1
|
Luis-Hidalgo M, Planelles D, Piñana JL, Carbonell J, Amat P, Gómez-Seguí I, Guerreiro M, Caballero A, Torío A, Pascual-Cascón MJ, Boix F, Marín Rubio L, Vázquez L, Martínez-Pomar N, Cunill V, Sampol A, Ochoa J, Arbona C, Solano C. Frequency and Distribution of KIR Genotypes of Donors-Recipient Pairs in the Haploidentical Haematopoietic Stem Cell Transplantation Setting: Collaborative Study by the Spanish Working Group in Histocompatibility and Transplant Immunology (GETHIT) and the Spanish Haematopoietic Transplantation and Cell Therapy Group (GETH-TC). HLA 2025; 105:e70248. [PMID: 40396700 DOI: 10.1111/tan.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
There is limited information regarding the influence of KIR genotype, compared to the HLA system, in haploidentical haematopoietic stem cell transplantation (haplo-HSCT). This study aimed to determine the frequencies of KIR genotypes in Spanish haematologic patients undergoing haplo-HSCT. A study was conducted on 113 oncohaematological patients and their donors, treated across five centres that are members of the Spanish Working Group in Histocompatibility and Transplant Immunology (GETHIT) and the Spanish Haematopoietic Transplantation and Cell Therapy Group (GETH-TC). KIR typing was performed using PCR-rSSO or PCR-SSP. KIR genotypes were identified using the KIR Allele Frequency Net Database. Among donors, the most frequent KIR genotypes were Type 1 (28.3%), Type 2 (12.4%) and Type 4 (10.6%). In patients, Genotypes 1 (23.9%), 4 (23%) and 2 (14.2%) were most prevalent. Donors exhibited AA centromeric (46%) and telomeric (59.3%) types, while patients had a higher AB centromeric frequency (52.2%). Differences were observed in the BB centromeric type (3.5% patients; 16.8% donors, p = 0.002). The AB KIR genotype was the most common (70.8% donors; 75.2% patients). Most were classified as 'neutral' (61.9% donors; 73.5% patients). B-content score1 was the most common (48.7% patients; 33.6% donors). Notably, classification as best was rare (2.7% patients; 16.8% donors, p = 0.002). The study highlights the distribution of KIR genotypes in haplo-HSCT patients and donors, with Genotypes 1, 2 and 4 being the most prevalent. AB KIR genotypes and B-content score 1 were dominant. Moreover, KIR genotypes ID may serve as criteria for future investigation about the immunogenetic predisposition to malignant haematological diseases.
Collapse
Affiliation(s)
- Mar Luis-Hidalgo
- Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | | | | | - Juan Carbonell
- Instituto de investigación del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain
| | - Paula Amat
- Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | | | | | - Alberto Torío
- Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | - Francisco Boix
- Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | | | | | - Natalia Martínez-Pomar
- Hospital Universitario Son Espases, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Vanesa Cunill
- Hospital Universitario Son Espases, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Antonia Sampol
- Hospital Universitario Son Espases, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Julio Ochoa
- Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Cristina Arbona
- Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Carlos Solano
- Hospital Clínico Universitario de Valencia, Valencia, Spain
| |
Collapse
|
2
|
Krieger E, Qayyum R, Toor A. Increased donor inhibitory KIR are associated with reduced GVHD and improved survival following HLA-matched unrelated donor HCT in paediatric acute leukaemia. Br J Haematol 2024; 204:1935-1943. [PMID: 38442905 PMCID: PMC11090758 DOI: 10.1111/bjh.19356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Killer immunoglobulin-like receptor (KIR) and KIR-ligand (KIRL) interactions play an important role in natural killer cell-mediated effects after haematopoietic stem cell transplantation (HCT). Previous work has shown that accounting for known KIR-KIRL interactions may identify donors with optimal NK cell-mediated alloreactivity in the adult transplant setting. Paediatric acute leukaemia patients were retrospectively analysed, and KIR-KIRL combinations and maximal inhibitory KIR ligand (IM-KIR) scores were determined. Clinical outcomes were examined using a series of graphs depicting clinical events and endpoints. The graph methodology demonstrated that prognostic variables significant in the occurrence of specific clinical endpoints remained significant for relevant downstream events. KIR-KIRL combinations were significantly predictive for reduced grade 3-4 aGVHD likelihood, in patients transplanted with increased inhibitory KIR gene content and IM-KIR = 5 scores. Improvements were also observed in associated outcomes for both ALL and AML patients, including relapse-free survival, GRFS and overall survival. This study demonstrates that NK cell KIR HLA interactions may be relevant to the paediatric acute leukaemia transplant setting. Reduction in aGVHD suggests KIR effects may extend beyond NK cells. Moving forward clinical trials utilizing donors with a higher iKIR should be considered for URD HCT in paediatric recipients with acute leukaemia to optimize clinical outcomes.
Collapse
Affiliation(s)
- Elizabeth Krieger
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, USA
| | - Rehan Qayyum
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Amir Toor
- Lehigh Valley Health Network, Allentown, PA and Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Creegan M, Degler J, Paquin-Proulx D, Eller MA, Machmach K. OMIP-098: A 26 parameter, 24 color flow cytometry panel for human memory NK cell phenotyping. Cytometry A 2023; 103:941-946. [PMID: 37807668 PMCID: PMC10872854 DOI: 10.1002/cyto.a.24802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
This 26-parameter flow cytometry panel has been developed and optimized to analyze NK cell phenotype, using cryopreserved peripheral blood mononuclear cells (PBMCs) from people living with and without human immunodeficiency virus (PLWH, PWOH). Our panel is designed for the analysis of several parameters of total NK cells and memory NK cell subsets including markers of maturation, activation, and proliferation, as well as activating and inhibitory receptors. Other tissues have not been tested (Table 1 ).
Collapse
Affiliation(s)
- Matthew Creegan
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Justin Degler
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Dominic Paquin-Proulx
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Michael A. Eller
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
- Present address: Vaccine Research Program, Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), MD, USA
| | - Kawthar Machmach
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| |
Collapse
|
4
|
Ameen R, Titus R, Geo JA, Al Shemmari S, Geraghty DE, Pyo CW, Askar M. KIR genotype and haplotype repertoire in Kuwaiti healthy donors, hematopoietic cell transplant recipients and healthy family members. HLA 2023; 102:179-191. [PMID: 36960942 DOI: 10.1111/tan.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
The gene complex located on chromosome 19q13.4 encodes the Killer-cell Immunoglobulin-like Receptors (KIRs), which exhibit remarkable polymorphism in both gene content and sequences. Further, the repertoire of KIR genes varies within and between populations, creating a diverse pool of KIR genotypes. This study was carried out to characterize KIR genotypes and haplotypes among 379 Arab Kuwaiti individuals including 60 subjects from 20 trio families, 49 hematopoietic cell transplantation (HCT) recipients and 270 healthy Kuwaiti volunteer HCT donors. KIR Genotyping was performed by a combination of reverse sequence specific oligonucleotide probes (rSSO) and/or Real Time PCR. The frequencies of KIR genes in 270 healthy Kuwaiti volunteer donors were compared to previously reported frequencies in other populations. In addition, we compared the differences in KIR repertoire of patients and healthy donors to investigate the reproducibility of previously reported significant differences between patients with hematological malignancies and healthy donors. The observed frequencies in our cohort volunteer HCT donors was comparable to those reported in neighboring Arab populations. The activating genes KIR2DS1, KIR2DS5 and KIR3DS1 and the inhibitory gene KIR2DL5 were significantly more frequent in patients compared to healthy donors, however, none of the previously reported differences were reproducible in our Kuwaiti cohort. This report is the first description of KIR gene carrier frequency and haplotype characterization in a fairly large cohort of the Kuwaiti population, which may have implications in KIR based HCT donor selection strategies.
Collapse
Affiliation(s)
- Reem Ameen
- Department of Medical Laboratory Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Roshni Titus
- Department of Medical Laboratory Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Jeethu Anu Geo
- Department of Medical Laboratory Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Salem Al Shemmari
- Department of Medicine, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Medhat Askar
- College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Kevin-Tey WF, Wen WX, Bee PC, Eng HS, Ho KW, Tan SM, Anuar NA, Pung YF, Zain SM. KIR genotype and haplotype frequencies in the multi-ethnic population of Malaysia. Hum Immunol 2023; 84:172-185. [PMID: 36517321 DOI: 10.1016/j.humimm.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIR) genotype and haplotype frequencies have been reported to vary distinctly between populations, which in turn contributes to variation in the alloreactivity of natural killer (NK) cells. Utilizing the diverse KIR genes to identify suitable transplant donors would prove challenging in multi-ethnic countries, even more in resource-limited countries where KIR genotyping has not been established. In this study, we determined the KIR genotypes from 124 unrelated Malaysians consisting of the Malays, Chinese, Indians, and aboriginal people through polymerase chain reaction sequence-specific primer (PCR-SSP) genotyping and employing an expectation-maximization (EM) algorithm to assign haplotypes based on pre-established reference haplotypes. A total of 27 distinct KIR haplotypes were discerned with higher frequencies of haplotype A (55.2%) than haplotype B (44.8%). The most frequent haplotypes were cA01:tA01 (55.2%), cB01:tB01 (18.1%), and cB02:tA01 (13.3%), while the least frequent haplotypes were cB03:tB01 (1.2%), cB04:tB03 (0.4%), and cB03:tA01 (0.4%). Several haplotypes were identified to be unique to a specific ethnic group. The genotype with the highest frequency was genotype AB (71.8%), followed by AA (19.4%), and BB (8.9%). The Indians exhibited the lowest genotype AA but the highest genotype BB, whereas genotype BB was absent in the aboriginal people. Despite the limitations, the genotype and haplotypes in the Malaysian population were successfully highlighted. The identification of ethnic-specific KIR genotypes and haplotypes provides the first step to utilizing KIR in identifying suitable transplant donors to further improve the transplant outcome in the Malaysian population.
Collapse
Affiliation(s)
- Wen Fei Kevin-Tey
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wei Xiong Wen
- Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ping Chong Bee
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hooi Sian Eng
- Division of Nephrology, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Kim Wah Ho
- Department of Haematology, Hospital Ampang, Kuala Lumpur, Malaysia
| | - Sen Mui Tan
- Department of Haematology, Hospital Ampang, Kuala Lumpur, Malaysia
| | - Nur Adila Anuar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Shamsul Mohd Zain
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Killer-Cell Immunoglobulin-like Receptor Diversity in an Admixed South American Population. Cells 2022; 11:cells11182776. [PMID: 36139351 PMCID: PMC9496851 DOI: 10.3390/cells11182776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Natural Killer (NK) cells are innate immune cells that mediate antiviral and antitumor responses. NK cell activation and induction of effector functions are tightly regulated by the integration of activating and inhibitory receptors such as killer immunoglobulin-like receptors (KIR). KIR genes are characterized by a high degree of diversity due to presence or absence, gene copy number and allelic polymorphism. The aim of this study was to establish the distribution of KIR genes and genotypes, to infer the most common haplotypes in an admixed Colombian population and to compare these KIR gene frequencies with some Central and South American populations and worldwide. A total of 161 individuals from Medellin, Colombia were included in the study. Genomic DNA was used for KIR and HLA genotyping. We analyzed only KIR gene-content (presence or absence) based on PCR-SSO. The KIR genotype, most common haplotypes and combinations of KIR and HLA ligands frequencies were estimated according to the presence or absence of KIR and HLA genes. Dendrograms, principal component (PC) analysis and Heatmap analysis based on genetic distance were constructed to compare KIR gene frequencies among Central and South American, worldwide and Amerindian populations. The 16 KIR genes analyzed were distributed in 37 different genotypes and the 7 most frequent KIR inferred haplotypes. Importantly, we found three new genotypes not previously reported in any other ethnic group. Our genetic distance, PC and Heatmap analysis revealed marked differences in the distribution of KIR gene frequencies in the Medellin population compared to worldwide populations. These differences occurred mainly in the activating KIR isoforms, which are more frequent in our population, particularly KIR3DS1. Finally, we observed unique structural patterns of genotypes, which evidences the potential diversity and variability of this gene family in our population, and the need for exhaustive genetic studies to expand our understanding of the KIR gene complex in Colombian populations.
Collapse
|
7
|
Sakaue S, Hosomichi K, Hirata J, Nakaoka H, Yamazaki K, Yawata M, Yawata N, Naito T, Umeno J, Kawaguchi T, Matsui T, Motoya S, Suzuki Y, Inoko H, Tajima A, Morisaki T, Matsuda K, Kamatani Y, Yamamoto K, Inoue I, Okada Y. Decoding the diversity of killer immunoglobulin-like receptors by deep sequencing and a high-resolution imputation method. CELL GENOMICS 2022; 2:100101. [PMID: 36777335 PMCID: PMC9903714 DOI: 10.1016/j.xgen.2022.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/07/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
The killer cell immunoglobulin-like receptor (KIR) recognizes human leukocyte antigen (HLA) class I molecules and modulates the function of natural killer cells. Despite its role in immunity, the complex genomic structure has limited a deep understanding of the KIR genomic landscape. Here we conduct deep sequencing of 16 KIR genes in 1,173 individuals. We devise a bioinformatics pipeline incorporating copy number estimation and insertion or deletion (indel) calling for high-resolution KIR genotyping. We define 118 alleles in 13 genes and demonstrate a linkage disequilibrium structure within and across KIR centromeric and telomeric regions. We construct a KIR imputation reference panel (nreference = 689, imputation accuracy = 99.7%), apply it to biobank genotype (ntotal = 169,907), and perform phenome-wide association studies of 85 traits. We observe a dearth of genome-wide significant associations, even in immune traits implicated previously to be associated with KIR (the smallest p = 1.5 × 10-4). Our pipeline presents a broadly applicable framework to evaluate innate immunity in large-scale datasets.
Collapse
Affiliation(s)
- Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Corresponding author
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Jun Hirata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Keiko Yamazaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Makoto Yawata
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, and National University Health System, Singapore 119228, Singapore
- NUSMed Immunology Translational Research Programme, and Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, 812-8582, Japan
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takaaki Kawaguchi
- Division of Gastroenterology, Department of Medicine, Tokyo Yamate Medical Center, Tokyo 169-0073, Japan
| | - Toshiyuki Matsui
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka 818-0067, Japan
| | - Satoshi Motoya
- Department of Gastroenterology, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Faculty of Medicine, Toho University, Chiba 274-8510, Japan
| | | | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Takayuki Morisaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
- Corresponding author
| |
Collapse
|
8
|
Harrison GF, Leaton LA, Harrison EA, Kichula KM, Viken MK, Shortt J, Gignoux CR, Lie BA, Vukcevic D, Leslie S, Norman PJ. Allele imputation for the killer cell immunoglobulin-like receptor KIR3DL1/S1. PLoS Comput Biol 2022; 18:e1009059. [PMID: 35192601 PMCID: PMC8896733 DOI: 10.1371/journal.pcbi.1009059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/04/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Highly polymorphic interaction of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates the effector functions of natural killer (NK) cells and some T cells. This genetically determined diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts the course of immunotherapies, including transplantation. KIR3DL1 is an inhibitory receptor, and KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is hampered by complex sequence and structural variation, requiring targeted approaches to generate and analyze high-resolution allele data. To overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles at high-resolution from whole-genome SNP data. We designed the model to represent a substantial component of human genetic diversity. Our Global imputation model is effective at genotyping KIR3DL1/S1 alleles with an accuracy ranging from 88% in Africans to 97% in East Asians, with mean specificity of 99% and sensitivity of 95% for alleles >1% frequency. We used the established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 with HLA-A and -B to be analyzed using complementary techniques on a single data source. The use of PONG thus negates the need for targeted sequencing data in very large-scale association studies where such methods might not be tractable.
Collapse
Affiliation(s)
- Genelle F. Harrison
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Erica A. Harrison
- Independent Researcher, Broomfield, Colorado, United States of America
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Marte K. Viken
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jonathan Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher R. Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Benedicte A. Lie
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Damjan Vukcevic
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Leslie
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
9
|
Investigation of donor KIR content and matching in children undergoing hematopoietic cell transplantation for acute leukemia. Blood Adv 2021; 4:1350-1356. [PMID: 32267930 DOI: 10.1182/bloodadvances.2019001284] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple models of donor killer immunoglobulin receptor (KIR) alloreactivity or KIR genotype have been reported to be protective against leukemia relapse after allogeneic transplantation. However, few studies have addressed this topic in the pediatric population. Here, we assessed the outcomes of allogeneic transplantation in children with acute lymphoblastic leukemia (ALL; n = 372) or acute myeloid leukemia (AML; n = 344) who received unrelated donor (URD) transplantation and were reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) from 2005 to 2016. As expected in this pediatric population, most patients underwent myeloablative conditioning while in remission and with bone marrow as a stem cell source. We tested KIR ligand mismatch, KIR gene content (centromeric [Cen] B), KIR2DS1 mismatching, and Cen B/telomeric A using Cox regression models and found that none were significantly associated with either relapse or disease-free survival when considering the entire cohort of patients (ALL and AML), AML, or ALL separately. Moreover, there was no significant association with outcomes in the in vivo T-cell-depleted (ie, serotherapy) cohort. This study, which is the largest analysis of donor KIR in the pediatric acute leukemia population, does not support the use of KIR in the selection of URDs for children undergoing T-replete transplantation.
Collapse
|
10
|
Schetelig J, Baldauf H, Koster L, Kuxhausen M, Heidenreich F, de Wreede LC, Spellman S, van Gelder M, Bruno B, Onida F, Lange V, Massalski C, Potter V, Ljungman P, Schaap N, Hayden P, Lee SJ, Kröger N, Hsu K, Schmidt AH, Yakoub-Agha I, Robin M. Haplotype Motif-Based Models for KIR-Genotype Informed Selection of Hematopoietic Cell Donors Fail to Predict Outcome of Patients With Myelodysplastic Syndromes or Secondary Acute Myeloid Leukemia. Front Immunol 2021; 11:584520. [PMID: 33542712 PMCID: PMC7851088 DOI: 10.3389/fimmu.2020.584520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Results from registry studies suggest that harnessing Natural Killer (NK) cell reactivity mediated through Killer cell Immunoglobulin-like Receptors (KIR) could reduce the risk of relapse after allogeneic Hematopoietic Cell Transplantation (HCT). Several competing models have been developed to classify donors as KIR-advantageous or disadvantageous. Basically, these models differ by grouping donors based on distinct KIR–KIR–ligand combinations or by haplotype motif assignment. This study aimed to validate different models for unrelated donor selection for patients with Myelodysplatic Syndromes (MDS) or secondary Acute Myeloid Leukemia (sAML). In a joint retrospective study of the European Society for Blood and Marrow Transplantation (EBMT) and the Center for International Blood and Marrow Transplant Research (CIBMTR) registry data from 1704 patients with secondary AML or MDS were analysed. The cohort consisted mainly of older patients (median age 61 years) with high risk disease who had received chemotherapy-based reduced intensity conditioning and anti-thymocyte globulin prior to allogeneic HCT from well-matched unrelated stem cell donors. The impact of the predictors on Overall Survival (OS) and relapse incidence was tested in Cox regression models adjusted for patient age, a modified disease risk index, performance status, donor age, HLA-match, sex-match, CMV-match, conditioning intensity, type of T-cell depletion and graft type. KIR genes were typed using high-resolution amplicon-based next generation sequencing. In univariable and multivariable analyses none of the models predicted OS and the risk of relapse consistently. Our results do not support the hypothesis that optimizing NK-mediated alloreactivity is possible by KIR-genotype informed selection of HLA-matched unrelated donors. However, in the context of allogeneic transplantation, NK-cell biology is complex and only partly understood. KIR-genes are highly diverse and current assignment of haplotype motifs based on the presence or absence of selected KIR genes is over-simplistic. As a consequence, further research is highly warranted and should integrate cutting edge knowledge on KIR genetics, and NK-cell biology into future studies focused on homogeneous groups of patients and treatment modalities.
Collapse
Affiliation(s)
- Johannes Schetelig
- Medizinische Klinik und Poliklinik I, University Hospital Dresden, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | | | | | - Michelle Kuxhausen
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Falk Heidenreich
- Medizinische Klinik und Poliklinik I, University Hospital Dresden, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | - Liesbeth C de Wreede
- DKMS Clinical Trials Unit, Dresden, Germany.,Leiden University Medical Center, Department of Biomedical Data Sciences, Leiden, Netherlands
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Michel van Gelder
- Maastricht University Medical Center, Department of Internal Medicine, Maastricht, Netherlands
| | - Benedetto Bruno
- A.O.U. Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Francesco Onida
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | | | - Per Ljungman
- Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | | | - Stephanie J Lee
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | - Kathy Hsu
- Memorial Sloan Kettering Cancer Center, New York & Scientific Director, CIBMTR Immunobiology Working Committee, New York City, NY, United States
| | - Alexander H Schmidt
- DKMS Clinical Trials Unit, Dresden, Germany.,DKMS Life Science Lab, Dresden, Germany
| | | | - Marie Robin
- Hopital Saint-Louis, APHP, Université de Paris, Paris, France
| |
Collapse
|
11
|
Roe D, Kuang R. Accurate and Efficient KIR Gene and Haplotype Inference From Genome Sequencing Reads With Novel K-mer Signatures. Front Immunol 2020; 11:583013. [PMID: 33324401 PMCID: PMC7727328 DOI: 10.3389/fimmu.2020.583013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
The killer-cell immunoglobulin-like receptor (KIR) proteins evolve to fight viruses and mediate the body's reaction to pregnancy. These roles provide selection pressure for variation at both the structural/haplotype and base/allele levels. At the same time, the genes have evolved relatively recently by tandem duplication and therefore exhibit very high sequence similarity over thousands of bases. These variation-homology patterns make it impossible to interpret KIR haplotypes from abundant short-read genome sequencing data at population scale using existing methods. Here, we developed an efficient computational approach for in silico KIR probe interpretation (KPI) to accurately interpret individual's KIR genes and haplotype-pairs from KIR sequencing reads. We designed synthetic 25-base sequence probes by analyzing previously reported haplotype sequences, and we developed a bioinformatics pipeline to interpret the probes in the context of 16 KIR genes and 16 haplotype structures. We demonstrated its accuracy on a synthetic data set as well as a real whole genome sequences from 748 individuals from The Genome of the Netherlands (GoNL). The GoNL predictions were compared with predictions from SNP-based predictions. Our results show 100% accuracy rate for the synthetic tests and a 99.6% family-consistency rate in the GoNL tests. Agreement with the SNP-based calls on KIR genes ranges from 72%-100% with a mean of 92%; most differences occur in genes KIR2DS2, KIR2DL2, KIR2DS3, and KIR2DL5 where KPI predicts presence and the SNP-based interpretation predicts absence. Overall, the evidence suggests that KPI's accuracy is 97% or greater for both KIR gene and haplotype-pair predictions, and the presence/absence genotyping leads to ambiguous haplotype-pair predictions with 16 reference KIR haplotype structures. KPI is free, open, and easily executable as a Nextflow workflow supported by a Docker environment at https://github.com/droeatumn/kpi.
Collapse
Affiliation(s)
- David Roe
- Bioinformatics and Computational Biology, University of Minnesota, Rochester, MN, United States
| | - Rui Kuang
- Bioinformatics and Computational Biology, University of Minnesota, Rochester, MN, United States
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
KIR+ CD8+ T Lymphocytes in Cancer Immunosurveillance and Patient Survival: Gene Expression Profiling. Cancers (Basel) 2020; 12:cancers12102991. [PMID: 33076479 PMCID: PMC7650600 DOI: 10.3390/cancers12102991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Killer-cell immunoglobulin-like receptors (KIR) are molecules expressed by the most important cells of the immune system for cancer immune vigilance, natural killer (NK) and effector T cells. In this manuscript we study the role that cytotoxic CD8+ T cells expressing KIR receptors could play in cancer immune surveillance. With this objective, frequencies of different KIR+ CD8+ T cell subsets are correlated with the overall survival of patients with melanoma, ovarian and bladder carcinomas. In addition, the gene expression profile of KIR+ CD8+ T cell subsets related to the survival of patients is studied with the aim of discovering new therapeutic targets, so that the outcome of patients with cancer can be improved. Abstract Killer-cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) and effector T cells. Although KIR+ T cells accumulate in oncologic patients, their role in cancer immune response remains elusive. This study explored the role of KIR+CD8+ T cells in cancer immunosurveillance by analyzing their frequency at diagnosis in the blood of 249 patients (80 melanomas, 80 bladder cancers, and 89 ovarian cancers), their relationship with overall survival (OS) of patients, and their gene expression profiles. KIR2DL1+ CD8+ T cells expanded in the presence of HLA-C2-ligands in patients who survived, but it did not in patients who died. In contrast, presence of HLA-C1-ligands was associated with dose-dependent expansions of KIR2DL2/S2+ CD8+ T cells and with shorter OS. KIR interactions with their specific ligands profoundly impacted CD8+ T cell expression profiles, involving multiple signaling pathways, effector functions, the secretome, and consequently, the cellular microenvironment, which could impact their cancer immunosurveillance capacities. KIR2DL1/S1+ CD8+ T cells showed a gene expression signature related to efficient tumor immunosurveillance, whereas KIR2DL2/L3/S2+CD8+ T cells showed transcriptomic profiles related to suppressive anti-tumor responses. These results could be the basis for the discovery of new therapeutic targets so that the outcome of patients with cancer can be improved.
Collapse
|
13
|
Presence of donor-encoded centromeric KIR B content increases the risk of infectious mortality in recipients of myeloablative, T-cell deplete, HLA-matched HCT to treat AML. Bone Marrow Transplant 2020; 55:1975-1984. [PMID: 32203258 DOI: 10.1038/s41409-020-0858-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
The reported influence of donor Killer-cell Immunoglobulin-like Receptor (KIR) genes on the outcomes of haematopoietic cell transplantation (HCT) are contradictory, in part due to diversity of disease, donor sources, era and conditioning regimens within and between different studies. Here, we describe the results of a retrospective clinical analysis establishing the effect of donor KIR motifs on the outcomes of 119 HLA-matched, unrelated donor HCT for adult acute myeloid leukaemia (AML) using myeloablative conditioning (MAC) in a predominantly T-cell deplete (TCD) cohort. We observed that HCT involving donors with at least one KIR B haplotype were more likely to result in non-relapse mortality (NRM) than HCT involving donors with two KIR A haplotypes (p = 0.019). Upon separation of KIR haplotypes into their centromeric (Cen) and telomeric (Tel) motif structures, we demonstrated that the Cen-B motif was largely responsible for this effect (p = 0.001). When the cause of NRM was investigated further, infection was the dominant cause of death (p = 0.006). No evidence correlating donor KIR B haplotype with relapse risk was observed. The results from this analysis confirm previous findings in the unrelated, TCD, MAC transplant setting and imply a protective role for donor-encoded Cen-A motifs against infection in allogeneic HCT recipients.
Collapse
|
14
|
Solloch UV, Schefzyk D, Schäfer G, Massalski C, Kohler M, Pruschke J, Heidl A, Schetelig J, Schmidt AH, Lange V, Sauter J. Estimation of German KIR Allele Group Haplotype Frequencies. Front Immunol 2020; 11:429. [PMID: 32226430 PMCID: PMC7080815 DOI: 10.3389/fimmu.2020.00429] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023] Open
Abstract
The impact of the highly polymorphic Killer-cell immunoglobulin-like receptor (KIR) gene cluster on the outcome of hematopoietic stem cell transplantation (HCST) is subject of current research. To further understand the involvement of this gene family into Natural Killer (NK) cell-mediated graft-versus-leukemia reactions, knowledge of haplotype structures, and allelic linkage is of importance. In this analysis, we estimate population-specific KIR haplotype frequencies at allele group resolution in a cohort of n = 458 German families. We addressed the polymorphism of the KIR gene complex and phasing ambiguities by a combined approach. Haplotype inference within first-degree family relations allowed us to limit the number of possible diplotypes. Structural restriction to a pattern set of 92 previously described KIR copy number haplotypes further reduced ambiguities. KIR haplotype frequency estimation was finally accomplished by means of an expectation-maximization algorithm. Applying a resolution threshold of ½ n, we were able to identify a set of 551 KIR allele group haplotypes, representing 21 KIR copy number haplotypes. The haplotype frequencies allow studying linkage disequilibrium in two-locus as well as in multi-locus analyses. Our study reveals associations between KIR haplotype structures and allele group frequencies, thereby broadening our understanding of the KIR gene complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Johannes Schetelig
- DKMS, Tübingen, Germany.,University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | | | |
Collapse
|
15
|
Wright PA. Killer-cell immunoglobulin-like receptor assessment algorithms in haemopoietic progenitor cell transplantation: current perspectives and future opportunities. HLA 2020; 95:435-448. [PMID: 31999071 DOI: 10.1111/tan.13817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/13/2019] [Accepted: 01/22/2020] [Indexed: 12/27/2022]
Abstract
Natural killer cells preferentially target and kill malignant and virally infected cells. Both these properties present compelling clinical utility in the field of haemopoietic progenitor cell transplantation (HPCT), potentially promoting a graft vs leukaemia effect in the absence of graft vs host disease and protecting against cytomegalovirus activation. Killer Ig-like receptors (KIR) play a central role in the cytotoxic action of natural killer cells, providing opportunity for improving transplantation outcomes by prioritising potential donors with optimal characteristics. Numerous algorithms for assessing KIR gene content as part of HPCT donor selection protocols exist, but no single model has been found to be universally applicable in all transplant centres. This review summarises several of the predominant strategies in KIR assessment algorithms, discussing their basic scientific principles, clinical utility and benefits to post-transplant outcomes. Finally, the review will consider how future donor selection protocols could develop towards unifying the concepts of KIR proteomics and genetics for optimising patient care.
Collapse
Affiliation(s)
- Paul A Wright
- Transplantation Laboratory, Division of Surgery, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
16
|
The Evolutionary Arms Race between Virus and NK Cells: Diversity Enables Population-Level Virus Control. Viruses 2019; 11:v11100959. [PMID: 31627371 PMCID: PMC6832630 DOI: 10.3390/v11100959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses and natural killer (NK) cells have a long co-evolutionary history, evidenced by patterns of specific NK gene frequencies in those susceptible or resistant to infections. The killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) ligands together form the most polymorphic receptor-ligand partnership in the human genome and govern the process of NK cell education. The KIR and HLA genes segregate independently, thus creating an array of reactive potentials within and between the NK cell repertoires of individuals. In this review, we discuss the interplay between NK cell education and adaptation with virus infection, with a special focus on three viruses for which the NK cell response is often studied: human immunodeficiency virus (HIV), hepatitis C virus (HCV) and human cytomegalovirus (HCMV). Through this lens, we highlight the complex co-evolution of viruses and NK cells, and their impact on viral control.
Collapse
|
17
|
Guillamón CF, Gimeno L, Server G, Martínez-Sánchez MV, Escudero JF, López-Cubillana P, Cabezas-Herrera J, Campillo JA, Abellan DJ, Martínez-García J, Martínez-Escribano J, Ferri B, López-Álvarez MR, Moreno-Alarcón C, Moya-Quiles MR, Muro M, Minguela A. Immunological Risk Stratification of Bladder Cancer Based on Peripheral Blood Natural Killer Cell Biomarkers. Eur Urol Oncol 2019; 4:246-255. [PMID: 31411976 DOI: 10.1016/j.euo.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Accepted: 04/17/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Bladder cancer (BC) is highly immunogenic. Bacillus Calmette-Guérin (BCG) immunotherapy offers the best results in non-muscle-invasive BC (NMIBC). Natural killer cells (NKcs) play decisive roles in BCG-mediated immune response and in general cancer immune-surveillance. OBJECTIVE To analyze killer-cell immunoglobulin-like receptors (KIRs), their human leukocyte antigen class-I (HLA-I) ligands, and the expression of DNAX Accessory Molecule-1 (DNAM-1/CD226) on peripheral blood (PB) NKcs, to identify useful predictive biomarkers in BC. DESIGN, SETTING, AND PARTICIPANTS KIR/HLA-ligand genotypes were compared between 132 BC, 201 other solid cancers, 164 plasma cell disorders, and 615 healthy Caucasoid controls. CD226 expression was evaluated by flow cytometry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS KIR/HLA-I interactions and CD226 expression on NKcs (CD226high or CD226low) were compared across study groups, cancer stages, treatments, and progression-free and overall survival of patients, using chi-square, analysis of variance/post hoc, Kaplan-Meier/log-rank, and regression analyses. RESULTS AND LIMITATIONS Three immunological risk groups were identified: low risk (KIR2DL1-L2+L3-/C1C1- and KIR2DL1+L2+L3+/C1C1+), intermediate risk (rest), and high risk (KIR2DL5+/HLA-C*16+ and KIR2DL1+L2+L3-), which displayed different 10-yr progression-free rates (83.3%, 48.6%, and 0%, respectively; p<0.001) and survival rates (83.3%, 54.3%, and 6.2%, respectively; p<0.001) for muscle-invasive T2/T4, and 10-yr progression-free rates (100%, 81.6%, and 50%, respectively; p<0.05) for NMIBC-T1 treated with BCG. Immunological risk stratification had an independent prognostic value to just histological staging for survival (hazard ratio=2.93, p<0.00001, Harrell C-statistic=0.779). CD226 expression on PB NKcs improved immunological stratification in intermediate-risk T1-T4 BC patients, with survival rates of 94.1% and 66.7% for CD226high and CD226low (p<0.05), respectively. CONCLUSIONS Immunological risk stratification will complement BC histopathology to improve risk stratification and guide the selection of personalized treatments. Understanding of the molecular mechanisms of NKc tumor immune surveillance will enable the development of future NKc-based therapies. PATIENT SUMMARY This work describes a peripheral blood test that aids in our understanding of the immune defense mechanisms against bladder cancer, is useful for classifying patient risk, and will guide personalized treatments.
Collapse
Affiliation(s)
- Concepción F Guillamón
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Lourdes Gimeno
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | - María V Martínez-Sánchez
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | | | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, HCUVA-IMIB, Murcia, Spain
| | - José A Campillo
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Daniel J Abellan
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | | | - Belén Ferri
- Pathology Services, HCUVA-IMIB, Murcia, Spain
| | - María R López-Álvarez
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | | | - María R Moya-Quiles
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Manuel Muro
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.
| |
Collapse
|
18
|
Bono M, Pende D, Bertaina A, Moretta A, Della Chiesa M, Sivori S, Zecca M, Locatelli F, Moretta L, Bottino C, Falco M. Analysis of KIR3DP1 Polymorphism Provides Relevant Information on Centromeric KIR Gene Content. THE JOURNAL OF IMMUNOLOGY 2018; 201:1460-1467. [PMID: 30068594 DOI: 10.4049/jimmunol.1800564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/04/2018] [Indexed: 11/19/2022]
Abstract
Four killer cell Ig-like receptor (KIR) genes, collectively referred to as framework genes, characterize almost all KIR haplotypes. In particular, KIR3DL3 and KIR3DL2 mark the ends of the locus, whereas KIR3DP1 and KIR2DL4 are located in the central part. A recombination hot spot, mapped between KIR3DP1 and KIR2DL4, splits the haplotypes into two regions: a centromeric (Cen) region (spanning from KIR3DL3 to KIR3DP1) and a telomeric region (from KIR2DL4 to KIR3DL2), both varying in KIR gene content. In this study, we analyzed KIR3DP1 polymorphism in a cohort of 316 healthy, unrelated individuals. To this aim, we divided KIR3DP1 alleles into two groups by the use of a sequence-specific primer- PCR approach. Our data clearly indicated that KIR3DP1 alleles present on haplotypes carrying Cen-A or Cen-B1 regions differ from those having Cen-B2 motifs. Few donors (∼3%) made exceptions, and they were all, except one, characterized by uncommon haplotypes, including either KIR deletions or KIR duplications. Consequently, as KIR2DL1 is present in Cen-A and Cen-B1 regions but absent in Cen-B2 regions, we demonstrated that KIR3DP1 polymorphism might represent a suitable marker for KIR2DL1 gene copy number analysis. Moreover, because Cen-B1 and Cen-B2 regions are characterized by different KIR3DP1 alleles, we showed that KIR3DP1 polymorphism analysis also provides information to dissect between Cen-B1/Cen-B1 and Cen-B1/Cen-B2 donors. Taken together, our data suggest that the analysis of KIR3DP1 polymorphism should be included in KIR repertoire evaluation.
Collapse
Affiliation(s)
- Maria Bono
- Dipartimento dei Laboratori di Ricerca, Istituto di Ricovero e Cura a Carattere Scientifico, Giannina Gaslini, 16147 Genoa, Italy
| | - Daniela Pende
- Dipartimento delle Terapie Oncologiche Integrate, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alice Bertaina
- Dipartimento di Oncoematologia e Terapia Cellulare e Genica, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Marco Zecca
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo Oncoematologia Pediatrica, 27100 Pavia, Italy; and
| | - Franco Locatelli
- Dipartimento di Oncoematologia e Terapia Cellulare e Genica, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - Lorenzo Moretta
- Area di Ricerca Immunologica, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Cristina Bottino
- Dipartimento dei Laboratori di Ricerca, Istituto di Ricovero e Cura a Carattere Scientifico, Giannina Gaslini, 16147 Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Michela Falco
- Dipartimento dei Laboratori di Ricerca, Istituto di Ricovero e Cura a Carattere Scientifico, Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
19
|
Revealing complete complex KIR haplotypes phased by long-read sequencing technology. Genes Immun 2017; 18:127-134. [PMID: 28569259 PMCID: PMC5637231 DOI: 10.1038/gene.2017.10] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/26/2017] [Accepted: 03/31/2017] [Indexed: 11/08/2022]
Abstract
The killer cell immunoglobulin-like receptor (KIR) region of human chromosome 19 contains up to 16 genes for natural killer (NK) cell receptors that recognize human leukocyte antigen (HLA)/peptide complexes and other ligands. The KIR proteins fulfill functional roles in infections, pregnancy, autoimmune diseases and transplantation. However, their characterization remains a constant challenge. Not only are the genes highly homologous due to their recent evolution by tandem duplications, but the region is structurally dynamic due to frequent transposon-mediated recombination. A sequencing approach that precisely captures the complexity of KIR haplotypes for functional annotation is desirable. We present a unique approach to haplotype the KIR loci using single-molecule, real-time (SMRT) sequencing. Using this method, we have-for the first time-comprehensively sequenced and phased sixteen KIR haplotypes from eight individuals without imputation. The information revealed four novel haplotype structures, a novel gene-fusion allele, novel and confirmed insertion/deletion events, a homozygous individual, and overall diversity for the structural haplotypes and their alleles. These KIR haplotypes augment our existing knowledge by providing high-quality references, evolutionary informers, and source material for imputation. The haplotype sequences and gene annotations provide alternative loci for the KIR region in the human genome reference GrCh38.p8.
Collapse
|