Corresponding author. Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan. Tel: +81-6-6879-2595; Fax: +81-6-6879-2595; E-mail:
| | - Katsuya Ikehata
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Shihori Kouda
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Haruka Hirose
- Department of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya city, Nagoya, 466-8550, Japan
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Yoshinosuke Hamada
- Department of Health Economics and Management, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
- Department of Pediatric Dentistry, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata city, Osaka, 573-1121, Japan
| | - Seiji Mori
- Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences, 1-26-16 Nankokita, Suminoe-ku, Osaka city, Osaka, 559-8611, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Zhao J, Guan K, Xing J. Construction and evaluation of an aging-associated genes-based model for pancreatic adenocarcinoma prognosis and therapies. Int J Immunopathol Pharmacol 2023; 37:3946320231172072. [PMID: 37072128 PMCID: PMC10127222 DOI: 10.1177/03946320231172072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Objectives: Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor. Despite extensive research, the precise role of aging-related genes in the initiation, microenvironment regulation, and progression of PAAD remains unclear.Methods: Patients with PAAD were selected from the International Cancer Genome Consortium (ICGC), and The Cancer Genome Atlas (TCGA) cohorts and the cell senescence-associated genes were obtained from CellAge. ConsensusClusterPlus was utilized for cluster identification. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct a prognosis prediction model.Results: We identified three clusters (C1, C2, and C3) based on aging-associated gene profiles. The C1 cluster had a shorter overall survival time, advanced clinical grades, lower immune ESTIMATE score, and tumor immune dysfunction and exclusion (TIDE) score than the C3 subgroup. Moreover, signaling pathways for cell cycle activation were enriched in the C1 cluster. We also identified eight hub genes and constructed a risk model. The high cellular senescence-related signature (CSRS) score subtype exhibited poor prognosis, advanced clinical grades, M2 macrophage infiltration, higher immune checkpoint gene expression, and lower immunotherapeutic benefits.Conclusion: Our risk score model shows high prediction accuracy and survival prediction ability in individual clinical prognosis and pre-immunotherapy evaluation.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Chin
| | - Kelei Guan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Chin
| | - Jiyuan Xing
- Infectious Diseases Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Yin L, Li Q, Mrdenovic S, Chu GCY, Wu BJ, Bu H, Duan P, Kim J, You S, Lewis MS, Liang G, Wang R, Zhau HE, Chung LWK. KRT13 promotes stemness and drives metastasis in breast cancer through a plakoglobin/c-Myc signaling pathway. Breast Cancer Res 2022; 24:7. [PMID: 35078507 PMCID: PMC8788068 DOI: 10.1186/s13058-022-01502-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background Keratins (KRTs) are intermediate filament proteins that interact with multiple regulatory proteins to initiate signaling cascades. Keratin 13 (KRT13) plays an important role in breast cancer progression and metastasis. The objective of this study is to elucidate the mechanism by which KRT13 promotes breast cancer growth and metastasis.
Methods The function and mechanisms of KRT13 in breast cancer progression and metastasis were assessed by overexpression and knockdown followed by examination of altered behaviors in breast cancer cells and in xenograft tumor formation in mouse mammary fat pad. Human breast cancer specimens were examined by immunohistochemistry and multiplexed quantum dot labeling analysis to correlate KRT13 expression to breast cancer progression and metastasis. Results KRT13-overexpressing MCF7 cells displayed increased proliferation, invasion, migration and in vivo tumor growth and metastasis to bone and lung. Conversely, KRT13 knockdown inhibited the aggressive behaviors of HCC1954 cells. At the molecular level, KRT13 directly interacted with plakoglobin (PG, γ-catenin) to form complexes with desmoplakin (DSP). This complex interfered with PG expression and nuclear translocation and abrogated PG-mediated suppression of c-Myc expression, while the KRT13/PG/c-Myc signaling pathway increased epithelial to mesenchymal transition and stem cell-like phenotype. KRT13 expression in 58 human breast cancer tissues was up-regulated especially at the invasive front and in metastatic specimens (12/18) (p < 0.05). KRT13 up-regulation in primary breast cancer was associated with decreased overall patient survival. Conclusions This study reveals that KRT13 promotes breast cancer cell growth and metastasis via a plakoglobin/c-Myc pathway. Our findings reveal a potential novel pathway for therapeutic targeting of breast cancer progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01502-6.
Collapse
Affiliation(s)
- Lijuan Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Qinlong Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Stefan Mrdenovic
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Gina Chia-Yi Chu
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Boyang Jason Wu
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Duan
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael S Lewis
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Gangning Liang
- Department of Urology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Ruoxiang Wang
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Leland W K Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| |
Collapse
|
7
|
Li P, Qiao G, Lu J, Ji W, Gao C, Qi F. PVT1 is a prognostic marker associated with immune invasion of bladder urothelial carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:169-190. [PMID: 34902986 DOI: 10.3934/mbe.2022009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmacytoma variant translocation 1 (PVT1) is involved in multiple signaling pathways and plays an important regulatory role in a variety of malignant tumors. However, its role in the prognosis and immune invasion of bladder urothelial carcinoma (BLCA) remains unclear. This study investigated the expression of PVT1 in tumor tissue and its relationship with immune invasion, and determined its prognostic role in patients with BLCA. Patients were identified from the cancer genome atlas (TCGA). The enrichment pathway and function of PVT1 were explained by gene ontology (GO) term analysis, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA), and the degree of immune cell infiltration was quantified. Kaplan-Meier analysis and Cox regression were used to analyze the correlation between PVT1 and survival rate. PVT1-high BLCA patients had a lower 10-year disease-specific survival (DSS P < 0.05) and overall survival (OS P < 0.05). Multivariate Cox regression analysis showed that PVT1 (high vs. low) (P = 0.004) was an independent prognostic factor. A nomogram was used to predict the effect of PVT1 on the prognosis. PVT1 plays an important role in the progression and prognosis of BLCA and can be used as a medium biomarker to predict survival after cystectomy.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Gangjie Qiao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
8
|
Hu WY, Hu DP, Xie L, Nonn L, Lu R, Abern M, Shioda T, Prins GS. Keratin Profiling by Single-Cell RNA-Sequencing Identifies Human Prostate Stem Cell Lineage Hierarchy and Cancer Stem-Like Cells. Int J Mol Sci 2021; 22:ijms22158109. [PMID: 34360875 PMCID: PMC8346986 DOI: 10.3390/ijms22158109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023] Open
Abstract
Single prostate stem cells can generate stem and progenitor cells to form prostaspheres in 3D culture. Using a prostasphere-based label retention assay, we recently identified keratin 13 (KRT13)-enriched prostate stem cells at single-cell resolution, distinguishing them from daughter progenitors. Herein, we characterized the epithelial cell lineage hierarchy in prostaspheres using single-cell RNA-seq analysis. Keratin profiling revealed three clusters of label-retaining prostate stem cells; cluster I represents quiescent stem cells (PSCA, CD36, SPINK1, and KRT13/23/80/78/4 enriched), while clusters II and III represent active stem and bipotent progenitor cells (KRT16/17/6 enriched). Gene set enrichment analysis revealed enrichment of stem and cancer-related pathways in cluster I. In non-label-retaining daughter progenitor cells, three clusters were identified; cluster IV represents basal progenitors (KRT5/14/6/16 enriched), while clusters V and VI represent early and late-stage luminal progenitors, respectively (KRT8/18/10 enriched). Furthermore, MetaCore analysis showed enrichment of the “cytoskeleton remodeling–keratin filaments” pathway in cancer stem-like cells from human prostate cancer specimens. Along with common keratins (KRT13/23/80/78/4) in normal stem cells, unique keratins (KRT10/19/6C/16) were enriched in cancer stem-like cells. Clarification of these keratin profiles in human prostate stem cell lineage hierarchy and cancer stem-like cells can facilitate the identification and therapeutic targeting of prostate cancer stem-like cells.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
- Correspondence:
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Lishi Xie
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Ranli Lu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Michael Abern
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
| | - Toshihiro Shioda
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.-P.H.); (L.X.); (R.L.); (M.A.); (G.S.P.)
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
9
|
Transcriptomic analysis of castration, chemo-resistant and metastatic prostate cancer elucidates complex genetic crosstalk leading to disease progression. Funct Integr Genomics 2021; 21:451-472. [PMID: 34184132 DOI: 10.1007/s10142-021-00789-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/05/2020] [Accepted: 05/06/2021] [Indexed: 12/22/2022]
Abstract
Prostate adenocarcinoma, with its rising numbers and high fatality rate, is a daunting healthcare challenge to clinicians and researchers alike. The mainstay of our meta-analysis was to decipher differentially expressed genes (DEGs), their corresponding transcription factors (TFs), miRNAs (microRNA) and interacting pathways underlying the progression of prostate cancer (PCa). We have chosen multiple datasets from primary, castration-resistant, chemo-resistant and metastatic prostate cancer stages for investigation. From our tissue-specific and disease-specific co-expression networks, fifteen hub genes such as ACTB, ACTN1, CDH1, CDKN1A, DDX21, ELF3, FLNA, FLNC, IKZF1, ILK, KRT13, KRT18, KRT19, SVIL and TRIM29 were identified and validated by molecular complex detection analysis as well as survival analysis. In our attempt to highlight hub gene-associated mutations and drug interactions, FLNC was found to be most commonly mutated and CDKN1A gene was found to have highest druggability. Moreover, from DAVID and gene set enrichment analysis, the focal adhesion and oestrogen signalling pathways were found enriched which indicates the involvement of hub genes in tumour invasiveness and metastasis. Finally by Enrichr tool and miRNet, we identified transcriptional factors SNAI2, TP63, CEBPB and KLF11 and microRNAs, namely hsa-mir-1-3p, hsa-mir-145-5p, hsa-mir-124-3p and hsa-mir-218-5p significantly controlling the hub gene expressions. In a nutshell, our report will help to gain a deeper insight into complex molecular intricacies and thereby unveil the probable biomarkers and therapeutic targets involved with PCa progression.
Collapse
|
10
|
Nguyen TQ, Hamada A, Yamada K, Higaki M, Shintani T, Yoshioka Y, Toratani S, Okamoto T. Enhanced KRT13 gene expression bestows radiation resistance in squamous cell carcinoma cells. In Vitro Cell Dev Biol Anim 2021; 57:300-314. [PMID: 33537930 DOI: 10.1007/s11626-020-00542-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Cancer metastasis and recurrence are potentially lethal. A small number of cancer cell groups called cancer stem cells (CSCs) have both stem cell capacity and cancer-forming ability and are reported to play important roles in cancer metastasis and recurrence. These CSCs are considered to be radiation-resistant (RR). Therefore, understanding the biological effects of radiation on squamous cell carcinoma (SCC) cell lines in vitro and in vivo might be worthwhile to circumvent radiation resistance. Currently, there are no reports on the establishment of RR-SCC cells in serum-free defined culture, which mimics biological mechanisms and prevents instability of using serum in the culture medium. We isolated radiation-resistant strains, designated A431-LDR and A431-HDR, from A431 cells derived from vulval SCC and irradiated them with a total dose of 60 Gy at a low-dose rate (2.2 Gy/d) (RM1000) and a high-dose rate (5 Gy/5.75min) in serum-free defined culture. These cells exhibited high sphere-forming and migration ability in vitro and high tumor-forming ability in nude mice xenografts. Overexpression of KRT13 in A431-RR cells might play a role in its radiation-resistant characteristics. These cells might be useful not only to study cancer stem cells but also to study the circumvention of radiation resistance by novel cancer treatment modalities.
Collapse
Affiliation(s)
- Tam Quang Nguyen
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- National Hospital of Odonto Stomatology, Ho Chi Minh City, Vietnam
| | - Atsuko Hamada
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Kaori Yamada
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Mirai Higaki
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoaki Shintani
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Yukio Yoshioka
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
- School of Medical Sciences, University of East Asia, Shimonoseki 751-8503, Japan.
| |
Collapse
|
11
|
Joseph DB, Turco AE, Vezina CM, Strand DW. Progenitors in prostate development and disease. Dev Biol 2021; 473:50-58. [PMID: 33529704 DOI: 10.1016/j.ydbio.2020.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
The prostate develops by epithelial budding and branching processes that occur during fetal and postnatal stages. The adult prostate demonstrates remarkable regenerative capacity, with the ability to regrow to its original size over multiple cycles of castration and androgen administration. This capacity for controlled regeneration prompted the search for an androgen-independent epithelial progenitor in benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is hypothesized to be a reawakening of ductal branching, resulting in the formation of new proximal glands, all while androgen levels are decreasing in the aging male. Advanced prostate cancer can be slowed with androgen deprivation, but resistance eventually occurs, suggesting the existence of an androgen-independent progenitor. Recent studies indicate that there are multiple castration-insensitive epithelial cell types in the proximal area of the prostate, but not all act as progenitors during prostate development or regeneration. This review highlights how recent cellular and anatomical studies are changing our perspective on the identity of the prostate progenitor.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anne E Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
12
|
Cheaito K, Bahmad HF, Jalloul H, Hadadeh O, Msheik H, El-Hajj A, Mukherji D, Al-Sayegh M, Abou-Kheir W. Epidermal Growth Factor Is Essential for the Maintenance of Novel Prostate Epithelial Cells Isolated From Patient-Derived Organoids. Front Cell Dev Biol 2020; 8:571677. [PMID: 33195205 PMCID: PMC7658326 DOI: 10.3389/fcell.2020.571677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related mortality and morbidity among males worldwide. Deciphering the biological mechanisms and molecular pathways involved in PCa pathogenesis and progression has been hindered by numerous technical limitations mainly attributed to the limited number of cell lines available, which do not recapitulate the diverse phenotypes of clinical disease. Indeed, PCa has proven problematic to establish as cell lines in culture due to its heterogeneity which remains a challenge, despite the various in vitro and in vivo model systems available. Growth factors have been shown to play a central role in the complex regulation of cell proliferation among hormone sensitive tumors, such as PCa. Here, we report the isolation and characterization of novel patient-derived prostate epithelial (which we named as AUB-PrC) cells from organoids culture system. We also assessed the role of epidermal growth factor (EGF) in culturing those cells. We profiled the AUB-PrC cells isolated from unaffected and tumor patient samples via depicting their molecular and epithelial lineage features through immunofluorescence staining and quantitative real-time PCR (qRT-PCR), as well as through functional assays and transcriptomic profiling through RNA sequencing. In addition, by optimizing a previously established prostate organoids culture system, we were able to grow human prostate epithelial cells using growth medium and EGF only. With these data collected, we were able to gain insight at the molecular architecture of novel human AUB-PrC cells, which might pave the way for deciphering the mechanisms that lead to PCa development and progression, and ultimately improving prognostic abilities and treatments.
Collapse
Affiliation(s)
- Katia Cheaito
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Albert El-Hajj
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
13
|
Henry GH, Malewska A, Joseph DB, Malladi VS, Lee J, Torrealba J, Mauck RJ, Gahan JC, Raj GV, Roehrborn CG, Hon GC, MacConmara MP, Reese JC, Hutchinson RC, Vezina CM, Strand DW. A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra. Cell Rep 2019; 25:3530-3542.e5. [PMID: 30566875 PMCID: PMC6411034 DOI: 10.1016/j.celrep.2018.11.086] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/17/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022] Open
Abstract
A comprehensive cellular anatomy of normal human prostate is essential for solving the cellular origins of benign prostatic hyperplasia and prostate cancer. The tools used to analyze the contribution of individual cell types are not robust. We provide a cellular atlas of the young adult human prostate and prostatic urethra using an iterative process of single-cell RNA sequencing (scRNA-seq) and flow cytometry on ~98,000 cells taken from different anatomical regions. Immunohistochemistry with newly derived cell type-specific markers revealed the distribution of each epithelial and stromal cell type on whole mounts, revising our understanding of zonal anatomy. Based on discovered cell surface markers, flow cytometry antibody panels were designed to improve the purification of each cell type, with each gate confirmed by scRNA-seq. The molecular classification, anatomical distribution, and purification tools for each cell type in the human prostate create a powerful resource for experimental design in human prostate disease. Using single-cell RNA sequencing, immunofluorescence, and flow cytometry, Henry et al. create a cellular anatomy of the normal human prostate and provide the tools to identify, isolate, and localize every cell type. They identify two additional epithelial cell types enriched in the prostatic urethra and proximal prostatic ducts.
Collapse
Affiliation(s)
- Gervaise H Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diya B Joseph
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA
| | - Venkat S Malladi
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jose Torrealba
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan J Mauck
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey C Gahan
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesh V Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claus G Roehrborn
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | - Ryan C Hutchinson
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Chu GCY, Chung LWK, Gururajan M, Hsieh CL, Josson S, Nandana S, Sung SY, Wang R, Wu JB, Zhau HE. Regulatory signaling network in the tumor microenvironment of prostate cancer bone and visceral organ metastases and the development of novel therapeutics. Asian J Urol 2018; 6:65-81. [PMID: 30775250 PMCID: PMC6363607 DOI: 10.1016/j.ajur.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
This article describes cell signaling network of metastatic prostate cancer (PCa) to bone and visceral organs in the context of tumor microenvironment and for the development of novel therapeutics. The article focuses on our recent progress in the understanding of: 1) The plasticity and dynamics of tumor–stroma interaction; 2) The significance of epigenetic reprogramming in conferring cancer growth, invasion and metastasis; 3) New insights on altered junctional communication affecting PCa bone and brain metastases; 4) Novel strategies to overcome therapeutic resistance to hormonal antagonists and chemotherapy; 5) Genetic-based therapy to co-target tumor and bone stroma; 6) PCa-bone-immune cell interaction and TBX2-WNTprotein signaling in bone metastasis; 7) The roles of monoamine oxidase and reactive oxygen species in PCa growth and bone metastasis; and 8) Characterization of imprinting cluster of microRNA, in tumor–stroma interaction. This article provides new approaches and insights of PCa metastases with emphasis on basic science and potential for clinical translation. This article referenced the details of the various approaches and discoveries described herein in peer-reviewed publications. We dedicate this article in our fond memory of Dr. Donald S. Coffey who taught us the spirit of sharing and the importance of focusing basic science discoveries toward translational medicine.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Murali Gururajan
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Bristol-Myer Squibb Company, Princeton, NJ, USA
| | - Chia-Ling Hsieh
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sajni Josson
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Oncoveda Cancer Research Center, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Srinivas Nandana
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Texas Tech University Health Sciences Center, Department of Cell Biology and Biochemistry, Lubbock, TX, USA
| | - Shian-Ying Sung
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ruoxiang Wang
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason Boyang Wu
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Hu WY, Hu DP, Xie L, Li Y, Majumdar S, Nonn L, Hu H, Shioda T, Prins GS. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution. Stem Cell Res 2017. [PMID: 28651114 DOI: 10.1016/j.scr.2017.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dan-Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lishi Xie
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ye Li
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shyama Majumdar
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Larisa Nonn
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hong Hu
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Toshi Shioda
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|