1
|
Naiel S, Dowdall N, Zhou Q, Ali P, Hayat A, Vierhout M, Wong EY, Couto R, Yépez B, Seifried B, Moquin P, Kolb MR, Ask K, Hoare T. Modulating pro-fibrotic macrophages using yeast beta-glucan microparticles prepared by Pressurized Gas eXpanded liquid (PGX) Technology®. Biomaterials 2025; 313:122816. [PMID: 39250864 DOI: 10.1016/j.biomaterials.2024.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Pro-fibrotic M2-like macrophages are widely implicated in the pathogenesis and progression of lung fibrosis due to their production of pro-fibrotic growth factors and cytokines. Yeast beta-glucan (YBG) microparticles have shown potential as immunomodulators that can convert macrophage polarization from a pro-fibrotic phenotype to an anti-fibrotic phenotype through the engagement of the Dectin-1 receptor. However, the processing conditions used to fabricate YBG microparticles can lead to unpredictable immunomodulatory effects. Herein, we report the use of Pressurized Gas eXpanded liquids (PGX) Technology® to fabricate YBG (PGX-YBG) microparticles with higher surface areas, lower densities, and smaller and more uniform size distributions compared to commercially available spray-dried YBGs. PGX-YBG is shown to activate Dectin-1 more efficiently in vitro while avoiding significant TLR 2/4 activation. Furthermore, PGX-YBG microparticles effectively modulate M2-like fibrosis-inducing murine and human macrophages into fibrosis-suppressing macrophages both in vitro as well as in ex vivo precision-cut murine lung slices, suggesting their potential utility as a therapeutic for addressing a broad spectrum of fibrotic end-point lung diseases.
Collapse
Affiliation(s)
- S Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - N Dowdall
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Q Zhou
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - P Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - A Hayat
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - M Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - E Y Wong
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - R Couto
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Yépez
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Seifried
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - P Moquin
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - M R Kolb
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - K Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada.
| | - T Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
2
|
Chen J, Deng JC, Zemans RL, Bahmed K, Kosmider B, Zhang M, Peters-Golden M, Goldstein DR. Age-induced prostaglandin E 2 impairs mitochondrial fitness and increases mortality to influenza infection. Nat Commun 2022; 13:6759. [PMID: 36351902 PMCID: PMC9643978 DOI: 10.1038/s41467-022-34593-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Aging impairs the immune responses to influenza A virus (IAV), resulting in increased mortality to IAV infections in older adults. However, the factors within the aged lung that compromise host defense to IAV remain unknown. Using a murine model and human samples, we identified prostaglandin E2 (PGE2), as such a factor. Senescent type II alveolar epithelial cells (AECs) are overproducers of PGE2 within the aged lung. PGE2 impairs the proliferation of alveolar macrophages (AMs), critical cells for defense against respiratory pathogens, via reduction of oxidative phosphorylation and mitophagy. Importantly, blockade of the PGE2 receptor EP2 in aged mice improves AM mitochondrial function, increases AM numbers and enhances survival to IAV infection. In conclusion, our study reveals a key mechanism that compromises host defense to IAV, and possibly other respiratory infections, with aging and suggests potential new therapeutic or preventative avenues to protect against viral respiratory disease in older adults.
Collapse
Affiliation(s)
- Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jane C Deng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachel L Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, USA
| | - Min Zhang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marc Peters-Golden
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Mujal AM, Combes AJ, Rao AA, Binnewies M, Samad B, Tsui J, Boissonnas A, Pollack JL, Argüello RJ, Meng MV, Porten SP, Ruhland MK, Barry KC, Chan V, Krummel MF. Holistic Characterization of Tumor Monocyte-to-Macrophage Differentiation Integrates Distinct Immune Phenotypes in Kidney Cancer. Cancer Immunol Res 2022; 10:403-419. [PMID: 35181780 PMCID: PMC8982148 DOI: 10.1158/2326-6066.cir-21-0588] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/20/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
The tumor immune microenvironment (TIME) is commonly infiltrated by diverse collections of myeloid cells. Yet, the complexity of myeloid-cell identity and plasticity has challenged efforts to define bona fide populations and determine their connections to T-cell function and their relationship to patient outcome. Here, we have leveraged single-cell RNA-sequencing analysis of several mouse and human tumors and found that monocyte-macrophage diversity is characterized by a combination of conserved lineage states as well as transcriptional programs accessed along the differentiation trajectory. We also found in mouse models that tumor monocyte-to-macrophage progression was profoundly tied to regulatory T cell (Treg) abundance. In human kidney cancer, heterogeneity in macrophage accumulation and myeloid composition corresponded to variance in, not only Treg density, but also the quality of infiltrating CD8+ T cells. In this way, holistic analysis of monocyte-to-macrophage differentiation creates a framework for critically different immune states.
Collapse
Affiliation(s)
- Adriana M. Mujal
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA 94143, USA
- Present address: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors contributed equally to this work
| | - Alexis J. Combes
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally to this work
| | - Arjun A. Rao
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally to this work
| | - Mikhail Binnewies
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally to this work
| | - Bushra Samad
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Tsui
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexandre Boissonnas
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses Cimi-Paris, F-75013, Paris, France
| | - Joshua L. Pollack
- UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rafael J. Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Maxwell V. Meng
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sima P. Porten
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Megan K. Ruhland
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin C. Barry
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vincent Chan
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew F. Krummel
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
- Lead contact
| |
Collapse
|
4
|
Tang XZ, Kreuk LSM, Cho C, Metzger RJ, Allen CDC. Bronchus-associated macrophages efficiently capture and present soluble inhaled antigens and are capable of local Th2 cell activation. eLife 2022; 11:63296. [PMID: 36173678 PMCID: PMC9560158 DOI: 10.7554/elife.63296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
In allergic asthma, allergen inhalation leads to local Th2 cell activation and peribronchial inflammation. However, the mechanisms for local antigen capture and presentation remain unclear. By two-photon microscopy of the mouse lung, we established that soluble antigens in the bronchial airway lumen were efficiently captured and presented by a population of CD11c+ interstitial macrophages with high CX3CR1-GFP and MHC class II expression. We refer to these cells as Bronchus-Associated Macrophages (BAMs) based on their localization underneath the bronchial epithelium. BAMs were enriched in collagen-rich regions near some airway branchpoints, where inhaled antigens are likely to deposit. BAMs engaged in extended interactions with effector Th2 cells and promoted Th2 cytokine production. BAMs were also often in contact with dendritic cells (DCs). After exposure to inflammatory stimuli, DCs migrated to draining lymph nodes, whereas BAMs remained lung resident. We propose that BAMs act as local antigen presenting cells in the lung and also transfer antigen to DCs.
Collapse
Affiliation(s)
- Xin-Zi Tang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Lieselotte S M Kreuk
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Cynthia Cho
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Ross J Metzger
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
5
|
Rittchen S, Jandl K, Lanz I, Reiter B, Ferreirós N, Kratz D, Lindenmann J, Brcic L, Bärnthaler T, Atallah R, Olschewski H, Sturm EM, Heinemann A. Monocytes and Macrophages Serve as Potent Prostaglandin D 2 Sources during Acute, Non-Allergic Pulmonary Inflammation. Int J Mol Sci 2021; 22:ijms222111697. [PMID: 34769126 PMCID: PMC8584273 DOI: 10.3390/ijms222111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Acute respiratory inflammation, most commonly resulting from bacterial or viral infection, is one of the leading causes of death and disability worldwide. The inflammatory lipid mediator prostaglandin D2 (PGD2) and its rate-limiting enzyme, hematopoietic PGD synthase (hPGDS), are well-known drivers of allergic pulmonary inflammation. Here, we sought to investigate the source and role of hPGDS-derived PGD2 in acute pulmonary inflammation. Murine bronchoalveolar monocytes/macrophages from LPS- but not OVA-induced lung inflammation released significant amounts of PGD2. Accordingly, human monocyte-derived macrophages expressed high basal levels of hPGDS and released significant levels of PGD2 after LPS/IFN-γ, but not IL-4 stimulation. Human peripheral blood monocytes secreted significantly more PGD2 than monocyte-derived macrophages. Using human precision-cut lung slices (PCLS), we observed that LPS/IFN-γ but not IL-4/IL-13 drive PGD2 production in the lung. HPGDS inhibition prevented LPS-induced PGD2 release by human monocyte-derived macrophages and PCLS. As a result of hPGDS inhibition, less TNF-α, IL-6 and IL-10 could be determined in PCLS-conditioned medium. Collectively, this dataset reflects the time-dependent release of PGD2 by human phagocytes, highlights the importance of monocytes and macrophages as PGD2 sources and suggests that hPGDS inhibition might be a potential therapeutic option for acute, non-allergic lung inflammation.
Collapse
Affiliation(s)
- Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Katharina Jandl
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Ilse Lanz
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Bernhard Reiter
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (N.F.); (D.K.)
| | - Daniel Kratz
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (N.F.); (D.K.)
| | - Jörg Lindenmann
- Department of Surgery, Divison of Thoracic and Hyperbaric Surgery, Medical University of Graz, 8010 Graz, Austria;
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8010 Graz, Austria
| | - Eva M. Sturm
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- BioTechMed, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-74112
| |
Collapse
|
6
|
Szabo-Pardi TA, Syed UM, Castillo ZW, Burton MD. Use of Integrated Optical Clearing and 2-Photon Imaging to Investigate Sex Differences in Neuroimmune Interactions After Peripheral Nerve Injury. Front Cell Dev Biol 2021; 9:624201. [PMID: 34178976 PMCID: PMC8221108 DOI: 10.3389/fcell.2021.624201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/02/2022] Open
Abstract
Peripheral nerve injury induces a myriad of immune-derived symptoms that negatively impacts pain, depression, and overall quality of life. Neuroimmune differences underlie sexual dimorphisms in various pain states. The innate immune system is a source of these sex differences, which promotes inflammation and pro-nociception through bidirectional signaling with the nervous system. Spatiotemporal interactions between leukocytes and sensory neurons could hold the key to explain ascribed differences between sexes. To date, studies have found it difficult to display these interactions. We are poised to answer important questions regarding the recruitment of peripheral leukocytes to key tissues of the pain system, the dorsal root ganglia (DRG) and sciatic nerve after nerve injury. We optically clear whole DRGs and sciatic nerves and concomitantly use multi-photon microscopy and transgenic reporter lines, to visualize leukocyte dynamics involved in neuropathic pain development following nerve injury. We observed robust sexual dimorphisms in leukocyte recruitment to the lumbar DRGs after nerve injury. We also assessed immune cell size and morphology to understand activation states in the context of nervous tissue inflammation. The altered mechanisms by which the male and female immune systems respond to nerve injury are still topics of further research, however; the continued use of next-generation imaging with advanced whole tissue image analysis remains an important tool in understanding the reciprocal interactions between neuronal and non-neuronal cells.
Collapse
Affiliation(s)
| | | | | | - Michael D. Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
7
|
Jardine L, Wiscombe S, Reynolds G, McDonald D, Fuller A, Green K, Filby A, Forrest I, Ruchaud-Sparagano MH, Scott J, Collin M, Haniffa M, Simpson AJ. Lipopolysaccharide inhalation recruits monocytes and dendritic cell subsets to the alveolar airspace. Nat Commun 2019; 10:1999. [PMID: 31040289 PMCID: PMC6491485 DOI: 10.1038/s41467-019-09913-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mononuclear phagocytes (MPs) including monocytes, macrophages and dendritic cells (DCs) are critical innate immune effectors and initiators of the adaptive immune response. MPs are present in the alveolar airspace at steady state, however little is known about DC recruitment in acute pulmonary inflammation. Here we use lipopolysaccharide inhalation to induce acute inflammation in healthy volunteers and examine the impact on bronchoalveolar lavage fluid and blood MP repertoire. Classical monocytes and two DC subsets (DC2/3 and DC5) are expanded in bronchoalveolar lavage fluid 8 h after lipopolysaccharide inhalation. Surface phenotyping, gene expression profiling and parallel analysis of blood indicate recruited DCs are blood-derived. Recruited monocytes and DCs rapidly adopt typical airspace-resident MP gene expression profiles. Following lipopolysaccharide inhalation, alveolar macrophages strongly up-regulate cytokines for MP recruitment. Our study defines the characteristics of human DCs and monocytes recruited into bronchoalveolar space immediately following localised acute inflammatory stimulus in vivo. The diversity of human mononuclear phagocyte subsets remains to be characterized in many tissue-specific and functional contexts, including pulmonary inflammation. Here the authors characterize dendritic cell and monocyte subset recruitment to the bronchoalveolar space in a human LPS inhalation model.
Collapse
Affiliation(s)
- Laura Jardine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK.
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Gary Reynolds
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - David McDonald
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Fuller
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kile Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Filby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian Forrest
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | | | - Jonathan Scott
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4LP, UK.
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| |
Collapse
|
8
|
Looney MR, Headley MB. Live imaging of the pulmonary immune environment. Cell Immunol 2018; 350:103862. [PMID: 30336937 DOI: 10.1016/j.cellimm.2018.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/12/2018] [Accepted: 09/27/2018] [Indexed: 01/22/2023]
Abstract
The lung represents a unique immune environment. The primary function of the lung is to enable gas exchange by facilitating the transfer of oxygen into and carbon dioxide out of the blood. However, as a direct byproduct of this process the lung is also constantly exposed to particles, allergens, and pathogens alongside air itself. Due to this, the pulmonary immune system exists in a fine balance between quiescence and inflammation, deviations from which can lead to a failure in respiratory function. A rich history exists attempting to define the critical features of lung immunity, and most recently advances in intravital microscopy have enabled the visualization of intercellular immune dynamics in both steady-state and a variety of disease conditions. In this review, we will summarize a variety of approaches to intravital lung imaging as well as how its application has advanced our understanding of normal lung function as well as disease states such as pulmonary metastasis, asthma, and lung injury.
Collapse
Affiliation(s)
- Mark R Looney
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA; Department of Laboratory Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Mark B Headley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
9
|
Abstract
Multiphoton microscopy has revealed important insights into cellular behavior in vivo. However, its application in infectious settings often encounters technical, safety and regulatory limitations that prevent its wider use with highly virulent human pathogens. Herein, we present a method that renders multiphoton microscopy in vivo compatible with biosafety level 3 regulations and present an example of its application and potential to visualize a Mycobacterium tuberculosis infection of the mouse lung.
Collapse
|