1
|
Funari R, Bhalla N, Gentile L. Measuring the Radius of Gyration and Intrinsic Flexibility of Viral Proteins in Buffer Solution Using Small-Angle X-ray Scattering. ACS MEASUREMENT SCIENCE AU 2022; 2:547-552. [PMID: 36573077 PMCID: PMC9783065 DOI: 10.1021/acsmeasuresciau.2c00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/17/2023]
Abstract
Measuring structural features of proteins dispersed in buffer solution, in contrast to crystal form, is indispensable in understanding morphological characteristics of the biomolecule in a native environment. We report on the structure and apparent viscosity of unfolded α and β variants of SARS-CoV-2 spike proteins dispersed in buffer solutions. The radius of gyration of the β variant is found to be larger than that of the α variant, while the ab initio computation of one of the possible particle-like bodies is consistent with the small-angle X-ray scattering (SAXS) profiles resembling a conformation similar to the three-dimensional structure of the folded state of the corresponding α and β spike variant. However, a smaller radius of gyration with respect to the predicted folded state of 2.4 and 2.7 is observed for both α and β variants, respectively. Our work complements the structural characterization of spike proteins using cryo-electron microscopy techniques. The measurement/analysis discussed here might be useful for quick and cost-effective evaluation of several protein structures, let alone mutated viral proteins, which is useful for drug discovery/development applications.
Collapse
Affiliation(s)
- Riccardo Funari
- Department
of Physics “M. Merlin”, University
of Bari Aldo Moro, Via Amendola, 173, Bari 70125, Italy
- Institute
for Photonics and Nanotechnologies, CNR, Via Amendola, 173, Bari, 70125, Italy
| | - Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown, Shore Road, Northern Ireland BT37 0QB, United Kingdom
- Healthcare
Technology Hub, Ulster University, Jordanstown Shore Road, Northern Ireland BT37 0QB, United Kingdom
| | - Luigi Gentile
- Department
of Chemistry, University of Bari Aldo Moro, Edoardo Orabona 4, Bari 70125, Italy
- Bari
unit,
Center for Colloid and Surface Science (CSGI), via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
2
|
Sandall CF, Ziehr BK, MacDonald JA. ATP-Binding and Hydrolysis in Inflammasome Activation. Molecules 2020; 25:molecules25194572. [PMID: 33036374 PMCID: PMC7583971 DOI: 10.3390/molecules25194572] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. Ultimately, studies continue to reveal how the ATP-binding and hydrolysis properties of NACHT domains in different NLRs integrate with signaling modules and binding partners to control innate immune responses at the molecular level.
Collapse
|
3
|
Panagi I, Jennings E, Zeng J, Günster RA, Stones CD, Mak H, Jin E, Stapels DAC, Subari NZ, Pham THM, Brewer SM, Ong SYQ, Monack DM, Helaine S, Thurston TLM. Salmonella Effector SteE Converts the Mammalian Serine/Threonine Kinase GSK3 into a Tyrosine Kinase to Direct Macrophage Polarization. Cell Host Microbe 2020; 27:41-53.e6. [PMID: 31862381 PMCID: PMC6953433 DOI: 10.1016/j.chom.2019.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Many Gram-negative bacterial pathogens antagonize anti-bacterial immunity through translocated effector proteins that inhibit pro-inflammatory signaling. In addition, the intracellular pathogen Salmonella enterica serovar Typhimurium initiates an anti-inflammatory transcriptional response in macrophages through its effector protein SteE. However, the target(s) and molecular mechanism of SteE remain unknown. Here, we demonstrate that SteE converts both the amino acid and substrate specificity of the host pleiotropic serine/threonine kinase GSK3. SteE itself is a substrate of GSK3, and phosphorylation of SteE is required for its activity. Remarkably, phosphorylated SteE then forces GSK3 to phosphorylate the non-canonical substrate signal transducer and activator of transcription 3 (STAT3) on tyrosine-705. This results in STAT3 activation, which along with GSK3 is required for SteE-mediated upregulation of the anti-inflammatory M2 macrophage marker interleukin-4Rα (IL-4Rα). Overall, the conversion of GSK3 to a tyrosine-directed kinase represents a tightly regulated event that enables a bacterial virulence protein to reprogram innate immune signaling and establish an anti-inflammatory environment.
Collapse
Affiliation(s)
- Ioanna Panagi
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Elliott Jennings
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Jingkun Zeng
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Regina A Günster
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cullum D Stones
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Hazel Mak
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Enkai Jin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Daphne A C Stapels
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nur Z Subari
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Trung H M Pham
- Departments of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Susan M Brewer
- Departments of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Samantha Y Q Ong
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Denise M Monack
- Departments of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Teresa L M Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
4
|
Lu F, Lan Z, Xin Z, He C, Guo Z, Xia X, Hu T. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. J Cell Physiol 2019; 235:3207-3221. [PMID: 31621910 DOI: 10.1002/jcp.29268] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL-1β and IL-18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase-1 mediated inflammasome pathway with the involvement of NLRP1-, NLRP3-, NLRC4-, AIM2-, pyrin-inflammasome (canonical inflammasome pathway) and caspase-4/5/11-mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase-1/4/5/11), and the cleaved N-terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase-1/caspase-11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Fangfang Lu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Zhixin Lan
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Zhaoqi Xin
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Chunrong He
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Zimeng Guo
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tu Hu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Steele JFC, Hughes RK, Banfield MJ. Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor. PLoS One 2019; 14:e0221226. [PMID: 31461469 PMCID: PMC6713354 DOI: 10.1371/journal.pone.0221226] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Plant NLRs are modular immune receptors that trigger rapid cell death in response to attempted infection by pathogens. A highly conserved nucleotide-binding domain shared with APAF-1, various R-proteins and CED-4 (NB-ARC domain) is proposed to act as a molecular switch, cycling between ADP (repressed) and ATP (active) bound forms. Studies of plant NLR NB-ARC domains have revealed functional similarities to mammalian homologues, and provided insight into potential mechanisms of regulation. However, further advances have been limited by difficulties in obtaining sufficient yields of protein suitable for structural and biochemical techniques. From protein expression screens in Escherichia coli and Sf9 insect cells, we defined suitable conditions to produce the NB-ARC domain from the tomato NLR NRC1. Biophysical analyses of this domain showed it is a folded, soluble protein. Structural studies revealed the NRC1 NB-ARC domain had co-purified with ADP, and confirmed predicted structural similarities between plant NLR NB-ARC domains and their mammalian homologues.
Collapse
Affiliation(s)
- John F. C. Steele
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, England, United Kingdom
| | - Richard K. Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, England, United Kingdom
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, England, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Fusco WG, Duncan JA. Novel aspects of the assembly and activation of inflammasomes with focus on the NLRC4 inflammasome. Int Immunol 2019; 30:183-193. [PMID: 29617808 DOI: 10.1093/intimm/dxy009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Inflammasomes are multiprotein structures that activate caspase-1, support secretion of pro-inflammatory cytokines, IL-1β and IL-18, and also induce inflammatory programmed cell death, termed pyoptosis. Inflammasomes are activated in response to the detection of endogenous and microbially derived danger signals and are mediated by several classes of inflammasome-forming sensors. These include several nucleotide-binding proteins of the NOD-like receptor (NLR) family, including NLRP1, NLRP3 and NLRC4, as well as the proteins Absent in Melanoma 2 (AIM2) and Pyrin. Mutations in genes encoding some of these sensors have been found to be associated with gain-of-function monogenetic inflammatory disorders in humans. Genetic, biochemical and structural studies have begun to demonstrate how these proteins sense danger signals and to shed light on the step-by-step processes that are necessary for the assembly of inflammasomes, in both physiologic responses to pathogens and potentially in autoinflammatory conditions. Recent biochemical studies of pro-caspase-1 and an adapter protein known as ASC suggest that inflammasomes act to initiate self-generating effector filaments responsible for activating caspase-1 and initiating downstream signaling. These studies have suggested a model of molecular events from sensor activation to inflammasome formation that may describe processes that are universal to inflammasome formation.
Collapse
Affiliation(s)
- William G Fusco
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A Duncan
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Sandall CF, MacDonald JA. Effects of phosphorylation on the NLRP3 inflammasome. Arch Biochem Biophys 2019; 670:43-57. [PMID: 30844378 DOI: 10.1016/j.abb.2019.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 01/04/2023]
Abstract
The pyrin domain containing Nod-like receptors (NLRPs) are a family of pattern recognition receptors known to regulate an array of immune signaling pathways. Emergent studies demonstrate the potential for regulatory control of inflammasome assembly by phosphorylation, notably NLRP3. Over a dozen phosphorylation sites have been identified for NLRP3 with many more suggested by phosphoproteomic studies of the NLRP family. Well characterized NLRP3 phosphorylation events include Ser198 by c-Jun terminal kinase (JNK), Ser295 by protein kinase D (PKD) and/or protein kinase A (PKA), and Tyr861 by an unknown kinase but is dephosphorylated by protein tyrosine phosphatase non-receptor 22 (PTPN22). Since the PKA- and PKD-dependent phosphorylation of NLRP3 at Ser295 is best characterized, we provide detailed review of this aspect of NLRP3 regulation. Phosphorylation of Ser295 can attenuate ATPase activity as compared to its dephosphorylated counterpart, and this event is likely unique to NLRP3. In silico modeling of NLRP3 is useful in predicting how Ser295 phosphorylation might impact upon the structural topology of the ATP-binding domain to influence catalytic activity. It is important to gain as complete understanding as possible of the complex phosphorylation-mediated mechanisms of regulation for NLRP3 in part because of its involvement in many pathological processes.
Collapse
Affiliation(s)
- Christina F Sandall
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
8
|
Application of immobilized ATP to the study of NLRP inflammasomes. Arch Biochem Biophys 2019; 670:104-115. [PMID: 30641048 DOI: 10.1016/j.abb.2018.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 01/15/2023]
Abstract
The NLRP proteins are a subfamily of the NOD-like receptor (NLR) innate immune sensors that possess an ATP-binding NACHT domain. As the most well studied member, NLRP3 can initiate the assembly process of a multiprotein complex, termed the inflammasome, upon detection of a wide range of microbial products and endogenous danger signals and results in the activation of pro-caspase-1, a cysteine protease that regulates multiple host defense pathways including cytokine maturation. Dysregulated NLRP3 activation contributes to inflammation and the pathogenesis of several chronic diseases, and the ATP-binding properties of NLRPs are thought to be critical for inflammasome activation. In light of this, we examined the utility of immobilized ATP matrices in the study of NLRP inflammasomes. Using NLRP3 as the prototypical member of the family, P-linked ATP Sepharose was determined to be a highly-effective capture agent. In subsequent examinations, P-linked ATP Sepharose was used as an enrichment tool to enable the effective profiling of NLRP3-biomarker signatures with selected reaction monitoring-mass spectrometry (SRM-MS). Finally, ATP Sepharose was used in combination with a fluorescence-linked enzyme chemoproteomic strategy (FLECS) screen to identify potential competitive inhibitors of NLRP3. The identification of a novel benzo[d]imidazol-2-one inhibitor that specifically targets the ATP-binding and hydrolysis properties of the NLRP3 protein implies that ATP Sepharose and FLECS could be applied other NLRPs as well.
Collapse
|
9
|
Koliopoulos MG, Lethier M, van der Veen AG, Haubrich K, Hennig J, Kowalinski E, Stevens RV, Martin SR, Reis e Sousa C, Cusack S, Rittinger K. Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition. Nat Commun 2018; 9:1820. [PMID: 29739942 PMCID: PMC5940772 DOI: 10.1038/s41467-018-04214-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 04/13/2018] [Indexed: 02/04/2023] Open
Abstract
RIG-I is a viral RNA sensor that induces the production of type I interferon (IFN) in response to infection with a variety of viruses. Modification of RIG-I with K63-linked poly-ubiquitin chains, synthesised by TRIM25, is crucial for activation of the RIG-I/MAVS signalling pathway. TRIM25 activity is targeted by influenza A virus non-structural protein 1 (NS1) to suppress IFN production and prevent an efficient host immune response. Here we present structures of the human TRIM25 coiled-coil-PRYSPRY module and of complexes between the TRIM25 coiled-coil domain and NS1. These structures show that binding of NS1 interferes with the correct positioning of the PRYSPRY domain of TRIM25 required for substrate ubiquitination and provide a mechanistic explanation for how NS1 suppresses RIG-I ubiquitination and hence downstream signalling. In contrast, the formation of unanchored K63-linked poly-ubiquitin chains is unchanged by NS1 binding, indicating that RING dimerisation of TRIM25 is not affected by NS1.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mathilde Lethier
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | | | - Kevin Haubrich
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Eva Kowalinski
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | - Rebecca V Stevens
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
10
|
Falke S, Dierks K, Blanchet C, Graewert M, Cipriani F, Meijers R, Svergun D, Betzel C. Multi-channel in situ dynamic light scattering instrumentation enhancing biological small-angle X-ray scattering experiments at the PETRA III beamline P12. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:361-372. [PMID: 29488914 DOI: 10.1107/s1600577517017568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Small-angle X-ray scattering (SAXS) analysis of biomolecules is increasingly common with a constantly high demand for comprehensive and efficient sample quality control prior to SAXS experiments. As monodisperse sample suspensions are desirable for SAXS experiments, latest dynamic light scattering (DLS) techniques are most suited to obtain non-invasive and rapid information about the particle size distribution of molecules in solution. A multi-receiver four-channel DLS system was designed and adapted at the BioSAXS endstation of the EMBL beamline P12 at PETRA III (DESY, Hamburg, Germany). The system allows the collection of DLS data within round-shaped sample capillaries used at beamline P12. Data obtained provide information about the hydrodynamic radius of biological particles in solution and dispersity of the solution. DLS data can be collected directly prior to and during an X-ray exposure. To match the short X-ray exposure times of around 1 s for 20 exposures at P12, the DLS data collection periods that have been used up to now of 20 s or commonly more were substantially reduced, using a novel multi-channel approach collecting DLS data sets in the SAXS sample capillary at four different neighbouring sample volume positions in parallel. The setup allows online scoring of sample solutions applied for SAXS experiments, supports SAXS data evaluation and for example indicates local inhomogeneities in a sample solution in a time-efficient manner. Biological macromolecules with different molecular weights were applied to test the system and obtain information about the performance. All measured hydrodynamic radii are in good agreement with DLS results obtained by employing a standard cuvette instrument. Moreover, applying the new multi-channel DLS setup, a reliable radius determination of sample solutions in flow, at flow rates normally used for size-exclusion chromatography-SAXS experiments, and at higher flow rates, was verified as well. This study also shows and confirms that the newly designed sample compartment with attached DLS instrumentation does not disturb SAXS measurements.
Collapse
Affiliation(s)
- Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| | - Karsten Dierks
- Xtal Concepts GmbH, Marlowring 19, Hamburg 22525, Germany
| | - Clement Blanchet
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Florent Cipriani
- European Molecular Biology Laboratory (EMBL), 71 Avenue des Martyrs, Grenoble 38042, France
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| |
Collapse
|
11
|
Yu CH, Moecking J, Geyer M, Masters SL. Mechanisms of NLRP1-Mediated Autoinflammatory Disease in Humans and Mice. J Mol Biol 2017; 430:142-152. [PMID: 28733143 DOI: 10.1016/j.jmb.2017.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 01/25/2023]
Abstract
NLRP1 was the first NOD-like receptor described to form an inflammasome, recruiting ASC to activate caspase-1, which processes interleukin-1β and interleukin-18 to their active form. A wealth of new genetic information has now redefined our understanding of this innate immune sensor. Specifically, rare loss-of-function variants in the N-terminal pyrin domain indicate that this part of NLRP1 is autoinhibitory and normally acts to prevent a familial autoinflammatory skin disease associated with cancer. In the absence of a ligand to trigger human NLRP1, these mutations have now confirmed the requirement of NLRP1 autolytic cleavage within the FIIND domain, which had previously been implicated in NLRP1 activation. Autolytic cleavage generates a C-terminal fragment of NLRP1 containing the CARD domain which then forms an ASC-dependent inflammasome. The CARD domain as an inflammasome linker is consistent with the observation that under some conditions, particularly for mouse NLRP1, caspase-1 can be engaged directly, and although it is no longer processed, it is still capable of producing mature IL-1β. Additional rare variants in a linker region between the LRR and FIIND domains of NLRP1 also cause autoinflammatory disease in both humans and mice. This new genetic information is likely to provide for more mechanistic insight in the years to come, contributing to our understanding of how NLRP1 functions as an innate immune sensor of infection and predisposes to autoimmune or autoinflammatory diseases.
Collapse
Affiliation(s)
- Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jonas Moecking
- Department of Structural Immunology, Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Matthias Geyer
- Department of Structural Immunology, Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|