1
|
Raghunandanan S, Priya R, Lin G, Alanazi F, Zoss A, Warren E, Stewart P, Yang XF. Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen. mBio 2025; 16:e0276624. [PMID: 39873484 PMCID: PMC11898620 DOI: 10.1128/mbio.02766-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
In Borrelia burgdorferi, the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σS). Understanding the regulation of RpoS is crucial for elucidating how B. burgdorferi is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the rpoS mRNA stability. However, the mechanisms regulating BosR, particularly in response to host signals and environmental cues, remain largely unclear. In this study, we uncovered a positive feedback loop between RpoS and BosR, wherein RpoS post-transcriptionally regulates BosR levels. Specifically, mutation or deletion of rpoS significantly reduced BosR levels, whereas artificial induction of rpoS resulted in a dose-dependent increase in BosR levels. Notably, RpoS does not affect bosR mRNA levels but instead modulates the turnover rate of the BosR protein. Moreover, we demonstrated that environmental cues do not directly influence bosR expression but instead induce rpoS transcription and RpoS production, thereby enhancing BosR protein levels. These findings reveal a new layer of complexity in the RpoN-RpoS regulatory pathway, challenging the existing paradigm and suggesting a need to re-evaluate the factors and signals previously implicated in regulating RpoS via BosR. This study provides new insights into the intricate regulatory networks underpinning B. burgdorferi's adaptation and survival in its enzootic cycle.IMPORTANCELyme disease is the most prevalent arthropod-borne infection in the United States. The etiological agent, Borreliella (or Borrelia) burgdorferi, is maintained in nature through an enzootic cycle involving a tick vector and a mammalian host. RpoS, the master regulator of differential gene expression, plays a crucial role in tick transmission and mammalian infection of B. burgdorferi. This study reveals a positive feedback loop between RpoS and a Fur/PerR homolog. Elucidating this regulatory network is essential for identifying potential therapeutic targets to disrupt B. burgdorferi's enzootic cycle. The findings also have broader implications for understanding the regulation of RpoS and Fur/PerR family in other bacteria.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gaofeng Lin
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Andrew Zoss
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elise Warren
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Philip Stewart
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Raghunandanan S, Priya R, Lin G, Alanazi F, Zoss A, Warren E, Yang XF. Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613071. [PMID: 39314342 PMCID: PMC11419129 DOI: 10.1101/2024.09.14.613071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In Borrelia burgdorferi, the Lyme disease pathogen, differential gene expression is primarily controlled by the alternative sigma factor RpoS (σS). Understanding how RpoS levels are regulated is crucial for elucidating how B. burgdorferi is maintained throughout its enzootic cycle. Our recent studies have shown that a homolog of Fur/PerR repressor/activator, BosR, functions as an RNA-binding protein that controls the rpoS mRNA stability. However, the mechanisms of regulation of BosR, particularly in response to host signals and environmental cues, remain largely unclear. In this study, we revealed a positive feedback loop between RpoS and BosR, where RpoS post-transcriptionally regulates BosR levels. Specifically, mutation or deletion of rpoS significantly reduced BosR levels, while artificial induction of rpoS resulted in a dose-dependent increase in BosR levels. Notably, RpoS does not affect bosR mRNA levels but instead modulates the turnover rate of the BosR protein. Furthermore, we demonstrated that environmental cues do not directly influence bosR expression but instead induce rpoS transcription and RpoS production, thereby enhancing BosR protein levels. This discovery adds a new layer of complexity to the RpoN-RpoS pathway and suggests the need to re-evaluate the factors and signals previously believed to regulate RpoS levels through BosR.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gaofeng Lin
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Andrew Zoss
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Elise Warren
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
4
|
Berthold A, Lloyd VK. Changes in the Transcriptome and Long Non-Coding RNAs but Not the Methylome Occur in Human Cells Exposed to Borrelia burgdorferi. Genes (Basel) 2024; 15:1010. [PMID: 39202370 PMCID: PMC11353914 DOI: 10.3390/genes15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) allowed for the in vitro study of the transcriptome, non-coding RNAs, and methylome in human host cells in response to Borrelia burgdorferi infection. We tested the effect of the Borrelia burgdorferi strain B31 on a human primary cell line (HUVEC) and an immortalized cell line (HEK-293) for 72 h, a long-duration time that might allow for epigenetic responses in the exposed human host cells. Differential gene expression was detected in both cell models in response to B. burgdorferi. More differentially expressed genes were found in HUVECs compared to HEK-293 cells. Borrelia burgdorferi exposure significantly induced genes in the interferon, in addition to cytokine and other immune response signaling in HUVECs. In HEK-293 cells, pre-NOTCH processing in Golgi was significantly downregulated in Borrelia-exposed cells. Other significantly altered gene expressions were found in genes involved in the extracellular matrix. No significant global methylation changes were detected in HUVECs or HEK-293 cells exposed to B. burgdorferi; however, two long non-coding RNAs and a pseudogene were deregulated in response to B. burgdorferi in HUVECs, suggesting that other epigenetic mechanisms may be initiated by infection.
Collapse
Affiliation(s)
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada;
| |
Collapse
|
5
|
Strnad M, Rudenko N, Rego RO. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023; 14:2265015. [PMID: 37814488 PMCID: PMC10566445 DOI: 10.1080/21505594.2023.2265015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Collapse
Affiliation(s)
- Martin Strnad
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ryan O.M. Rego
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| |
Collapse
|
6
|
Alanazi F, Raghunandanan S, Priya R, Yang XF. The Rrp2-RpoN-RpoS pathway plays an important role in the blood-brain barrier transmigration of the Lyme disease pathogen. Infect Immun 2023; 91:e0022723. [PMID: 37874144 PMCID: PMC10652863 DOI: 10.1128/iai.00227-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/14/2023] [Indexed: 10/25/2023] Open
Abstract
Lyme disease, caused by Borrelia (or Borreliella) burgdorferi, is a complex multisystemic disorder that includes Lyme neuroborreliosis resulting from the invasion of both the central and peripheral nervous systems. However, factors that enable the pathogen to cross the blood-brain barrier (BBB) and invade the central nervous system (CNS) are still not well understood. The objective of this study was to identify the B. burgdorferi factors required for BBB transmigration. We utilized a transwell BBB model based on human brain-microvascular endothelial cells and focused on investigating the Rrp2-RpoN-RpoS pathway, a central regulatory pathway that is essential for mammalian infection by B. burgdorferi. Our results demonstrated that the Rrp2-RpoN-RpoS pathway is crucial for BBB transmigration. Furthermore, we identified OspC, a major surface lipoprotein controlled by the Rrp2-RpoN-RpoS pathway, as a significant contributor to BBB transmigration. Constitutive production of OspC in a mutant defective in the Rrp2-RpoN-RpoS pathway did not rescue the impairment in BBB transmigration, indicating that this pathway controls additional factors for this process. Two other major surface lipoproteins controlled by this pathway, DbpA/B and BBK32, appeared to be dispensable for BBB transmigration. In addition, both the surface lipoprotein OspA and the Rrp1 pathway, which are required B. burgdorferi colonization in the tick vector, were found not required for BBB transmigration. Collectively, our findings using in vitro transwell assays uncover another potential role of the Rrp2-RpoN-RpoS pathway in BBB transmigration of B. burgdorferi and invasion into the CNS.
Collapse
Affiliation(s)
- Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Petroni E, Esnault C, Tetreault D, Dale RK, Storz G, Adams PP. Extensive diversity in RNA termination and regulation revealed by transcriptome mapping for the Lyme pathogen Borrelia burgdorferi. Nat Commun 2023; 14:3931. [PMID: 37402717 PMCID: PMC10319736 DOI: 10.1038/s41467-023-39576-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Transcription termination is an essential and dynamic process that can tune gene expression in response to diverse molecular signals. Yet, the genomic positions, molecular mechanisms, and regulatory consequences of termination have only been studied thoroughly in model bacteria. Here, we use several RNA-seq approaches to map RNA ends for the transcriptome of the spirochete Borrelia burgdorferi - the etiological agent of Lyme disease. We identify complex gene arrangements and operons, untranslated regions and small RNAs. We predict intrinsic terminators and experimentally test examples of Rho-dependent transcription termination. Remarkably, 63% of RNA 3' ends map upstream of or internal to open reading frames (ORFs), including genes involved in the unique infectious cycle of B. burgdorferi. We suggest these RNAs result from premature termination, processing and regulatory events such as cis-acting regulation. Furthermore, the polyamine spermidine globally influences the generation of truncated mRNAs. Collectively, our findings provide insights into transcription termination and uncover an abundance of potential RNA regulators in B. burgdorferi.
Collapse
Affiliation(s)
- Emily Petroni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Daniel Tetreault
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
He H, Pramanik AS, Swanson SK, Johnson DK, Florens L, Zückert WR. A Borrelia burgdorferi LptD homolog is required for flipping of surface lipoproteins through the spirochetal outer membrane. Mol Microbiol 2023; 119:752-767. [PMID: 37170643 PMCID: PMC10330739 DOI: 10.1111/mmi.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Borrelia spirochetes are unique among diderm bacteria in their lack of lipopolysaccharide (LPS) in the outer membrane (OM) and their abundance of surface-exposed lipoproteins with major roles in transmission, virulence, and pathogenesis. Despite their importance, little is known about how surface lipoproteins are translocated through the periplasm and the OM. Here, we characterized Borrelia burgdorferi BB0838, a distant homolog of the OM LPS assembly protein LptD. Using a CRISPR interference approach, we showed that BB0838 is required for cell growth and envelope stability. Upon BB0838 knockdown, surface lipoprotein OspA was retained in the inner leaflet of the OM, as determined by its inaccessibility to in situ proteolysis but its presence in OM vesicles. The topology of the OM porin/adhesin P66 remained unaffected. Quantitative mass spectrometry of the B. burgdorferi membrane-associated proteome confirmed the selective periplasmic retention of surface lipoproteins under BB0838 knockdown conditions. Additional analysis identified a single in situ protease-accessible BB0838 peptide that mapped to a predicted β-barrel surface loop. Alphafold Multimer modeled a B. burgdorferi LptB2 FGCAD complex spanning the periplasm. Together, this suggests that BB0838/LptDBb facilitates the essential terminal step in spirochetal surface lipoprotein secretion, using an orthologous OM component of a pathway that secretes LPS in proteobacteria.
Collapse
Affiliation(s)
- Huan He
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA
| | - Ankita S. Pramanik
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA
| | | | - David K. Johnson
- University of Kansas, Computational Chemical Biology Core, Lawrence, Kansas, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Wolfram R. Zückert
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA
| |
Collapse
|
9
|
Van Gundy T, Patel D, Bowler BE, Rothfuss MT, Hall AJ, Davies C, Hall LS, Drecktrah D, Marconi RT, Samuels DS, Lybecker MC. c-di-GMP regulates activity of the PlzA RNA chaperone from the Lyme disease spirochete. Mol Microbiol 2023; 119:711-727. [PMID: 37086029 PMCID: PMC10330241 DOI: 10.1111/mmi.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
PlzA is a c-di-GMP-binding protein crucial for adaptation of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi during its enzootic life cycle. Unliganded apo-PlzA is important for vertebrate infection, while liganded holo-PlzA is important for survival in the tick; however, the biological function of PlzA has remained enigmatic. Here, we report that PlzA has RNA chaperone activity that is inhibited by c-di-GMP binding. Holo- and apo-PlzA bind RNA and accelerate RNA annealing, while only apo-PlzA can strand displace and unwind double-stranded RNA. Guided by the crystal structure of PlzA, we identified several key aromatic amino acids protruding from the N- and C-terminal domains that are required for RNA-binding and unwinding activity. Our findings illuminate c-di-GMP as a switch controlling the RNA chaperone activity of PlzA, and we propose that complex RNA-mediated modulatory mechanisms allow PlzA to regulate gene expression during both the vector and host phases of the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Taylor Van Gundy
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Dhara Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michael T. Rothfuss
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Allie J. Hall
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, University of Southern Alabama, Mobile, AL 36688, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - D. Scott Samuels
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C. Lybecker
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Department of Biology, University of Colorado, 1420 Austin Bluffs Parkway, Colorado Springs CO 80917, USA
| |
Collapse
|
10
|
Saylor TC, Savage CR, Krusenstjerna AC, Jusufovic N, Zückert WR, Brissette CA, Motaleb M, Schlax PJ, Stevenson B. Quantitative analyses of interactions between SpoVG and RNA/DNA. Biochem Biophys Res Commun 2023; 654:40-46. [PMID: 36889033 PMCID: PMC11086051 DOI: 10.1016/j.bbrc.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
The Borrelia burgdorferi SpoVG protein has previously been found to be a DNA- and RNA-binding protein. To aid in the elucidation of ligand motifs, affinities for numerous RNAs, ssDNAs, and dsDNAs were measured and compared. The loci used in the study were spoVG, glpFKD, erpAB, bb0242, flaB, and ospAB, with particular focus on the untranslated 5' portion of the mRNAs. Performing binding and competition assays yielded that the 5' end of spoVG mRNA had the highest affinity while the lowest observed affinity was to the 5' end of flaB mRNA. Mutagenesis studies of spoVG RNA and ssDNA sequences suggested that the formation of SpoVG-nucleic acid complexes are not entirely dependent on either sequence or structure. Additionally, exchanging uracil for thymine in ssDNAs did not affect protein-nucleic acid complex formation.
Collapse
Affiliation(s)
- Timothy C Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Christina R Savage
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Andrew C Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Nerina Jusufovic
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Wolfram R Zückert
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Md Motaleb
- Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Paula J Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA; Department of Entomology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
11
|
Castro-Padovani TN, Saylor TC, Husted OT, Krusenstjerna AC, Jusufovic N, Stevenson B. Gac Is a Transcriptional Repressor of the Lyme Disease Spirochete's OspC Virulence-Associated Surface Protein. J Bacteriol 2023; 205:e0044022. [PMID: 36920207 PMCID: PMC10127594 DOI: 10.1128/jb.00440-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
The OspC outer-surface lipoprotein is essential for the Lyme disease spirochete's initial phase of vertebrate infection. Bacteria within the midguts of unfed ticks do not express OspC but produce high levels when ticks begin to ingest blood. Lyme disease spirochetes cease production of OspC within 1 to 2 weeks of vertebrate infection, and bacteria that fail to downregulate OspC are cleared by host antibodies. Thus, tight regulation of OspC levels is critical for survival of Lyme borreliae and, therefore, an attractive target for development of novel treatment strategies. Previous studies determined that a DNA region 5' of the ospC promoter, the ospC operator, is required for control of OspC production. Hypothesizing that the ospC operator may bind a regulatory factor, DNA affinity pulldown was performed and identified binding by the Gac protein. Gac is encoded by the C-terminal domain of the gyrA open reading frame from an internal promoter, ribosome-binding site, and initiation codon. Our analyses determined that Gac exhibits a greater affinity for ospC operator and promoter DNAs than for other tested borrelial sequences. In vitro and in vivo analyses demonstrated that Gac is a transcriptional repressor of ospC. These results constitute a substantial advance to our understanding of the mechanisms by which the Lyme disease spirochete controls production of OspC. IMPORTANCE Borrelia burgdorferi sensu lato requires its surface-exposed OspC protein in order to establish infection in humans and other vertebrate hosts. Bacteria that either do not produce OspC during transmission or fail to repress OspC after infection is established are rapidly cleared by the host. Herein, we identified a borrelial protein, Gac, that exhibits preferential affinity to the ospC promoter and 5' adjacent DNA. A combination of biochemical analyses and investigations of genetically manipulated bacteria demonstrated that Gac is a transcriptional repressor of ospC. This is a substantial advance toward understanding how the Lyme disease spirochete controls production of the essential OspC virulence factor and identifies a novel target for preventative and curative therapies.
Collapse
Affiliation(s)
- Tatiana N. Castro-Padovani
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Timothy C. Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Olivia T. Husted
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Andrew C. Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Nerina Jusufovic
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky College of Agriculture, Food, and Ecology, Lexington, Kentucky, USA
| |
Collapse
|
12
|
Čorak N, Anniko S, Daschkin-Steinborn C, Krey V, Koska S, Futo M, Široki T, Woichansky I, Opašić L, Kifer D, Tušar A, Maxeiner HG, Domazet-Lošo M, Nicolaus C, Domazet-Lošo T. Pleomorphic Variants of Borreliella (syn. Borrelia) burgdorferi Express Evolutionary Distinct Transcriptomes. Int J Mol Sci 2023; 24:5594. [PMID: 36982667 PMCID: PMC10057712 DOI: 10.3390/ijms24065594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Borreliella (syn. Borrelia) burgdorferi is a spirochete bacterium that causes tick-borne Lyme disease. Along its lifecycle B. burgdorferi develops several pleomorphic forms with unclear biological and medical relevance. Surprisingly, these morphotypes have never been compared at the global transcriptome level. To fill this void, we grew B. burgdorferi spirochete, round body, bleb, and biofilm-dominated cultures and recovered their transcriptomes by RNAseq profiling. We found that round bodies share similar expression profiles with spirochetes, despite their morphological differences. This sharply contrasts to blebs and biofilms that showed unique transcriptomes, profoundly distinct from spirochetes and round bodies. To better characterize differentially expressed genes in non-spirochete morphotypes, we performed functional, positional, and evolutionary enrichment analyses. Our results suggest that spirochete to round body transition relies on the delicate regulation of a relatively small number of highly conserved genes, which are located on the main chromosome and involved in translation. In contrast, spirochete to bleb or biofilm transition includes substantial reshaping of transcription profiles towards plasmids-residing and evolutionary young genes, which originated in the ancestor of Borreliaceae. Despite their abundance the function of these Borreliaceae-specific genes is largely unknown. However, many known Lyme disease virulence genes implicated in immune evasion and tissue adhesion originated in this evolutionary period. Taken together, these regularities point to the possibility that bleb and biofilm morphotypes might be important in the dissemination and persistence of B. burgdorferi inside the mammalian host. On the other hand, they prioritize the large pool of unstudied Borreliaceae-specific genes for functional characterization because this subset likely contains undiscovered Lyme disease pathogenesis genes.
Collapse
Affiliation(s)
- Nina Čorak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Sirli Anniko
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | | | - Viktoria Krey
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Physics of Synthetic Biological Systems-E14, Physics Department and ZNN, Technische Universität München, D-85748 Garching, Germany
| | - Sara Koska
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Momir Futo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| | - Tin Široki
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | | | - Luka Opašić
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia
| | - Anja Tušar
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Horst-Günter Maxeiner
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Comlamed, Friedrich-Bergius Ring 15, D-97076 Würzburg, Germany
| | - Mirjana Domazet-Lošo
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | - Carsten Nicolaus
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
13
|
Inducible CRISPRi-Based Operon Silencing and Selective in Trans Gene Complementation in Borrelia burgdorferi. J Bacteriol 2023; 205:e0046822. [PMID: 36719218 PMCID: PMC9945571 DOI: 10.1128/jb.00468-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To accelerate genetic studies on the Lyme disease pathogen Borrelia burgdorferi, we developed an enhanced CRISPR interference (CRISPRi) approach for isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible repression of specific B. burgdorferi genes. The entire system is encoded on a compact 11-kb shuttle vector plasmid that allows for inducible expression of both the sgRNA module and a nontoxic codon-optimized dCas9 protein. We validated this CRISPRi system by targeting the genes encoding OspA and OspB, abundant surface lipoproteins coexpressed by a single operon, and FlaB, the major subunit forming the periplasmic flagella. As in other systems, single guide RNAs (sgRNAs) complementary to the nontemplate strand were consistently effective in gene repression, with 4- to 994-fold reductions in targeted transcript levels and concomitant reductions of protein levels. Furthermore, we showed that ospAB knockdowns could be selectively complemented in trans for OspA expression via the insertion of CRISPRi-resistant, synonymously or nonsynonymously mutated protospacer adjacent motif (PAM*) ospA alleles into a unique site within the CRISPRi plasmid. Together, this establishes CRISPRi PAM* as a robust new genetic tool to simplify the study of B. burgdorferi genes, bypassing the need for gene disruptions by allelic exchange and avoiding rare codon toxicity from the heterologous expression of dCas9. IMPORTANCE Borrelia burgdorferi, the spirochetal bacterium causing Lyme disease, is a tick-borne pathogen of global importance. Here, we expand the genetic toolbox for studying B. burgdorferi physiology and pathogenesis by establishing a single plasmid-based, fully inducible, and nontoxic CRISPR interference (CRISPRi) system for transcriptional silencing of B. burgdorferi genes and operons. We also show that alleles of CRISPRi-targeted genes with mutated protospacer-adjacent motif (PAM*) sites are CRISPRi resistant and can be used for simultaneous in trans gene complementation. The CRISPRi PAM* system will streamline the study of essential Borrelia proteins and accelerate investigations into their structure-function relationships.
Collapse
|
14
|
Saylor TC, Savage CR, Krusenstjerna AC, Jusufovic N, Zückert WR, Brissette CA, Motaleb M, Schlax PJ, Stevenson B. Quantitative analyses of interactions between SpoVG and RNA/DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527361. [PMID: 36860938 PMCID: PMC9976275 DOI: 10.1101/2023.02.06.527361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Borrelia burgdorferi SpoVG protein has previously been found to be a DNA- and RNA-binding protein. To aid in the elucidation of ligand motifs, affinities for numerous RNAs, ssDNAs, and dsDNAs were measured and compared. The loci used in the study were spoVG, glpFKD, erpAB, bb0242, flaB, and ospAB, with particular focus on the untranslated 5' portion of the mRNAs. Performing binding and competition assays yielded that the 5' end of spoVG mRNA had the highest affinity while the lowest observed affinity was to the 5' end of flaB mRNA. Mutagenesis studies of spoVG RNA and ssDNA sequences suggested that the formation of SpoVG-nucleic acid complexes are not entirely dependent on either sequence or structure. Additionally, exchanging uracil for thymine in ssDNAs did not affect protein-nucleic acid complex formation.
Collapse
Affiliation(s)
- Timothy C. Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Christina R. Savage
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Andrew C. Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Nerina Jusufovic
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Md. Motaleb
- Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Paula J. Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
Borrelia burgdorferi DnaA and the Nucleoid-Associated Protein EbfC Coordinate Expression of the dnaX-ebfC Operon. J Bacteriol 2023; 205:e0039622. [PMID: 36533911 PMCID: PMC9879097 DOI: 10.1128/jb.00396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Borrelia burgdorferi, the spirochete agent of Lyme disease, has evolved within a consistent infectious cycle between tick and vertebrate hosts. The transmission of the pathogen from tick to vertebrate is characterized by rapid replication and a change in the outer surface protein profile. EbfC, a highly conserved nucleoid-associated protein, binds throughout the borrelial genome, affecting expression of many genes, including the Erp outer surface proteins. In B. burgdorferi, like many other bacterial species, ebfC is cotranscribed with dnaX, an essential component of the DNA polymerase III holoenzyme, which facilitates chromosomal replication. The expression of the dnaX-ebfC operon is tied to the spirochete's replication rate, but the underlying mechanism for this connection was unknown. In this work, we provide evidence that the expression of dnaX-ebfC is controlled by direct interactions of DnaA, the chromosomal replication initiator, and EbfC at the unusually long dnaX-ebfC 5' untranslated region (UTR). Both proteins bind to the 5' UTR DNA, with EbfC also binding to the RNA. The DNA binding of DnaA to this region was similarly impacted by ATP and ADP. In vitro studies characterized DnaA as an activator of dnaX-ebfC and EbfC as an antiactivator. We further found evidence that DnaA may regulate other genes essential for replication. IMPORTANCE The dual life cycle of Borrelia burgdorferi, the causative agent of Lyme disease, is characterized by periods of rapid and slowed replication. The expression patterns of many of the spirochete's virulence factors are impacted by these changes in replication rates. The connection between replication and virulence can be understood at the dnaX-ebfC operon. DnaX is an essential component of the DNA polymerase III holoenzyme, which replicates the chromosome. EbfC is a nucleoid-associated protein that regulates the infection-associated outer surface Erp proteins, as well as other transcripts. The expression of dnaX-ebfC is tied to replication rate, which we demonstrate is mediated by DnaA, the master chromosomal initiator protein and transcription factor, and EbfC.
Collapse
|
16
|
Petroni E, Esnault C, Tetreault D, Dale RK, Storz G, Adams PP. Extensive diversity in RNA termination and regulation revealed by transcriptome mapping for the Lyme pathogen B. burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522626. [PMID: 36712141 PMCID: PMC9881889 DOI: 10.1101/2023.01.04.522626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transcription termination is an essential and dynamic process that can tune gene expression in response to diverse molecular signals. Yet, the genomic positions, molecular mechanisms, and regulatory consequences of termination have only been studied thoroughly in model bacteria. We employed complementary RNA-seq approaches to map RNA ends for the transcriptome of the spirochete Borrelia burgdorferi - the etiological agent of Lyme disease. By systematically mapping B. burgdorferi RNA ends at single nucleotide resolution, we delineated complex gene arrangements and operons and mapped untranslated regions (UTRs) and small RNAs (sRNAs). We experimentally tested modes of B. burgdorferi transcription termination and compared our findings to observations in E. coli , P. aeruginosa , and B. subtilis . We discovered 63% of B. burgdorferi RNA 3' ends map upstream or internal to open reading frames (ORFs), suggesting novel mechanisms of regulation. Northern analysis confirmed the presence of stable 5' derived RNAs from mRNAs encoding gene products involved in the unique infectious cycle of B. burgdorferi . We suggest these RNAs resulted from premature termination and regulatory events, including forms of cis- acting regulation. For example, we documented that the polyamine spermidine globally influences the generation of truncated mRNAs. In one case, we showed that high spermidine concentrations increased levels of RNA fragments derived from an mRNA encoding a spermidine import system, with a concomitant decrease in levels of the full- length mRNA. Collectively, our findings revealed new insight into transcription termination and uncovered an abundance of potential RNA regulators.
Collapse
Affiliation(s)
- Emily Petroni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Daniel Tetreault
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Philip P. Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA.,Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.,correspondence:
| |
Collapse
|
17
|
Phelan JP, Bourgeois JS, McCarthy JE, Hu LT. A putative xanthine dehydrogenase is critical for Borrelia burgdorferi survival in ticks and mice. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001286. [PMID: 36748545 PMCID: PMC9993122 DOI: 10.1099/mic.0.001286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Borrelia burgdorferi is a pathogenic bacterium and the causative agent of Lyme disease. It is exposed to reactive oxygen species (ROS) in both the vertebrate and tick hosts. While some mechanisms by which B. burgdorferi ameliorates the effects of ROS exposure have been studied, there are likely other unknown mechanisms of ROS neutralization that contribute to virulence. Here, we follow up on a three gene cluster of unknown function, bb_0554, bb_0555, and bb_0556, that our prior unbiased transposon insertional sequencing studies implicated in both ROS survival and survival in Ixodes scapularis. We confirmed these findings through genetic knockout and provide evidence that these genes are co-transcribed as an operon to produce a xanthine dehydrogenase. In agreement with these results, we found that B. burgdorferi exposure to either uric acid (a product of xanthine dehydrogenase) or allopurinol (an inhibitor of xanthine dehydrogenase) could modulate sensitivity to ROS in a bb_0554-bb_0556 dependent manner. Together, this study identifies a previously uncharacterized three gene operon in B. burgdorferi as encoding a putative xanthine dehydrogenase critical for virulence. We propose renaming this locus xdhACB.
Collapse
Affiliation(s)
- James P Phelan
- Tufts University, Department of Molecular Biology and Microbiology, Boston, Massachusetts, USA.,Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Jeffrey S Bourgeois
- Tufts University, Department of Molecular Biology and Microbiology, Boston, Massachusetts, USA.,Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Julie E McCarthy
- Tufts University, Department of Molecular Biology and Microbiology, Boston, Massachusetts, USA.,Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Linden T Hu
- Tufts University, Department of Molecular Biology and Microbiology, Boston, Massachusetts, USA.,Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Saylor TC, Casselli T, Lethbridge KG, Moore JP, Owens KM, Brissette CA, Zückert WR, Stevenson B. Borrelia burgdorferi, the Lyme disease spirochete, possesses genetically-encoded responses to doxycycline, but not to amoxicillin. PLoS One 2022; 17:e0274125. [PMID: 36178885 PMCID: PMC9524633 DOI: 10.1371/journal.pone.0274125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Some species of bacteria respond to antibiotic stresses by altering their transcription profiles, in order to produce proteins that provide protection against the antibiotic. Understanding these compensatory mechanisms allows for informed treatment strategies, and could lead to the development of improved therapeutics. To this end, studies were performed to determine whether Borrelia burgdorferi, the spirochetal agent of Lyme disease, also exhibits genetically-encoded responses to the commonly prescribed antibiotics doxycycline and amoxicillin. After culturing for 24 h in a sublethal concentration of doxycycline, there were significant increases in a substantial number of transcripts for proteins that are involved with translation. In contrast, incubation with a sublethal concentration of amoxicillin did not lead to significant changes in levels of any bacterial transcript. We conclude that B. burgdorferi has a mechanism(s) that detects translational inhibition by doxycycline, and increases production of mRNAs for proteins involved with translation machinery in an attempt to compensate for that stress.
Collapse
Affiliation(s)
- Timothy C. Saylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Timothy Casselli
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Kathryn G. Lethbridge
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Jessamyn P. Moore
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Katie M. Owens
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kentucky, United States of America
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
19
|
FtlA and FtlB Are Candidates for Inclusion in a Next-Generation Multiantigen Subunit Vaccine for Lyme Disease. Infect Immun 2022; 90:e0036422. [PMID: 36102656 PMCID: PMC9584329 DOI: 10.1128/iai.00364-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD) is a tick-transmitted bacterial infection caused by Borreliella burgdorferi and other closely related species collectively referred to as the LD spirochetes. The LD spirochetes encode an uncharacterized family of proteins originally designated protein family twelve (PF12). In B. burgdorferi strain B31, PF12 consists of four plasmid-carried genes, encoding BBK01, BBG01, BBH37, and BBJ08. Henceforth, we designate the PF12 proteins family twelve lipoprotein (Ftl) A (FtlA) (BBK01), FtlB (BBG01), FtlC (BBH37), and FtlD (BBJ08). The goal of this study was to assess the potential utility of the Ftl proteins in subunit vaccine development. Immunoblot analyses of LD spirochete cell lysates demonstrated that one or more of the Ftl proteins are produced by most LD isolates during cultivation. The Ftl proteins were verified to be membrane associated, and nondenaturing PAGE revealed that FtlA, FtlB, and FtlD formed dimers, while FtlC formed hexamers. Analysis of serum samples from B. burgdorferi antibody (Ab)-positive client-owned dogs (n = 50) and horses (n = 90) revealed that a majority were anti-Ftl Ab positive. Abs to the Ftl proteins were detected in serum samples from laboratory-infected dogs out to 497 days postinfection. Anti-FtlA and FtlB antisera displayed potent complement-dependent Ab-mediated killing activity, and epitope localization revealed that the bactericidal epitopes reside within the N-terminal domain of the Ftl proteins. This study suggests that FtlA and FtlB are potential candidates for inclusion in a multivalent vaccine for LD.
Collapse
|
20
|
Cabello FC, Embers ME, Newman SA, Godfrey HP. Borreliella burgdorferi Antimicrobial-Tolerant Persistence in Lyme Disease and Posttreatment Lyme Disease Syndromes. mBio 2022; 13:e0344021. [PMID: 35467428 PMCID: PMC9239140 DOI: 10.1128/mbio.03440-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The annual incidence of Lyme disease, caused by tick-transmitted Borreliella burgdorferi, is estimated to be at least 476,000 cases in the United States and many more worldwide. Ten to 20% of antimicrobial-treated Lyme disease patients display posttreatment Lyme disease syndrome (PTLDS), a clinical complication whose etiology and pathogenesis remain uncertain. Autoimmunity, cross-reactivity, molecular mimicry, coinfections, and borrelial tolerance to antimicrobials/persistence have been hypothesized and studied as potential causes of PTLDS. Studies of borrelial tolerance/persistence in vitro in response to antimicrobials and experimental studies in mice and nonhuman primates, taken together with clinical reports, have revealed that B. burgdorferi becomes tolerant to antimicrobials and may sometimes persist in animals and humans after the currently recommended antimicrobial treatment. Moreover, B. burgdorferi is pleomorphic and can generate viable-but-nonculturable bacteria, states also involved in antimicrobial tolerance. The multiple regulatory pathways and structural genes involved in mediating this tolerance to antimicrobials and environmental stressors by persistence might include the stringent (rel and dksA) and host adaptation (rpoS) responses, sugar metabolism (glpD), and polypeptide transporters (opp). Application of this recently reported knowledge to clinical studies can be expected to clarify the potential role of bacterial antibacterial tolerance/persistence in Lyme disease and PTLDS.
Collapse
Affiliation(s)
- Felipe C. Cabello
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, Louisiana, USA
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Henry P. Godfrey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
21
|
Graniczkowska KB, Shaffer CL, Cassone VM. Transcriptional effects of melatonin on the gut commensal bacterium Klebsiella aerogenes. Genomics 2022; 114:110321. [PMID: 35218872 PMCID: PMC8934286 DOI: 10.1016/j.ygeno.2022.110321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/26/2021] [Accepted: 02/19/2022] [Indexed: 11/04/2022]
Abstract
Klebsiella (nee Enterobacter) aerogenes is the first human gut commensal bacterium with a documented sensitivity to the pineal/gastrointestinal hormone melatonin. Exogenous melatonin specifically increases the size of macrocolonies on semisolid agar and synchronizes the circadian clock of K. aerogenes in a concentration dependent manner. However, the mechanisms driving these phenomena are unknown. In this study, we applied RNA sequencing to identify melatonin sensitive transcripts during culture maturation. This work demonstrates that the majority of melatonin sensitive genes are growth stage specific. Melatonin exposure induced differential gene expression of 81 transcripts during exponential growth and 30 during early stationary phase. This indole molecule affects genes related to biofilm formation, fimbria biogenesis, transcriptional regulators, carbohydrate transport and metabolism, phosphotransferase systems (PTS), stress response, metal ion binding and transport. Differential expression of biofilm and fimbria-related genes may be responsible for the observed differences in macrocolony area. These data suggest that melatonin enhances Klebsiella aerogenes host colonization.
Collapse
Affiliation(s)
| | - Carrie L Shaffer
- University of Kentucky, Department of Veterinary Science, USA; University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, USA; University of Kentucky, Department of Pharmaceutical Sciences, Lexington, KY 40506, USA
| | | |
Collapse
|
22
|
Seshu J, Moy BE, Ingle TM. Transformation of Borrelia burgdorferi. Curr Protoc 2021; 1:e61. [PMID: 33661557 DOI: 10.1002/cpz1.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transformation techniques used to genetically manipulate Borrelia burgdorferi, the agent of Lyme disease, play a critical role in generating mutants that facilitate analyses of the role of genes in the pathophysiology of this bacterium. A number of borrelial mutants have been successfully isolated and characterized since the first electrotransformation procedure was established 25 years ago (Samuels, 1995). This article is directed at additional considerations for transforming infectious B. burgdorferi to generate strains retaining the plasmid profile of the parental strain, enabling analysis of transformants for in vitro and in vivo phenotypes. These methods are built on previously published protocols and are intended to add steps and tips to enhance transformation efficiency and recovery of strains amenable for studies involving colonization, survival, and transmission of B. burgdorferi during the vector and vertebrate phases of infection. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of stock cultures, propagation of spirochetes, and analysis of plasmid profiles Basic Protocol 2: Preparation of plasmid and linear DNA templates for transformation Basic Protocol 3: Transformation of B. burgdorferi Basic Protocol 4: Antibiotic selection of borrelial transformants Basic Protocol 5: Isolation of borrelial transformants in agar overlays Basic Protocol 6: Complementation of mutant borrelial strains in cis or in trans.
Collapse
Affiliation(s)
- J Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas
| | - Brian E Moy
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas
| | - Taylor MacMackin Ingle
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
23
|
Donta ST, States LJ, Adams WA, Bankhead T, Baumgarth N, Embers ME, Lochhead RB, Stevenson B. Report of the Pathogenesis and Pathophysiology of Lyme Disease Subcommittee of the HHS Tick Borne Disease Working Group. Front Med (Lausanne) 2021; 8:643235. [PMID: 34164410 PMCID: PMC8215209 DOI: 10.3389/fmed.2021.643235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
An understanding of the pathogenesis and pathophysiology of Lyme disease is key to the ultimate care of patients with Lyme disease. To better understand the various mechanisms underlying the infection caused by Borrelia burgdorferi, the Pathogenesis and Pathophysiology of Lyme Disease Subcommittee was formed to review what is currently known about the pathogenesis and pathophysiology of Lyme disease, from its inception, but also especially about its ability to persist in the host. To that end, the authors of this report were assembled to update our knowledge about the infectious process, identify the gaps that exist in our understanding of the process, and provide recommendations as to how to best approach solutions that could lead to a better means to manage patients with persistent Lyme disease.
Collapse
Affiliation(s)
- Sam T Donta
- Falmouth Hospital, Falmouth, MA, United States
| | - Leith J States
- Office of the Assistant Secretary for Health, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Wendy A Adams
- Bay Area Lyme Foundation, Portola Valley, CA, United States
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Monica E Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Robert B Lochhead
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
24
|
A CRISPR interference platform for selective downregulation of gene expression in Borrelia burgdorferi. Appl Environ Microbiol 2021; 87:AEM.02519-20. [PMID: 33257311 PMCID: PMC7851697 DOI: 10.1128/aem.02519-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The spirochete Borrelia burgdorferi causes Lyme disease, an increasingly prevalent infection. While previous studies have provided important insight into B. burgdorferi biology, many aspects, including basic cellular processes, remain underexplored. To help speed up the discovery process, we adapted a CRISPR interference (CRISPRi) platform for use in B. burgdorferi For efficiency and flexibility of use, we generated various CRISPRi template constructs that produce different basal and induced levels of dcas9 and carry different antibiotic resistance markers. We characterized the effectiveness of our CRISPRi platform by targeting the motility and cell morphogenesis genes flaB, mreB, rodA, and ftsI, whose native expression levels span two orders of magnitude. For all four genes, we obtained gene repression efficiencies of at least 95%. We showed by darkfield microscopy and cryo-electron tomography that flagellin (FlaB) depletion reduced the length and number of periplasmic flagella, which impaired cellular motility and resulted in cell straightening. Depletion of FtsI caused cell filamentation, implicating this protein in cell division in B. burgdorferi Finally, localized cell bulging in MreB- and RodA-depleted cells matched the locations of new peptidoglycan insertion specific to spirochetes of the Borrelia genus. These results therefore implicate MreB and RodA in the particular mode of cell wall elongation of these bacteria. Collectively, our results demonstrate the efficiency and ease of use of our B. burgdorferi CRISPRi platform, which should facilitate future genetic studies of this important pathogen.IMPORTANCE Gene function studies are facilitated by the availability of rapid and easy-to-use genetic tools. Homologous recombination-based methods traditionally used to genetically investigate gene function remain cumbersome to perform in B. burgdorferi, as they often are relatively inefficient. In comparison, our CRISPRi platform offers an easy and fast method to implement as it only requires a single plasmid transformation step and IPTG addition to obtain potent (>95%) downregulation of gene expression. To facilitate studies of various genes in wild-type and genetically modified strains, we provide over 30 CRISPRi plasmids that produce distinct levels of dcas9 expression and carry different antibiotic resistance markers. Our CRISPRi platform represents a useful and efficient complement to traditional genetic and chemical methods to study gene function in B. burgdorferi.
Collapse
|
25
|
DeHart TG, Kushelman MR, Hildreth SB, Helm RF, Jutras BL. The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar. Nat Microbiol 2021; 6:1583-1592. [PMID: 34819646 PMCID: PMC8612929 DOI: 10.1038/s41564-021-01003-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Peptidoglycan-a mesh sac of glycans that are linked by peptides-is the main component of bacterial cell walls. Peptidoglycan provides structural strength, protects cells from osmotic pressure and contributes to shape. All bacterial glycans are repeating disaccharides of N-acetylglucosamine (GlcNAc) β-(1-4)-linked to N-acetylmuramic acid (MurNAc). Borrelia burgdorferi, the tick-borne Lyme disease pathogen, produces glycan chains in which MurNAc is occasionally replaced with an unknown sugar. Nuclear magnetic resonance, liquid chromatography-mass spectroscopy and genetic analyses show that B. burgdorferi produces glycans that contain GlcNAc-GlcNAc. This unusual disaccharide is chitobiose, a component of its chitinous tick vector. Mutant bacteria that are auxotrophic for chitobiose have altered morphology, reduced motility and cell envelope defects that probably result from producing peptidoglycan that is stiffer than that in wild-type bacteria. We propose that the peptidoglycan of B. burgdorferi probably evolved by adaptation to obligate parasitization of a tick vector, resulting in a biophysical cell-wall alteration to withstand the atypical torque associated with twisting motility.
Collapse
Affiliation(s)
- Tanner G. DeHart
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Mara R. Kushelman
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Sherry B. Hildreth
- grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Richard F. Helm
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Brandon L. Jutras
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Molecular and Cellular Biology, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
26
|
Abstract
Genetic studies in Borrelia require special consideration of the highly segmented genome, complex growth requirements and evolutionary distance of spirochetes from other genetically tractable bacteria. Despite these challenges, a robust molecular genetic toolbox has been constructed to investigate the biology and pathogenic potential of these important human pathogens. In this review we summarize the tools and techniques that are currently available for the genetic manipulation of Borrelia, including the relapsing fever spirochetes, viewing them in the context of their utility and shortcomings. Our primary objective is to help researchers discern what is feasible and what is not practical when thinking about potential genetic experiments in Borrelia. We have summarized published methods and highlighted their critical elements, but we are not providing detailed protocols. Although many advances have been made since B. burgdorferi was first transformed over 25 years ago, some standard genetic tools remain elusive for Borrelia. We mention these limitations and why they persist, if known. We hope to encourage investigators to explore what might be possible, in addition to optimizing what currently can be achieved, through genetic manipulation of Borrelia.
Collapse
Affiliation(s)
- Patricia A. Rosa
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St. Hamilton, MT 59840 USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd, Orlando, FL 32827 USA
| |
Collapse
|
27
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
28
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Ding Z, Sun L, Bi Y, Zhang Y, Yue P, Xu X, Cao W, Luo L, Chen T, Li L, Ji Z, Jian M, Lu L, Abi ME, Liu A, Bao F. Integrative Transcriptome and Proteome Analyses Provide New Insights Into the Interaction Between Live Borrelia burgdorferi and Frontal Cortex Explants of the Rhesus Brain. J Neuropathol Exp Neurol 2020; 79:518-529. [PMID: 32196082 DOI: 10.1093/jnen/nlaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
Borrelia burgdorferi (Bb), which is neurotropic, can attack the central nervous system (CNS), leading to the development of various neurologic symptoms. The pathogenesis of Lyme neuroborreliosis (LNB) remains poorly understood. Presently, there is a lack of knowledge of the changes in mRNA and proteins in the CNS following early disseminated Lyme disease. Explants from the frontal cortex of 3 rhesus brains were incubated with medium alone or with medium containing live Bb for 6, 12, or 24 hours. Then, we analyzed identified mRNA and proteins in the frontal cortex tissues, allowing for an in-depth view of the transcriptome and proteome for a macroscopic and unbiased understanding of early disseminated Lyme disease in the brain. Through bioinformatics analysis, a complex network of enriched pathways that were mobilized during the progression of Lyme spirochete infection was described. Furthermore, based on the analysis of omics data, translational regulation, glycosaminoglycan/proteoglycan-binding activity in colonization and dissemination to tissues, disease-associated genes, and synaptic function were enriched, which potentially play a role in pathogenesis during the interaction between frontal cortex tissues and spirochetes. These integrated omics results provide unbiased and comprehensive information for the further understanding of the molecular mechanisms of LNB.
Collapse
Affiliation(s)
- Zhe Ding
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Luyun Sun
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities
| | - Yunfeng Bi
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities
| | - Yu Zhang
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Peng Yue
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Xin Xu
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Biochemistry and Molecular Biology, Kunming Medical University
| | - Wenjing Cao
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Biochemistry and Molecular Biology, Kunming Medical University
| | - Lisha Luo
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Biochemistry and Molecular Biology, Kunming Medical University
| | - Taigui Chen
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Lianbao Li
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Zhenhua Ji
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Miaomiao Jian
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Biochemistry and Molecular Biology, Kunming Medical University
| | - Lihong Lu
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities
| | - Manzama-Esso Abi
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Department of Microbiology and Immunology
| | - Aihua Liu
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Yunnan Province Key Laboratory for Children's Major Diseases Research, The Children's Hospital of Kunming.,Department of Biochemistry and Molecular Biology, Kunming Medical University.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| | - Fukai Bao
- From the Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities.,Yunnan Province Key Laboratory for Children's Major Diseases Research, The Children's Hospital of Kunming.,Department of Microbiology and Immunology.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| |
Collapse
|
30
|
The BB0345 Hypothetical Protein of Borrelia burgdorferi Is Essential for Mammalian Infection. Infect Immun 2020; 88:IAI.00472-20. [PMID: 32928963 DOI: 10.1128/iai.00472-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
During the natural enzootic life cycle of Borrelia burgdorferi (also known as Borreliella burgdorferi), the bacteria must sense conditions within the vertebrate and arthropod and appropriately regulate expression of genes necessary to persist within these distinct environments. bb0345 of B. burgdorferi encodes a hypothetical protein of unknown function that is predicted to contain an N-terminal helix-turn-helix (HTH) domain. Because HTH domains can mediate protein-DNA interactions, we hypothesized that BB0345 might represent a previously unidentified borrelial transcriptional regulator with the ability to regulate events critical for the B. burgdorferi enzootic cycle. To study the role of BB0345 within mammals, we generated a bb0345 mutant and assessed its virulence potential in immunocompetent mice. The bb0345 mutant was able to initiate localized infection and disseminate to distal tissues but was cleared from all sites by 14 days postinfection. In vitro growth curve analyses revealed that the bb0345 mutant grew similar to wild-type bacteria in standard Barbour-Stoenner-Kelley II (BSK-II) medium; however, the mutant was not able to grow in dilute BSK-II medium or dialysis membrane chambers (DMCs) implanted in rats. Proteinase K accessibility assays and whole-cell partitioning indicated that BB0345 was intracellular and partially membrane associated. Comparison of protein production profiles between the wild-type parent and the bb0345 mutant revealed no major differences, suggesting BB0345 may not be a global transcriptional regulator. Taken together, these data show that BB0345 is essential for B. burgdorferi survival in the mammalian host, potentially by aiding the spirochete with a physiological function that is required by the bacterium during infection.
Collapse
|
31
|
Medina-Pérez DN, Wager B, Troy E, Gao L, Norris SJ, Lin T, Hu L, Hyde JA, Lybecker M, Skare JT. The intergenic small non-coding RNA ittA is required for optimal infectivity and tissue tropism in Borrelia burgdorferi. PLoS Pathog 2020; 16:e1008423. [PMID: 32365143 PMCID: PMC7224557 DOI: 10.1371/journal.ppat.1008423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Post-transcriptional regulation via small regulatory RNAs (sRNAs) has been implicated in diverse regulatory processes in bacteria, including virulence. One class of sRNAs, termed trans-acting sRNAs, can affect the stability and/or the translational efficiency of regulated transcripts. In this study, we utilized a collaborative approach that employed data from infection with the Borrelia burgdorferi Tn library, coupled with Tn-seq, together with borrelial sRNA and total RNA transcriptomes, to identify an intergenic trans-acting sRNA, which we designate here as ittA for infectivity-associated and tissue-tropic sRNA locus A. The genetic inactivation of ittA resulted in a significant attenuation in infectivity, with decreased spirochetal load in ear, heart, skin and joint tissues. In addition, the ittA mutant did not disseminate to peripheral skin sites or heart tissue, suggesting a role for ittA in regulating a tissue-tropic response. RNA-Seq analysis determined that 19 transcripts were differentially expressed in the ittA mutant relative to its genetic parent, including vraA, bba66, ospD and oms28 (bba74). Subsequent proteomic analyses also showed a significant decrease of OspD and Oms28 (BBA74) proteins. To our knowledge this is the first documented intergenic sRNA that alters the infectivity potential of B. burgdorferi.
Collapse
Affiliation(s)
- Diana N. Medina-Pérez
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Beau Wager
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, United States of America
| | - Erin Troy
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, United States of America
| | - Lihui Gao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Tao Lin
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Linden Hu
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, United States of America
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Meghan Lybecker
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, Colorado, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| |
Collapse
|
32
|
Drecktrah D, Hall LS, Brinkworth AJ, Comstock JR, Wassarman KM, Samuels DS. Characterization of 6S RNA in the Lyme disease spirochete. Mol Microbiol 2020; 113:399-417. [PMID: 31742773 PMCID: PMC7047579 DOI: 10.1111/mmi.14427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022]
Abstract
6S RNA binds to RNA polymerase and regulates gene expression, contributing to bacterial adaptation to environmental stresses. In this study, we examined the role of 6S RNA in murine infectivity and tick persistence of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi. B. burgdorferi 6S RNA (Bb6S RNA) binds to RNA polymerase, is expressed independent of growth phase or nutrient stress in culture, and is processed by RNase Y. We found that rny (bb0504), the gene encoding RNase Y, is essential for B. burgdorferi growth, while ssrS, the gene encoding 6S RNA, is not essential, indicating a broader role for RNase Y activity in the spirochete. Bb6S RNA regulates expression of the ospC and dbpA genes encoding outer surface protein C and decorin binding protein A, respectively, which are lipoproteins important for host infection. The highest levels of Bb6S RNA are found when the spirochete resides in unfed nymphs. ssrS mutants lacking Bb6S RNA were compromised for infectivity by needle inoculation, but injected mice seroconverted, indicating an ability to activate the adaptive immune response. ssrS mutants were successfully acquired by larval ticks and persisted through fed nymphs. Bb6S RNA is one of the first regulatory RNAs identified in B. burgdorferi that controls the expression of lipoproteins involved in host infectivity.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
33
|
Goodhead I, Blow F, Brownridge P, Hughes M, Kenny J, Krishna R, McLean L, Pongchaikul P, Beynon R, Darby AC. Large-scale and significant expression from pseudogenes in Sodalis glossinidius - a facultative bacterial endosymbiont. Microb Genom 2020; 6:e000285. [PMID: 31922467 PMCID: PMC7067036 DOI: 10.1099/mgen.0.000285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 07/10/2019] [Indexed: 01/30/2023] Open
Abstract
The majority of bacterial genomes have high coding efficiencies, but there are some genomes of intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50 % pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple 'omic' strategies, combining Illumina and Pacific Biosciences Single-Molecule Real-Time DNA sequencing and annotation, stranded RNA sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53 and 74 % of the Sodalis transcriptome remains active in cell-free culture. The mean sense transcription from coding domain sequences (CDSs) is four times greater than that from pseudogenes. Comparative genomic analysis of six Illumina-sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40 % of the 2729 genes in the core genome, suggesting that they are stable and/or that Sodalis is a recent introduction across the genus Glossina as a facultative symbiont. These data shed further light on the importance of transcriptional and translational control in deciphering host-microbe interactions. The combination of genomics, transcriptomics and proteomics gives a multidimensional perspective for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches.
Collapse
Affiliation(s)
- Ian Goodhead
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- School of Science, Engineering and Environment, Peel Building, University of Salford, M5 4WT, UK
| | - Frances Blow
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- Department of Entomology, Cornell University, Ithaca 14853, NY, USA
| | - Philip Brownridge
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Margaret Hughes
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - John Kenny
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Ritesh Krishna
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- IBM Research UK, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK
| | - Lynn McLean
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Pisut Pongchaikul
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Rob Beynon
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Alistair C. Darby
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| |
Collapse
|
34
|
Jutras BL, Savage CR, Arnold WK, Lethbridge KG, Carroll DW, Tilly K, Bestor A, Zhu H, Seshu J, Zückert WR, Stewart PE, Rosa PA, Brissette CA, Stevenson B. The Lyme disease spirochete's BpuR DNA/RNA-binding protein is differentially expressed during the mammal-tick infectious cycle, which affects translation of the SodA superoxide dismutase. Mol Microbiol 2019; 112:973-991. [PMID: 31240776 PMCID: PMC6736767 DOI: 10.1111/mmi.14336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2019] [Indexed: 12/24/2022]
Abstract
When the Lyme disease spirochete, Borrelia burgdorferi, transfers from a feeding tick into a human or other vertebrate host, the bacterium produces vertebrate‐specific proteins and represses factors needed for arthropod colonization. Previous studies determined that the B. burgdorferi BpuR protein binds to its own mRNA and autoregulates its translation, and also serves as co‐repressor of erp transcription. Here, we demonstrate that B. burgdorferi controls transcription of bpuR, expressing high levels of bpuR during tick colonization but significantly less during mammalian infection. The master regulator of chromosomal replication, DnaA, was found to bind specifically to a DNA sequence that overlaps the bpuR promoter. Cultured B. burgdorferi that were genetically manipulated to produce elevated levels of BpuR exhibited altered levels of several proteins, although BpuR did not impact mRNA levels. Among these was the SodA superoxide dismutase, which is essential for mammalian infection. BpuR bound to sodA mRNA in live B. burgdorferi, and a specific BpuR‐binding site was mapped 5′ of the sodA open reading frame. Recognition of posttranscriptional regulation of protein levels by BpuR adds another layer to our understanding of the B. burgdorferi regulome, and provides further evidence that bacterial protein levels do not always correlate directly with mRNA levels.
Collapse
Affiliation(s)
- Brandon L Jutras
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Christina R Savage
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - William K Arnold
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn G Lethbridge
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Dustin W Carroll
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kit Tilly
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Aaron Bestor
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Janakiram Seshu
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Wolfram R Zückert
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Philip E Stewart
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA.,Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
35
|
Abstract
The spirochetes Borrelia (Borreliella) burgdorferi and Borrelia hermsii, the etiologic agents of Lyme disease and relapsing fever, respectively, cycle in nature between an arthropod vector and a vertebrate host. They have extraordinarily unusual genomes that are highly segmented and predominantly linear. The genetic analyses of Lyme disease spirochetes have become increasingly more sophisticated, while the age of genetic investigation in the relapsing fever spirochetes is just dawning. Molecular tools available for B. burgdorferi and related species range from simple selectable markers and gene reporters to state-of-the-art inducible gene expression systems that function in the animal model and high-throughput mutagenesis methodologies, despite nearly overwhelming experimental obstacles. This armamentarium has empowered borreliologists to build a formidable genetic understanding of the cellular physiology of the spirochete and the molecular pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
36
|
Phelan JP, Kern A, Ramsey ME, Lundt ME, Sharma B, Lin T, Gao L, Norris SJ, Hyde JA, Skare JT, Hu LT. Genome-wide screen identifies novel genes required for Borrelia burgdorferi survival in its Ixodes tick vector. PLoS Pathog 2019; 15:e1007644. [PMID: 31086414 PMCID: PMC6516651 DOI: 10.1371/journal.ppat.1007644] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in humans, is maintained in a complex biphasic life cycle, which alternates between tick and vertebrate hosts. To successfully survive and complete its enzootic cycle, B. burgdorferi adapts to diverse hosts by regulating genes required for survival in specific environments. Here we describe the first ever use of transposon insertion sequencing (Tn-seq) to identify genes required for B. burgdorferi survival in its tick host. We found that insertions into 46 genes resulted in a complete loss of recovery of mutants from larval Ixodes ticks. Insertions in an additional 56 genes resulted in a >90% decrease in fitness. The screen identified both previously known and new genes important for larval tick survival. Almost half of the genes required for survival in the tick encode proteins of unknown function, while a significant portion (over 20%) encode membrane-associated proteins or lipoproteins. We validated the results of the screen for five Tn mutants by performing individual competition assays using mutant and complemented strains. To better understand the role of one of these genes in tick survival, we conducted mechanistic studies of bb0017, a gene previously shown to be required for resistance against oxidative stress. In this study we show that BB0017 affects the regulation of key borrelial virulence determinants. The application of Tn-seq to in vivo screening of B. burgdorferi in its natural vector is a powerful tool that can be used to address many different aspects of the host pathogen interaction. Borrelia burgdorferi, the causative agent of Lyme disease, must adjust to environmental changes as it moves between its tick and vertebrate hosts. We performed a screen of a B. burgdorferi transposon library using massively parallel sequencing (Tn-seq) to identify fitness defects involved in survival in its tick host. This screen accurately identified genes known to cause decreased fitness for tick survival and identified new genes involved in B. burgdorferi survival in ticks. All of the genes tested individually confirmed the Tn-seq results. One of the genes identified encodes a protein whose function was previously unknown that appears to be involved in regulating expression of proteins known to be involved in environmental adaptation. Tn-seq is a powerful tool for understanding vector-pathogen interactions and may reveal new opportunities for interrupting the infectious cycle of vector-borne diseases.
Collapse
Affiliation(s)
- James P. Phelan
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- * E-mail: (JPP); (STH)
| | - Aurelie Kern
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Meghan E. Ramsey
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Maureen E. Lundt
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Bijaya Sharma
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Tao Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lihui Gao
- MD Anderson Cancer Center Thoracic & Cardiovascular Surgery, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health, Houston, Texas, United States of America
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, United States of America
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- * E-mail: (JPP); (STH)
| |
Collapse
|
37
|
Caskey JR, Hasenkampf NR, Martin DS, Chouljenko VN, Subramanian R, Cheslock MA, Embers ME. The Functional and Molecular Effects of Doxycycline Treatment on Borrelia burgdorferi Phenotype. Front Microbiol 2019; 10:690. [PMID: 31057493 PMCID: PMC6482230 DOI: 10.3389/fmicb.2019.00690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies have shown that Borrelia burgdorferi can form antibiotic-tolerant persisters in the presence of microbiostatic drugs such as doxycycline. Precisely how this occurs is yet unknown. Our goal was to examine gene transcription by B. burgdorferi following doxycycline treatment in an effort to identify both persister-associated genes and possible targets for antimicrobial intervention. To do so, we performed next-generation RNA sequencing on doxycycline-treated spirochetes and treated spirochetes following regrowth, comparing them to untreated B. burgdorferi. A number of genes were perturbed and most of those which were statistically significant were down-regulated in the treated versus the untreated or treated/re-grown. Genes upregulated in the treated B. burgdorferi included a number of Erp genes and rplU, a 50S ribosomal protein. Among those genes associated with post-treatment regrowth were bba74 (Oms28), bba03, several peptide ABC transporters, ospA, ospB, ospC, dbpA and bba62. Studies are underway to determine if these same genes are perturbed in B. burgdorferi treated with doxycycline in a host environment.
Collapse
Affiliation(s)
- John R. Caskey
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Nicole R. Hasenkampf
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Dale S. Martin
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Vladimir N. Chouljenko
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Ramesh Subramanian
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mercedes A. Cheslock
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Monica E. Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
38
|
Takacs CN, Kloos ZA, Scott M, Rosa PA, Jacobs-Wagner C. Fluorescent Proteins, Promoters, and Selectable Markers for Applications in the Lyme Disease Spirochete Borrelia burgdorferi. Appl Environ Microbiol 2018; 84:e01824-18. [PMID: 30315081 PMCID: PMC6275353 DOI: 10.1128/aem.01824-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022] Open
Abstract
Lyme disease is the most widely reported vector-borne disease in the United States. Its incidence is rapidly increasing, and disease symptoms can be debilitating. The need to understand the biology of the disease agent, the spirochete Borrelia burgdorferi, is thus evermore pressing. Despite important advances in B. burgdorferi genetics, the array of molecular tools available for use in this organism remains limited, especially for cell biological studies. Here, we adapt a palette of bright and mostly monomeric fluorescent proteins for versatile use and multicolor imaging in B. burgdorferi We also characterize two novel antibiotic selection markers and establish the feasibility of their use in conjunction with extant markers. Last, we describe a set of promoters of low and intermediate strengths that allow fine-tuning of gene expression levels. These molecular tools complement and expand current experimental capabilities in B. burgdorferi, which will facilitate future investigation of this important human pathogen. To showcase the usefulness of these reagents, we used them to investigate the subcellular localization of BB0323, a B. burgdorferi lipoprotein essential for survival in the host and vector environments. We show that BB0323 accumulates at the cell poles and future division sites of B. burgdorferi cells, highlighting the complex subcellular organization of this spirochete.IMPORTANCE Genetic manipulation of the Lyme disease spirochete B. burgdorferi remains cumbersome, despite significant progress in the field. The scarcity of molecular reagents available for use in this pathogen has slowed research efforts to study its unusual biology. Of interest, B. burgdorferi displays complex cellular organization features that have yet to be understood. These include an unusual morphology and a highly fragmented genome, both of which are likely to play important roles in the bacterium's transmission, infectivity, and persistence. Here, we complement and expand the array of molecular tools available for use in B. burgdorferi by generating and characterizing multiple fluorescent proteins, antibiotic selection markers, and promoters of varied strengths. These tools will facilitate investigations in this important human pathogen, as exemplified by the polar and midcell localization of the cell envelope regulator BB0323, which we uncovered using these reagents.
Collapse
Affiliation(s)
- Constantin N Takacs
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale West Campus, West Haven, Connecticut, USA
| | - Zachary A Kloos
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Microbiology Program, Yale University, New Haven, Connecticut, USA
| | - Molly Scott
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale West Campus, West Haven, Connecticut, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
39
|
DNA Methylation by Restriction Modification Systems Affects the Global Transcriptome Profile in Borrelia burgdorferi. J Bacteriol 2018; 200:JB.00395-18. [PMID: 30249703 DOI: 10.1128/jb.00395-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Prokaryote restriction modification (RM) systems serve to protect bacteria from potentially detrimental foreign DNA. Recent evidence suggests that DNA methylation by the methyltransferase (MTase) components of RM systems can also have effects on transcriptome profiles. The type strain of the causative agent of Lyme disease, Borrelia burgdorferi B31, possesses two RM systems with N6-methyladenosine (m6A) MTase activity, which are encoded by the bbe02 gene located on linear plasmid lp25 and bbq67 on lp56. The specific recognition and/or methylation sequences had not been identified for either of these B. burgdorferi MTases, and it was not previously known whether these RM systems influence transcript levels. In the current study, single-molecule real-time sequencing was utilized to map genome-wide m6A sites and to identify consensus modified motifs in wild-type B. burgdorferi as well as MTase mutants lacking either the bbe02 gene alone or both bbe02 and bbq67 genes. Four novel conserved m6A motifs were identified and were fully attributable to the presence of specific MTases. Whole-genome transcriptome changes were observed in conjunction with the loss of MTase enzymes, indicating that DNA methylation by the RM systems has effects on gene expression. Genes with altered transcription in MTase mutants include those involved in vertebrate host colonization (e.g., rpoS regulon) and acquisition by/transmission from the tick vector (e.g., rrp1 and pdeB). The results of this study provide a comprehensive view of the DNA methylation pattern in B. burgdorferi, and the accompanying gene expression profiles add to the emerging body of research on RM systems and gene regulation in bacteria.IMPORTANCE Lyme disease is the most prevalent vector-borne disease in North America and is classified by the Centers for Disease Control and Prevention (CDC) as an emerging infectious disease with an expanding geographical area of occurrence. Previous studies have shown that the causative bacterium, Borrelia burgdorferi, methylates its genome using restriction modification systems that enable the distinction from foreign DNA. Although much research has focused on the regulation of gene expression in B. burgdorferi, the effect of DNA methylation on gene regulation has not been evaluated. The current study characterizes the patterns of DNA methylation by restriction modification systems in B. burgdorferi and evaluates the resulting effects on gene regulation in this important pathogen.
Collapse
|
40
|
Arnold WK, Savage CR, Lethbridge KG, Smith TC, Brissette CA, Seshu J, Stevenson B. Transcriptomic insights on the virulence-controlling CsrA, BadR, RpoN, and RpoS regulatory networks in the Lyme disease spirochete. PLoS One 2018; 13:e0203286. [PMID: 30161198 PMCID: PMC6117026 DOI: 10.1371/journal.pone.0203286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/19/2018] [Indexed: 01/17/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, survives in nature through a cycle that alternates between ticks and vertebrates. To facilitate this defined lifestyle, B. burgdorferi has evolved a gene regulatory network that ensures transmission between those hosts, along with specific adaptations to niches within each host. Several regulatory proteins are known to be essential for the bacterium to complete these critical tasks, but interactions between regulators had not previously been investigated in detail, due to experimental uses of different strain backgrounds and growth conditions. To address that deficit in knowledge, the transcriptomic impacts of four critical regulatory proteins were examined in a uniform strain background. Pairs of mutants and their wild-type parent were grown simultaneously under a single, specific culture condition, permitting direct comparisons between the mutant strains. Transcriptomic analyses were strand-specific, and assayed both coding and noncoding RNAs. Intersection analyses identified regulatory overlaps between regulons, including transcripts involved in carbohydrate and polyamine metabolism. In addition, it was found that transcriptional units such as ospC and dbpBA, which were previously observed to be affected by alternative sigma factors, are transcribed by RNA polymerase using the housekeeping sigma factor, RpoD.
Collapse
Affiliation(s)
- William K. Arnold
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY, United States of America
| | - Christina R. Savage
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY, United States of America
| | - Kathryn G. Lethbridge
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY, United States of America
| | - Trever C. Smith
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Janakiram Seshu
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY, United States of America
- Department of Entomology, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
41
|
Drecktrah D, Hall LS, Rescheneder P, Lybecker M, Samuels DS. The Stringent Response-Regulated sRNA Transcriptome of Borrelia burgdorferi. Front Cell Infect Microbiol 2018; 8:231. [PMID: 30027068 PMCID: PMC6041397 DOI: 10.3389/fcimb.2018.00231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
The Lyme disease spirochete Borrelia (Borreliella) burgdorferi must tolerate nutrient stress to persist in the tick phase of its enzootic life cycle. We previously found that the stringent response mediated by RelBbu globally regulates gene expression to facilitate persistence in the tick vector. Here, we show that RelBbu regulates the expression of a swath of small RNAs (sRNA), affecting 36% of previously identified sRNAs in B. burgdorferi. This is the first sRNA regulatory mechanism identified in any spirochete. Threefold more sRNAs were RelBbu-upregulated than downregulated during nutrient stress and included antisense, intergenic and 5′ untranslated region sRNAs. RelBbu-regulated sRNAs associated with genes known to be important for host infection (bosR and dhhp) as well as persistence in the tick (glpF and hk1) were identified, suggesting potential mechanisms for post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura S Hall
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Meghan Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO, United States
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| |
Collapse
|
42
|
Borrelia burgdorferi SpoVG DNA- and RNA-Binding Protein Modulates the Physiology of the Lyme Disease Spirochete. J Bacteriol 2018; 200:JB.00033-18. [PMID: 29632088 DOI: 10.1128/jb.00033-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022] Open
Abstract
The SpoVG protein of Borrelia burgdorferi, the Lyme disease spirochete, binds to specific sites of DNA and RNA. The bacterium regulates transcription of spoVG during the natural tick-mammal infectious cycle and in response to some changes in culture conditions. Bacterial levels of spoVG mRNA and SpoVG protein did not necessarily correlate, suggesting that posttranscriptional mechanisms also control protein levels. Consistent with this, SpoVG binds to its own mRNA, adjacent to the ribosome-binding site. SpoVG also binds to two DNA sites in the glpFKD operon and to two RNA sites in glpFKD mRNA; that operon encodes genes necessary for glycerol catabolism and is important for colonization in ticks. In addition, spirochetes engineered to dysregulate spoVG exhibited physiological alterations.IMPORTANCEB. burgdorferi persists in nature by cycling between ticks and vertebrates. Little is known about how the bacterium senses and adapts to each niche of the cycle. The present studies indicate that B. burgdorferi controls production of SpoVG and that this protein binds to specific sites of DNA and RNA in the genome and transcriptome, respectively. Altered expression of spoVG exerts effects on bacterial replication and other aspects of the spirochete's physiology.
Collapse
|
43
|
Bontemps-Gallo S, Lawrence KA, Richards CL, Gherardini FC. Borrelia burgdorferi genes, bb0639-0642, encode a putative putrescine/spermidine transport system, PotABCD, that is spermidine specific and essential for cell survival. Mol Microbiol 2018; 108:350-360. [PMID: 29476656 DOI: 10.1111/mmi.13940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Polyamines are an essential class of metabolites found throughout all kingdoms in life. Borrelia burgdorferi harbors no enzymes to synthesize or degrade polyamines yet does contain a polyamine uptake system, potABCD. In this report, we describe the initial characterization of this putative transport system. After several unsuccessful attempts to inactivate potABCD, we placed the operon under the control of an inducible LacI promoter expression system. Analyses of this construct confirmed that potABCD was required for in vitro survival. Additionally, we demonstrated that the potABCD operon were upregulated in vitro by low osmolarity. Previously, we had shown that low osmolarity triggers the activation of the Rrp2/RpoN/RpoS regulatory cascade, which regulates genes essential for the transmission of spirochetes from ticks to mammalian hosts. Interestingly, induction of the pot operon was only affected in an rpoS mutant but not in a rpoN mutant, suggesting that the genes were RpoS dependent and RpoN independent. Furthermore, potABCD was upregulated during tick feeding concomitant with the initiation of spirochete replication. Finally, uptake experiments determined the specificity of B. burgdorferi's PotABCD for spermidine.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kevin A Lawrence
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Crystal L Richards
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Frank C Gherardini
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
44
|
Cabello FC, Godfrey HP, Bugrysheva J, Newman SA. Sleeper cells: the stringent response and persistence in the Borreliella (Borrelia) burgdorferi enzootic cycle. Environ Microbiol 2017; 19:3846-3862. [PMID: 28836724 PMCID: PMC5794220 DOI: 10.1111/1462-2920.13897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/12/2017] [Accepted: 08/17/2017] [Indexed: 12/27/2022]
Abstract
Infections with tick-transmitted Borreliella (Borrelia) burgdorferi, the cause of Lyme disease, represent an increasingly large public health problem in North America and Europe. The ability of these spirochetes to maintain themselves for extended periods of time in their tick vectors and vertebrate reservoirs is crucial for continuance of the enzootic cycle as well as for the increasing exposure of humans to them. The stringent response mediated by the alarmone (p)ppGpp has been determined to be a master regulator in B. burgdorferi. It modulates the expression of identified and unidentified open reading frames needed to deal with and overcome the many nutritional stresses and other challenges faced by the spirochete in ticks and animal reservoirs. The metabolic and morphologic changes resulting from activation of the stringent response in B. burgdorferi may also be involved in the recently described non-genetic phenotypic phenomenon of tolerance to otherwise lethal doses of antimicrobials and to other antimicrobial activities. It may thus constitute a linchpin in multiple aspects of infections with Lyme disease borrelia, providing a link between the micro-ecological challenges of its enzootic life-cycle and long-term residence in the tissues of its animal reservoirs, with the evolutionary side effect of potential persistence in incidental human hosts.
Collapse
Affiliation(s)
- Felipe C. Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Henry P. Godfrey
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Julia Bugrysheva
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
45
|
Lybecker MC, Samuels DS. Small RNAs of Borrelia burgdorferi: Characterizing Functional Regulators in a Sea of sRNAs
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:317-323. [PMID: 28656017 PMCID: PMC5482307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Borrelia (Borreliella) burgdorferi and closely related genospecies are the causative agents of Lyme disease, the most common tick-borne disease north of the equator. The bacterium, a member of the spirochete phylum, is acquired by a tick vector that feeds on an infected vertebrate host and is transmitted to another vertebrate during subsequent feeding by the next tick stage. The precise navigation of this enzootic cycle entails the regulation of genes required for these two host-specific phases as well as the transitions between them. Recently, an expansive swath of small RNAs has been identified in B. burgdorferi and likely many, if not most, are involved in regulating gene expression. Regardless, with only a few exceptions, the functions of these RNAs are completely unknown. However, several state-of-the-art approaches are available to identify the targets of these RNAs and provide insight into their role in the enzootic cycle and infection.
Collapse
Affiliation(s)
- Meghan C. Lybecker
- University of Colorado Colorado Springs, Department of Biology, Colorado Springs, CO,To whom all correspondence should be addressed: Meghan Lybecker, Department of Biology, University of Colorado, Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80917, Tel: 719-255-4101, .
| | - D. Scott Samuels
- University of Montana, Division of Biological Sciences, Missoula, MT
| |
Collapse
|
46
|
Adams PP, Flores Avile C, Jewett MW. A Dual Luciferase Reporter System for B. burgdorferi Measures Transcriptional Activity during Tick-Pathogen Interactions. Front Cell Infect Microbiol 2017; 7:225. [PMID: 28620587 PMCID: PMC5449462 DOI: 10.3389/fcimb.2017.00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022] Open
Abstract
Knowledge of the transcriptional responses of vector-borne pathogens at the vector-pathogen interface is critical for understanding disease transmission. Borrelia (Borreliella) burgdorferi, the causative agent of Lyme disease in the United States, is transmitted by the bite of infected Ixodes sp. ticks. It is known that B. burgdorferi has altered patterns of gene expression during tick acquisition, persistence and transmission. Recently, we and others have discovered in vitro expression of RNAs found internal, overlapping, and antisense to annotated open reading frames in the B. burgdorferi genome. However, there is a lack of molecular genetic tools for B. burgdorferi for quantitative, strand-specific, comparative analysis of these transcripts in distinct environments such as the arthropod vector. To address this need, we have developed a dual luciferase reporter system to quantify B. burgdorferi promoter activities in a strand-specific manner. We demonstrate that constitutive expression of a B. burgdorferi codon-optimized Renilla reniformis luciferase gene (rlucBb ) allows normalization of the activity of a promoter of interest when fused to the B. burgdorferi codon-optimized Photinus pyralis luciferase gene (flucBb) on the same plasmid. Using the well characterized, differentially regulated, promoters for flagellin (flaBp), outer surface protein A (ospAp) and outer surface protein C (ospCp), we document the efficacy of the dual luciferase system for quantitation of promoter activities during in vitro growth and in infected ticks. Cumulatively, the dual luciferase method outlined herein is the first dual reporter system for B. burgdorferi, providing a novel and highly versatile approach for strand-specific molecular genetic analyses.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of MedicineOrlando, FL, United States
| | - Carlos Flores Avile
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of MedicineOrlando, FL, United States
| | - Mollie W Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of MedicineOrlando, FL, United States
| |
Collapse
|
47
|
Adams PP, Flores Avile C, Popitsch N, Bilusic I, Schroeder R, Lybecker M, Jewett MW. In vivo expression technology and 5' end mapping of the Borrelia burgdorferi transcriptome identify novel RNAs expressed during mammalian infection. Nucleic Acids Res 2017; 45:775-792. [PMID: 27913725 PMCID: PMC5314773 DOI: 10.1093/nar/gkw1180] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
Borrelia burgdorferi, the bacterial pathogen responsible for Lyme disease, modulates its gene expression profile in response to the environments encountered throughout its tick-mammal infectious cycle. To begin to characterize the B. burgdorferi transcriptome during murine infection, we previously employed an in vivo expression technology-based approach (BbIVET). This identified 233 putative promoters, many of which mapped to un-annotated regions of the complex, segmented genome. Herein, we globally identify the 5' end transcriptome of B. burgdorferi grown in culture as a means to validate non-ORF associated promoters discovered through BbIVET. We demonstrate that 119 BbIVET promoters are associated with transcription start sites (TSSs) and validate novel RNA transcripts using Northern blots and luciferase promoter fusions. Strikingly, 49% of BbIVET promoters were not found to associate with TSSs. This finding suggests that these sequences may be primarily active in the mammalian host. Furthermore, characterization of the 6042 B. burgdorferi TSSs reveals a variety of RNAs including numerous antisense and intragenic transcripts, leaderless RNAs, long untranslated regions and a unique nucleotide frequency for initiating intragenic transcription. Collectively, this is the first comprehensive map of TSSs in B. burgdorferi and characterization of previously un-annotated RNA transcripts expressed by the spirochete during murine infection.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Carlos Flores Avile
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Niko Popitsch
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Ivana Bilusic
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Renée Schroeder
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Meghan Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Mollie W Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| |
Collapse
|
48
|
Zhukova A, Fernandes LG, Hugon P, Pappas CJ, Sismeiro O, Coppée JY, Becavin C, Malabat C, Eshghi A, Zhang JJ, Yang FX, Picardeau M. Genome-Wide Transcriptional Start Site Mapping and sRNA Identification in the Pathogen Leptospira interrogans. Front Cell Infect Microbiol 2017; 7:10. [PMID: 28154810 PMCID: PMC5243855 DOI: 10.3389/fcimb.2017.00010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Leptospira are emerging zoonotic pathogens transmitted from animals to humans typically through contaminated environmental sources of water and soil. Regulatory pathways of pathogenic Leptospira spp. underlying the adaptive response to different hosts and environmental conditions remains elusive. In this study, we provide the first global Transcriptional Start Site (TSS) map of a Leptospira species. RNA was obtained from the pathogen Leptospira interrogans grown at 30°C (optimal in vitro temperature) and 37°C (host temperature) and selectively enriched for 5′ ends of native transcripts. A total of 2865 and 2866 primary TSS (pTSS) were predicted in the genome of L. interrogans at 30 and 37°C, respectively. The majority of the pTSSs were located between 0 and 10 nucleotides from the translational start site, suggesting that leaderless transcripts are a common feature of the leptospiral translational landscape. Comparative differential RNA-sequencing (dRNA-seq) analysis revealed conservation of most pTSS at 30 and 37°C. Promoter prediction algorithms allow the identification of the binding sites of the alternative sigma factor sigma 54. However, other motifs were not identified indicating that Leptospira consensus promoter sequences are inherently different from the Escherichia coli model. RNA sequencing also identified 277 and 226 putative small regulatory RNAs (sRNAs) at 30 and 37°C, respectively, including eight validated sRNAs by Northern blots. These results provide the first global view of TSS and the repertoire of sRNAs in L. interrogans. These data will establish a foundation for future experimental work on gene regulation under various environmental conditions including those in the host.
Collapse
Affiliation(s)
- Anna Zhukova
- Bioinformatics and Biostatistics Hub, Institut Pasteur, C3BI Paris, France
| | | | - Perrine Hugon
- Biology of Spirochetes Unit, Institut PasteurParis, France; Mutualized Microbiology Platform, Institut Pasteur, Pasteur International Bioresources NetworkParis, France
| | - Christopher J Pappas
- Biology of Spirochetes Unit, Institut PasteurParis, France; Department of Biology, Manhattanville CollegePurchase, NY, USA
| | - Odile Sismeiro
- CITECH, Institut Pasteur, Plate-forme Transcriptome et Epigenome, Pole Biomics - CITECH Paris, France
| | - Jean-Yves Coppée
- CITECH, Institut Pasteur, Plate-forme Transcriptome et Epigenome, Pole Biomics - CITECH Paris, France
| | - Christophe Becavin
- Bioinformatics and Biostatistics Hub, Institut Pasteur, C3BI Paris, France
| | - Christophe Malabat
- Bioinformatics and Biostatistics Hub, Institut Pasteur, C3BI Paris, France
| | - Azad Eshghi
- Biology of Spirochetes Unit, Institut Pasteur Paris, France
| | - Jun-Jie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Frank X Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine Indianapolis, IN, USA
| | | |
Collapse
|
49
|
Sodium Fluorescein Staining of the Cornea for the Diagnosis of Dry Eye: A Comparison of Three Eye Solutions. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2017; 6:105-109. [PMID: 29560363 PMCID: PMC5847304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to identify which of the eye solutions is best for sodium fluorescein staining of the cornea to diagnose dry eye disease. The study included 173 eyes with suspected or known dry eye disease. The eyes were stained sequentially with sodium fluorescein and each of the following four conditions: balanced salt solution (BSS); BSS and cyclosporine 0.05% emulsion; BSS and lipids containing omega-3; and BSS, cyclosporine 0.05% emulsion, and lipids containing omega-3. Our results showed that compared to BSS alone, artificial tears with cyclosporine 0.05% emulsion and lipids containing omega-3 remain in the cornea for longer periods, thus allowing the clinician to evaluate tear break-up time and visualize corneal punctate erosions.
Collapse
|
50
|
Stewart PE, Rosa PA. Physiologic and Genetic Factors Influencing the Zoonotic Cycle of Borrelia burgdorferi. Curr Top Microbiol Immunol 2017; 415:63-82. [PMID: 28864829 DOI: 10.1007/82_2017_43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Borrelia burgdorferi is a symbiont of ticks of the Ixodes ricinus complex. These ticks serve as vectors to disseminate the spirochete to a variety of susceptible vertebrate hosts, which, in turn, act as reservoirs for naïve ticks to become infected, perpetuating the infectious life cycle of B. burgdorferi. The pivotal role of ticks in this life cycle and tick-spirochete interactions are the focus of this chapter. Here, we describe the challenging physiological environment that spirochetes encounter within Ixodes ticks, and the genetic factors that B. burgdorferi uses to successfully infect, persist, and be transmitted from the vector.
Collapse
Affiliation(s)
- Philip E Stewart
- Laboratory of Zoonotic Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT, 59840, USA.
| | - Patricia A Rosa
- Laboratory of Zoonotic Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT, 59840, USA.
| |
Collapse
|