1
|
Chen J, Qu B, Yang D, Wang Y, Zhu H, Wang Z, Zhang X, Ma H, Zhao N, Zhao L, Zhou L, He X, Li P. Combined metabolomics and network pharmacology to elucidate the mechanisms of Huiyang Shengji decoction in treating diabetic skin ulcer mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156569. [PMID: 40120541 DOI: 10.1016/j.phymed.2025.156569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Diabetic skin ulcer is a clinical disorder of glucose metabolism that has a long treatment period and is prone to recurrent episodes. Huiyang Shengji decoction (HYSJD) is an effective traditional Chinese medicine for its clinical treatment, but its metabolic effects in patients with diabetic skin ulcers have not been well studied. PURPOSE Our study aimed to investigate the mechanism of pharmacological treatment of HYSJD in treating diabetic skin ulcers. METHODS The potential mechanism underlying diabetic wound treatment by HYSJD was screened using network pharmacology. Ultra-high performance liquid chromatography-MS/MS metabolomics analysis and correlation analysis were performed to investigate potential target pathways and genes. Furthermore, the db/db diabetic wound tissues and RAW264.7 macrophage inflammation model verified the mechanism using molecular biology experiments. RESULTS In network pharmacology, HYSJD played a mainly therapeutic effect by regulating PI3K/AKT signaling pathway, EGFR tyrosine kinase inhibitor resistance, metabolic pathway, and other related metabolic-related pathways. Metabolomics analysis disclosed that L-lysine content increased, while those of linoleic and deoxycholic acids decreased in plasma between the HYSJD-treated group and the control group, participating in biotin metabolism. Among them, PPARγ played an important role. The experiments conducted in db/db mice indicated that HYSJD facilitates VEGF secretion and PPARγ expression. In vitro experiments have revealed that HYSJD inhibits macrophage ROS production, augments mitochondrial ATP production, elevates mitochondrial membrane potential, and diminishes the mitochondrial ECAR rate. Furthermore, these effects culminate in promoting M2 macrophage polarization through PPARγ activation. The molecular docking results revealed that the active compounds from HYSJD were capable of binding to PPARγ protein primarily through hydrogen bonding interactions. Notably, all binding energies were found to be lower than -3 kcal/mol, indicating strong and favorable interactions between the active compounds and the target receptor. CONCLUSIONS The findings suggested that HYSJD regulates biotin metabolism by reducing excess levels of linoleic and deoxycholic acids and increasing levels of L-lysine, which in turn promotes diabetic wound healing by promoting M2 macrophage polarization through PPARγ up-regulation. These findings indicated that HYSJD is a decoction that can effectively treat diabetic skin ulcers.
Collapse
Affiliation(s)
- Jia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China; Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Baoquan Qu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Zhengchun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Xiawei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Ning Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Li Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China; Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Lijiaming Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Xiujuan He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| |
Collapse
|
2
|
Wang M, Xiao W, Liu T, Zhu Y, Chen M, Tan Z, Xu S, Zhao Z, Liu F, Xie H, He X, Deng Z, Li J. Linoleic acid improves rosacea through repairing mitochondrial damage in keratinocytes. LIFE MEDICINE 2025; 4:lnaf005. [PMID: 40191007 PMCID: PMC11971526 DOI: 10.1093/lifemedi/lnaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025]
Abstract
Rosacea, as a progressive and chronic inflammatory skin disease, lacks safe and effective treatment options. Our previous study reported metabolic disturbance in rosacea patients, containing abnormal lipid metabolism. Building on this, we characterized significant alterations in fatty acid metabolism among rosacea patients, with a notable increase in linoleic acid (LNA) levels. We further demonstrated that LNA prevents rosacea-like dermatitis in LL37-induced rosacea-like mouse model. Our evidence indicated that LNA hyperactivates PPARγ signaling in the epidermis, a phenomenon observed in both rosacea patients and mouse model. Inhibiting PPARγ rescued the effect of LNA in LL37-induced mice. Additionally, our in vivo and in vitro evidence strongly supported the presence of mitochondrial damage in the keratinocytes of rosacea. LNA stimulated PPARγ to reduce the reactive oxygen species production, increasing the generation of ATP and recovering mitochondrial membrane potential. Finally, through a prospective cohort study utilizing UK Biobank data and linkage disequilibrium score regression (LDSC) regression analysis, we further confirmed LNA levels are negatively related to the risk of rosacea, highlighting LNA as a promising therapeutic strategy for rosacea treatment.
Collapse
Affiliation(s)
- Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tangxiele Liu
- Department of Dermatology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha 410008, China
| | - Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Dermatology, The First Hospital of Changsha, Changsha 410005, China
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Xiang He
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Zhang XY, Xia KR, Wang YN, Liu P, Shang EX, Liu CY, Liu YP, Qu D, Li WW, Duan JA, Chen Y, Zhang HQ. Unraveling the pharmacodynamic substances and possible mechanism of Trichosanthis Pericarpium in the treatment of coronary heart disease based on plasma pharmacochemistry, network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117869. [PMID: 38342153 DOI: 10.1016/j.jep.2024.117869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coronary heart disease (CHD) is a chronic disease that seriously threatens people's health and even their lives. Currently, there is no ideal drug without side effects for the treatment of CHD. Trichosanthis Pericarpium (TP) has been used for several years in the treatment of diseases associated with CHD. However, there is still a need for systematic research to unravel the pharmacodynamic substances and possible mechanism of TP in the treatment of coronary heart. AIM OF THE STUDY The purpose of current study was to explore the pharmacodynamic substances and potential mechanisms of TP in the treatment of CHD via integrating network pharmacology with plasma pharmacochemistry and experimental validation. MATERIALS AND METHODS The effect of TP intervention in CHD was firstly assessed on high-fat diet combined with isoprenaline-induced CHD rats and H2O2-induced H9c2 cells, respectively. Then, the LC-MS was utilized to identify the absorbed components of TP in the plasma of CHD rats, and this was used to develop a network pharmacology prediction to obtain the possible active components and mechanisms of action. Molecular docking and immunohistochemistry were used to explore the interaction between TP and key targets. Subsequently, the efficacy of the active ingredients was investigated by in vitro cellular experiments, and their metabolic pathways in CHD rats were further analyzed. RESULTS The effects of TP on amelioration of CHD were verified by in vivo and in vitro experiments. Plasma pharmacochemistry and network pharmacology screened six active components in plasma including apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin. The interaction of these compounds with potential key targets AKT1, IL-1β, IL-6, TNF-α and VEGFA were preliminarily verified by molecular docking. And immunohistochemical results showed that TP reduced the expression of AKT1, IL-1β, IL-6, TNF-α and VEGFA in CHD rat hearts. Then cellular experiments confirmed that apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin were able to reduce the ROS level in H2O2-induced HUVEC cells and promote the migration and tubule formation of HUVEC cells, indicating the pharmacodynamic effects of the active components. Meanwhile, the metabolites of TP in CHD rats suggested that the pharmacological effects of TP might be the result of the combined effects of the active ingredients and their metabolites. CONCLUSION Our study found that TP intervention in CHD is characterized by multi-component and multi-target regulation. Apigenin, phenylalanine, linoleic acid, quercetin, luteolin, and tangeretin are the main active components of TP. TP could reduce inflammatory response and endothelial damage by regulating AKT1, IL-1β, IL-6, TNF-α and VEGFA, reduce ROS level to alleviate the oxidative stress situation and improve heart disease by promoting angiogenesis to regulate endothelial function. This study also provides an experimental and scientific basis for the clinical application and rational development of TP.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Kai-Rou Xia
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ya-Ni Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pei Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cong-Yan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yu-Ping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Wei-Wen Li
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Huang-Qin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
4
|
Mititelu M, Licu M, Lupu CE, Neacșu SM, Olteanu G, Gabriela S, Drăgănescu D, Oancea CN, Busnatu ȘS, Hîncu L, Ciocîlteu MV, Lupuleasa D. Characterization of Some Dermato-Cosmetic Preparations with Marine Lipids from Black Sea Wild Stingray. Mar Drugs 2023; 21:408. [PMID: 37504939 PMCID: PMC10381174 DOI: 10.3390/md21070408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The traditional knowledge about the therapeutic and nutritional value of fish has been unanimously recognized among the population since ancient times. So, thanks to the therapeutic virtues of these marine animals, it was possible to develop therapies for certain pathologies as well as the use of bioactive compounds as adjunctive therapies incorporated into the treatment regimen of patients. In the present study, stingray liver oil from wild species collected from the Romanian coast of the Black Sea was isolated and analyzed. Fatty acid analysis was performed by gas chromatography. The analysis of the distribution of fatty acids in the composition of stingray liver oil indicates a ratio of 2.83 of omega 3 fatty acids to omega 6, a ratio of 1.33 of polyunsaturated fatty acids to monounsaturated fatty acids, an iodine index of 111.85, and a total percentage of 68.98% of unsaturated fatty acids. Stingray liver oil was used to evaluate the healing action after preparing a fatty ointment. According to the experimental data, a complete regeneration capacity of the wounds was noted in 12 days without visible signs. Four emulgels with stingray liver oil were formulated and analyzed from a rheological and structural point of view in order to select the optimal composition, after which the anti-inflammatory effect on inflammation caused in laboratory rats was studied and an anti-inflammatory effect was found significant (a maximum inhibitory effect of 66.47% on the edemas induced by the 10% kaolin suspension and 65.64% on the edemas induced by the 6% dextran solution).
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania
| | - Monica Licu
- Department of Medical Psychology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Elena Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, "Ovidius" University of Constanta, 6 Capitan Aviator Al. Serbanescu Street, Campus, C Block, 900001 Constanta, Romania
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania
| | - Stanciu Gabriela
- Department of Chemistry and Chemical Engineering, Ovidius University of Constanta, 900527 Constanta, Romania
| | - Doina Drăgănescu
- Department of Pharmaceutical and Computer Physics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Carmen-Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy from Craiova, 200345 Craiova, Romania
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Lucian Hîncu
- Department of Drug Industry and Pharmaceutical Biotechnologies Department, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania
| | - Maria Viorica Ciocîlteu
- Department of Analytical and Instrumental Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Petru Rares Street, no. 2-4, 200638 Craiova, Romania
| | - Dumitru Lupuleasa
- Department of Pharmaceutical Technology and Bio-pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania
| |
Collapse
|
5
|
Burger B, Sagiorato RN, Silva JR, Candreva T, Pacheco MR, White D, Castelucci BG, Pral LP, Fisk HL, Rabelo ILA, Elias-Oliveira J, Osório WR, Consonni SR, Farias ADS, Vinolo MAR, Lameu C, Carlos D, Fielding BA, Whyte MB, Martinez FO, Calder PC, Rodrigues HG. Eicosapentaenoic acid-rich oil supplementation activates PPAR-γ and delays skin wound healing in type 1 diabetic mice. Front Immunol 2023; 14:1141731. [PMID: 37359536 PMCID: PMC10289002 DOI: 10.3389/fimmu.2023.1141731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Delayed wound healing is a devastating complication of diabetes and supplementation with fish oil, a source of anti-inflammatory omega-3 (ω-3) fatty acids including eicosapentaenoic acid (EPA), seems an appealing treatment strategy. However, some studies have shown that ω-3 fatty acids may have a deleterious effect on skin repair and the effects of oral administration of EPA on wound healing in diabetes are unclear. We used streptozotocin-induced diabetes as a mouse model to investigate the effects of oral administration of an EPA-rich oil on wound closure and quality of new tissue formed. Gas chromatography analysis of serum and skin showed that EPA-rich oil increased the incorporation of ω-3 and decreased ω-6 fatty acids, resulting in reduction of the ω-6/ω-3 ratio. On the tenth day after wounding, EPA increased production of IL-10 by neutrophils in the wound, reduced collagen deposition, and ultimately delayed wound closure and impaired quality of the healed tissue. This effect was PPAR-γ-dependent. EPA and IL-10 reduced collagen production by fibroblasts in vitro. In vivo, topical PPAR-γ-blockade reversed the deleterious effects of EPA on wound closure and on collagen organization in diabetic mice. We also observed a reduction in IL-10 production by neutrophils in diabetic mice treated topically with the PPAR-γ blocker. These results show that oral supplementation with EPA-rich oil impairs skin wound healing in diabetes, acting on inflammatory and non-inflammatory cells.
Collapse
Affiliation(s)
- Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Roberta Nicolli Sagiorato
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Jéssica Rondoni Silva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Thamiris Candreva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mariana R. Pacheco
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Daniel White
- Department of General Surgery, The Royal Surrey National Health Service (NHS) Foundation Trust Hospital, Guildford, United Kingdom
| | - Bianca G. Castelucci
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Laís P. Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Helena L. Fisk
- School of Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Izadora L. A. Rabelo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jefferson Elias-Oliveira
- Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wislei Riuper Osório
- Laboratory of Manufacturing Advanced Materials, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Alessandro dos Santos Farias
- Autoimmune Research Lab, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniela Carlos
- Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Martin Brunel Whyte
- Department of Medicine, King’s College Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
- Department of Clinical & Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Fernando O. Martinez
- Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Philip C. Calder
- School of Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
6
|
Ekanayake S, Egodawatta C, Attanayake RN, Perera D. From salt pan to saucepan:
Salicornia
, a halophytic vegetable with an array of potential health benefits. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Sadini Ekanayake
- Department of Bioprocess Technology, Faculty of Technology Rajarata University of Sri Lanka Mihinthale Sri Lanka
| | - Chaminda Egodawatta
- Department of Plant Sciences, Faculty of Agriculture Rajarata University of Sri Lanka Anuradhapura Sri Lanka
| | - Renuka N. Attanayake
- Department of Plant and Molecular Biology, Faculty of Science University of Kelaniya Kelaniya Sri Lanka
| | - Dinum Perera
- Department of Bioprocess Technology, Faculty of Technology Rajarata University of Sri Lanka Mihinthale Sri Lanka
| |
Collapse
|
7
|
Chemical Composition, Antibacterial Test, and Antioxidant Activity of Essential Oils from Fresh and Dried Stropharia rugosoannulata. J CHEM-NY 2023. [DOI: 10.1155/2023/6965755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The essential oils, respectively, from fresh and dried Stropharia rugosoannulata fruiting bodies, an important edible mushroom, have been studied for their chemical composition, antibacterial capacity, and antioxidant activity. The essential oils were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS) combined with Kovats retention index. The oils’ antibacterial test was evaluated by the microdilution method against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, and antioxidant activity was determined through DPPH radical scavenging activity and ferric reducing power. Twenty-nine components were identified from the fresh mushroom, and the compositions were mainly dominated by hydrocarbons (54.72%), acids (32.99%), esters (5.07%), and terpenic compounds (0.96%). Thirty-five components were identified from the dried sample, and acids (31.22%), terpenic compounds (28.7%), alcohols (12.7%), and ketones (10.48%) were the major compounds. Strong antibacterial capacity and obvious antioxidant activity were observed for both essential oils from the fresh and dried mushrooms.
Collapse
|
8
|
Yukuyama MN, Ferreira Guimaraes LM, Segovia RS, Lameu C, de Araujo GLB, Löbenberg R, de Souza A, Bazán Henostroza MA, Folchini BR, Peroni CM, Saito Miyagi MY, Oliveira IF, Rinaldi Alvarenga JF, Fiamoncini J, Bou-Chacra NA. Malignant wound – The influence of oil components in flubendazole-loaded nanoemulsions in A549 lung cancer xenograft-bearing mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Tong S, Li Q, Liu Q, Song B, Wu J. Recent advances of the nanocomposite hydrogel as a local drug delivery for diabetic ulcers. Front Bioeng Biotechnol 2022; 10:1039495. [PMID: 36267448 PMCID: PMC9577098 DOI: 10.3389/fbioe.2022.1039495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic ulcer is a serious complication of diabetes. Compared with that of healthy people, the skin of patients with a diabetic ulcer is more easily damaged and difficult to heal. Without early intervention, the disease will become increasingly serious, often leading to amputation or even death. Most current treatment methods cannot achieve a good wound healing effect. Numerous studies have shown that a nanocomposite hydrogel serves as an ideal drug delivery method to promote the healing of a diabetic ulcer because of its better drug loading capacity and stability. Nanocomposite hydrogels can be loaded with one or more drugs for application to chronic ulcer wounds to promote rapid wound healing. Therefore, this paper reviews the latest progress of delivery systems based on nanocomposite hydrogels in promoting diabetic ulcer healing. Through a review of the recent literature, we put forward the shortcomings and improvement strategies of nanocomposite hydrogels in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Sen Tong
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qingyu Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Qiaoyan Liu
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bo Song
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Bo Song, ; Junzi Wu,
| | - Junzi Wu
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Bo Song, ; Junzi Wu,
| |
Collapse
|
10
|
Silk fibroin and Nettle extract promote wound healing in a rat model: A histological and morphometrical study. Acta Histochem 2022; 124:151930. [DOI: 10.1016/j.acthis.2022.151930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
11
|
Nazliniwaty N, Hanafiah OA, Pertiwi D, Muhammad M, Satria D. The Activity of Combination of Ethanol Extract of Artocarpus lacucha Buch.-Ham and Anredera cordifolia Steenis Leaves to Increase Wound Healing Process on NIH-3T3 Cell Line. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This study aims to determine the effect of the combination of ethanol extract of Artocarpus lacucha Buch.-Ham and Anredera cordifolia Steenis leaves to increase cell proliferation and increase VEGFR-2 expression of NIH-3T3.
METHODS: The samples used were Artocarpus lacucha Buch.-Ham and Anredera cordifilia Steenis leaves. The powder of simples was extracted using ethanol 80% with maceration method. The effect of extract combination on proliferation was evaluated using the MTT method. Wound healing assay was established by a cell migration method, and VEGFR-2 expression was determined using RT-PCR.
RESULTS: The effect of combination of ethanol extract of Artocarpus lacucha leaves (EEALL) and ethanol extract of Anredera cordifolia leaves (EEACL) on cell proliferation after 24h, 48h and 72h incubation found as viable cells were showed (124.33 ± 0.32%; 128.52 ± 0.41%; 118.35 ± 0.22%). Percent of wound closed after 24 h and 48 h incubation are 64.88 ± 0.90% and 100.00 ± 0.00%, and expression of VEGFR-2 increased from 1 (control) to 1.58 ± 0.02.
CONCLUSION: The results suggest that a combination of EEALL and EEACL (37.5 μg/mL−37.5 μg/mL) is effective in increasing cells proliferation and hence wound healing process.
Collapse
|
12
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
13
|
Fabrication of multifunctional chitosan-Guar-Aloe Vera gel to promote wound healing. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01958-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Abstract
Wound healing is a complex and energy-demanding process. The relationship between nutrition and wound healing has been recognized for many centuries. Several studies have indicated that nutritional deficiencies are more prevalent among patients with chronic wounds. Malnutrition may alter the inflammatory response, collagen synthesis, and wound tensile strength, all of which are crucial for wound healing. Although the specific role of nutrition and supplementation in wound care remains uncertain, it is necessary to identify and correct nutritional imbalances to avoid any potential deterioration of the healing process. It is also important to recognize the differences in pathophysiology between acute and chronic wounds. A burn, surgical, or a traumatic wound is different from a diabetic foot ulcer, which is different from a pressure ulcer. Chronic wounds are more prevalent in the aging population, and patients often have underlying comorbidities, such as diabetes mellitus, peripheral vascular disease, connective tissue disease, or other systemic illnesses that may alter energy metabolism and contribute to impaired healing. Management approaches to acute wound care may not apply universally to chronic wounds. In this review, we discuss the available data and possible roles for nutrition in wound healing.
Collapse
|
15
|
Sajadimajd S, Khosravifar M, Bahrami G. Anti-Diabetic Effects of Isolated Lipids from Natural Sources through Modulation of Angiogenesis. Curr Mol Pharmacol 2021; 15:589-606. [PMID: 34473620 DOI: 10.2174/1874467214666210902121337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/10/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant angiogenesis plays a fateful role in the development of diabetes and diabetic complications. Lipids, as a diverse group of biomacromolecules, are able to relieve diabetes through the modulation of angiogenesis. OBJECTIVE Owing to the present remarkable anti-diabetic effects with no or few side effects of lipids, the aim of this study was to assess the state-of-the-art research on anti-diabetic effects of lipids via the modulation of angiogenesis. METHODS To study the effects of lipids in diabetes via modulation of angiogenesis, we have searched the electronic databases including Scopus, PubMed, and Cochrane. RESULTS The promising anti-diabetic effects of lipids were reported in several studies. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil (FO) were reported to significantly induce neovasculogenesis in high glucose (HG)-mediated endothelial progenitor cells (EPCs) neovasculogenic dysfunction in type 2 diabetic mice. Linoleic acid, mono-epoxy-tocotrienol-α (MeT3α), and ginsenoside Rg1 facilitate wound closure and vessel formation. N-Palmitoylethanolamine (PEA), α-linolenic acid (ALA), omega-3 (ω3) lipids from flaxseed (FS) oil, ω-3 polyunsaturated fatty acids (PUFA), lipoic acid, taurine, and zeaxanthin (Zx) are effective in diabetic retinopathy via suppression of angiogenesis. Lysophosphatidic acid, alkyl-glycerophosphate, crocin, arjunolic acid, α-lipoic acid, and FS oil are involved in the management of diabetes and its cardiac complications. Furthermore, in two clinical trials, R-(+)-lipoic acid (RLA) in combination with hyperbaric oxygenation therapy (HBOT) for treatment of chronic wound healing in DM patients, as well as supplementation with DHA plus antioxidants along with intravitreal ranibizumab were investigated for its effects on diabetic macular edema. CONCLUSION Proof-of-concept studies presented here seem to well shed light on the anti-diabetic effects of lipids via modulation of angiogenesis.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Mina Khosravifar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Nam Y, Kim J, Baek J, Kim W. Improvement of Cutaneous Wound Healing via Topical Application of Heat-Killed Lactococcus chungangensis CAU 1447 on Diabetic Mice. Nutrients 2021; 13:nu13082666. [PMID: 34444827 PMCID: PMC8401197 DOI: 10.3390/nu13082666] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous wound healing comprises a complex systemic network. Probiotics, naturally extracted substances, medicine, and chemical compounds have been used for wound healing, but the application of postbiotics as therapeutic agents has yet to be explored. Our study shows potential beneficial effects of heat-killed Lactococcus chungangensis CAU 1447 on type 1 diabetic mice. The postbiotic strain significantly decreased the skin wound size. The activity of myeloperoxidase secreted from neutrophils also decreased. The molecular mechanism of wound healing was adjusted by important mediators, growth factors, chemokines, and cytokines. These elements regulated the anti-inflammatory activity and accelerated wound healing. To determine the role of the postbiotic in wound repair, we showed a similar taxonomic pattern as compared to the diabetic mice using skin microbiome analysis. These findings demonstrated that heat-killed Lactococcus chungangensis CAU 1447 had beneficial effects on wound healing and can be utilized as postbiotic therapeutic agents.
Collapse
|
17
|
Santos TS, dos Santos IDD, Pereira-Filho RN, Gomes SVF, Lima-Verde IB, Marques MN, Cardoso JC, Severino P, Souto EB, de Albuquerque-Júnior RLC. Histological Evidence of Wound Healing Improvement in Rats Treated with Oral Administration of Hydroalcoholic Extract of Vitis labrusca. Curr Issues Mol Biol 2021; 43:335-352. [PMID: 34208147 PMCID: PMC8929082 DOI: 10.3390/cimb43010028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Plant extracts rich in phenolic compounds have been demonstrated to accelerate wound healing, but their use by oral route has been poorly studied. The leaves of Vitis labrusca are rich in phenolic acids and flavonoids. The goal of this study was to assess the healing properties of the oral administration of hydroalcoholic extract of V. labrusca leaves (HEVL) in a murine model. HEVL was obtained by Soxhlet and dynamic maceration, and their yield and phenolic acids and flavonoid contents were determined. For the wound healing assay, 8 mm wounds were performed on the back of 48 Wistar rats, assigned into four groups (n = 12): CTR (distilled water), HEVL100, HEVL200, and HEVL300 (HEVL at 100, 200, and 300 mg/kg, respectively). On days 7 and 14, wound closure rates were assessed, and the healing wounds were subjected to histological analysis. Soxhlet-obtained extract was selected for the wound healing assay because it provided a higher yield and phenolic acid and flavonoid contents. HEVL significantly reduced leukocytosis in the peripheral blood (p < 0.05), accelerated wound closure (p < 0.05), and improved collagenization (p < 0.05) on day 7, as well as enhanced the epidermal tissue thickness (p < 0.001) and elastic fiber deposition on day 14 (p < 0.01). Furthermore, HEVL promoted an increase in the histological grading of wound healing on both days 7 and 14 (p < 0.01). The doses of 200 and 300 mg/kg provided better results than 100 mg/Kg. Our data provide histological evidence that the oral administration of HEVL improves wound healing in rodents. Therefore, the extract can be a potential oral medicine for healing purposes.
Collapse
Affiliation(s)
- Tarsizio S. Santos
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
| | - Izabella D. D. dos Santos
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
| | - Rose N. Pereira-Filho
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| | - Silvana V. F. Gomes
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
| | - Isabel B. Lima-Verde
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| | - Maria N. Marques
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| | - Juliana C. Cardoso
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| | - Patricia Severino
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Eliana B. Souto
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ricardo L. C. de Albuquerque-Júnior
- Post-Graduating Program in Health and Environment, Tiradentes University, Av. Murilo Dantas, 300, Aracaju Sergipe 49010-390, Brazil; (T.S.S.); (I.D.D.d.S.); (S.V.F.G.); (I.B.L.-V.); (M.N.M.); (J.C.C.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (R.N.P.-F.); (P.S.)
| |
Collapse
|
18
|
Atiyah AG, Al-Falahi NHR. The role of Helianthus tuberosus powder in healing of full-thickness wounds in mice. Vet World 2021; 14:1290-1298. [PMID: 34220133 PMCID: PMC8243669 DOI: 10.14202/vetworld.2021.1290-1298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Recently, many medicinal plants have received considerable attention in the medical field because of their role in the wound healing potential. This study aimed to determine the effectiveness of H. tuberosus powder on the healing pathway of full-thickness cutaneous wounds in a mouse model. Materials and Methods H. tuberosus powder was prepared by a freeze-drying process using a lyophilizer and its active ingredients were evaluated by high-performance liquid chromatography (HPLC), while its antibacterial properties were evaluated by agar well diffusion assay. The percentage wound contraction was also assessed. Thirty mice were used, which were divided equally into two groups, a control group and a treated group. A full-thickness wound, 1 cm×1 cm in size, was established on the dorsal aspect of the thoracolumbar region, into which H. tuberosus powder was topically applied in the treated group. In contrast, the control group was left without any treatment. The animals were euthanized on days 7, 14, and 21 after wounding for histopathological study. Results The agar well diffusion method indicated the antibacterial activity of H. tuberosus, while the HPLC results indicated that the active ingredients of H. tuberosus powder mainly consisted of three major kinds of fatty acid. In addition, the macroscopic results of wound contraction rate and the histopathological outcomes of the healing process were significantly (p≤0.05) enhanced in the treated group compared with those in the control group. Conclusion H. tuberosus powder acts as an antibacterial agent with the ability to enhance the wound healing process.
Collapse
Affiliation(s)
- Ali Ghazi Atiyah
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Tikrit, Iraq
| | | |
Collapse
|
19
|
The Therapeutic Effect and In Vivo Assessment of Palmitoyl-GDPH on the Wound Healing Process. Pharmaceutics 2021; 13:pharmaceutics13020193. [PMID: 33535623 PMCID: PMC7912838 DOI: 10.3390/pharmaceutics13020193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
The standard treatment of open wounds via the direct usage of therapeutic agents is not without limitations with respect to healing. Small peptides can create a favorable milieu for accelerating the healing of wounds. This study presents the potential of a novel fatty acid conjugated tetrapeptide (palmitic acid-glycine-aspartic acid-proline-histidine; Palmitoyl-GDPH) in alleviating wound healing. Tetracycline was employed as a standard control drug following its significance in wound healing including biologically active and antimicrobial effects. The peptide in liquid form was applied on to a 4 cm2 full thickness wound surgically induced at the dorsum of Sprague Dawley (SD) rats. The in vivo wound treatment with Palmitoyl-GDPH for eighteen days, histologically demonstrated an almost perfect healing exhibited by increased re-epithelialization, enhanced collagen deposition, and diminished scar formation compared to the controls. In addition, the well-developed epidermal-dermal junction and ultimate stimulation of hair follicle-growth in the Palmitoyl-GDPH treated group indicated the wound to have healed as functionally viable tissues. In general, the much lower hemogram values in the Palmitoyl-GDPH group indicated that the ongoing healing is en route to an earlier recovery. Additionally, the liver, kidney, and pancreas function biomarkers being within normal limits indicated the relatively non-toxic nature of Palmitoyl-GDPH at the used dosage. These results indisputably supported the great potential of this newly synthesized Palmitoyl-GDPH to be used as an effective therapeutic agent for wound healing (this actually means creating a new wound).
Collapse
|
20
|
Double membrane based on lidocaine-coated polymyxin-alginate nanoparticles for wound healing: In vitro characterization and in vivo tissue repair. Int J Pharm 2020; 591:120001. [DOI: 10.1016/j.ijpharm.2020.120001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022]
|
21
|
Samson F, Patrick AT, Fabunmi TE, Yahaya MF, Madu J, He W, Sripathi SR, Tyndall J, Raji H, Jee D, Gutsaeva DR, Jahng WJ. Oleic Acid, Cholesterol, and Linoleic Acid as Angiogenesis Initiators. ACS OMEGA 2020; 5:20575-20585. [PMID: 32832811 PMCID: PMC7439708 DOI: 10.1021/acsomega.0c02850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/23/2020] [Indexed: 05/03/2023]
Abstract
The current study determined the natural angiogenic molecules using an unbiased metabolomics approach. A chick chorioallantoic membrane (CAM) model was used to examine pro- and antiangiogenic molecules, followed by gas chromatography-mass spectrometry (GCMS) analysis. Vessel formation was analyzed quantitatively using the angiogenic index (p < 0.05). At embryonic day one, a white streak or circle area was observed when vessel formation begins. GCMS analysis and database search demonstrated that angiogenesis may initiate when oleic, cholesterol, and linoleic acids increased in the area of angiogenic reactions. The gain of function study was conducted by the injection of cholesterol and oleic acid into a chick embryo to determine the role of each lipid in angiogenesis. We propose that oleic acid, cholesterol, and linoleic acid are natural molecules that set the platform for the initiation stage of angiogenesis before other proteins including the vascular endothelial growth factor, angiopoietin, angiotensin, and erythropoietin join as the angiome in sprout extension and vessel maturation.
Collapse
Affiliation(s)
| | - Ambrose Teru Patrick
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Tosin Esther Fabunmi
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | | | - Joshua Madu
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Weilue He
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton Michigan 49931, United
States
| | - Srinivas R. Sripathi
- Department
of Ophthalmology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jennifer Tyndall
- Department
of Natural and Environmental Sciences, American
University of Nigeria, Yola 640101, Nigeria
| | - Hayatu Raji
- Department
of Natural and Environmental Sciences, American
University of Nigeria, Yola 640101, Nigeria
| | - Donghyun Jee
- Department
of Ophthalmology and Visual Science, St. Vincent’s Hospital,
College of Medicine, The Catholic University
of Korea, Suwon 16247, Korea
| | - Diana R. Gutsaeva
- Department
of Ophthalmology, Augusta University, Augusta, Georgia 30912, United States
| | - Wan Jin Jahng
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
- . Phone: +234-805-550-1032
| |
Collapse
|
22
|
Discussion: Docosahexaenoic Acid Improves Diabetic Wound Healing in a Rat Model by Restoring Impaired Plasticity of Macrophage Progenitor Cells. Plast Reconstr Surg 2020; 145:951e-952e. [PMID: 32332537 DOI: 10.1097/prs.0000000000006797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Ashrafi M, Xu Y, Muhamadali H, White I, Wilkinson M, Hollywood K, Baguneid M, Goodacre R, Bayat A. A microbiome and metabolomic signature of phases of cutaneous healing identified by profiling sequential acute wounds of human skin: An exploratory study. PLoS One 2020; 15:e0229545. [PMID: 32106276 PMCID: PMC7046225 DOI: 10.1371/journal.pone.0229545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/08/2020] [Indexed: 01/13/2023] Open
Abstract
Profiling skin microbiome and metabolome has been utilised to gain further insight into wound healing processes. The aims of this multi-part temporal study in 11 volunteers were to analytically profile the dynamic wound tissue and headspace metabolome and sequence microbial communities in acute wound healing at days 0, 7, 14, 21 and 28, and to investigate their relationship to wound healing, using non-invasive quantitative devices. Metabolites were obtained using tissue extraction, sorbent and polydimethylsiloxane patches and analysed using GCMS. PCA of wound tissue metabolome clearly separated time points with 10 metabolites of 346 being involved in separation. Analysis of variance-simultaneous component analysis identified a statistical difference between the wound headspace metabolome, sites (P = 0.0024) and time points (P<0.0001), with 10 out of the 129 metabolites measured involved with this separation between sites and time points. A reciprocal relationship between Staphylococcus spp. and Propionibacterium spp. was observed at day 21 (P<0.05) with a statistical correlation between collagen and Propionibacterium (r = 0.417; P = 0.038) and Staphylococcus (r = -0.434; P = 0.03). Procrustes analysis showed a statistically significant similarity between wound headspace and tissue metabolome with non-invasive wound devices. This exploratory study demonstrates the temporal and dynamic nature of acute wound metabolome and microbiome presenting a novel class of biomarkers that correspond to wound healing, with further confirmatory studies now necessary.
Collapse
Affiliation(s)
- Mohammed Ashrafi
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, NIHR Manchester Biomedical Research Centre (BRC), University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Bioengineering Group, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Iain White
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Katherine Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Mohamed Baguneid
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, NIHR Manchester Biomedical Research Centre (BRC), University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Bioengineering Group, School of Materials, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Cam ME, Yildiz S, Alenezi H, Cesur S, Ozcan GS, Erdemir G, Edirisinghe U, Akakin D, Kuruca DS, Kabasakal L, Gunduz O, Edirisinghe M. Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: an in vitro and in vivo comparison study. J R Soc Interface 2020; 17:20190712. [PMID: 31964272 DOI: 10.1098/rsif.2019.0712] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with in vitro and in vivo tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration. The results indicated that PHR-loaded fibrous mats expedited diabetic wound healing in type-1 diabetic rats and did not show any cytotoxic effect on NIH/3T3 (mouse embryo fibroblast) cells, albeit with different release kinetics and efficacies. The wound healing effects of fibrous mats are presented with histological and biochemical evaluations. PHR-loaded fibrous mats improved neutrophil infiltration, oedema, and inflammation and increased epidermal regeneration and fibroblast proliferation, but the formation of hair follicles and completely improved oedema were observed only in the sustained release form. Thus, topical administration of PPAR-γ agonist in sustained release form has high potential for the treatment of diabetic wounds in inflammatory and proliferative phases of healing with high bioavailability and fewer systemic side effects.
Collapse
Affiliation(s)
- Muhammet Emin Cam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.,Center for Nanotechnology and Biomaterials Research, Marmara University, Istanbul 34722, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Sila Yildiz
- Centre for Discovery Brain Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Hussain Alenezi
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.,Department of Manufacturing Engineering, College of Technological Studies, PAAET, 13092 Kuwait City, Kuwait
| | - Sumeyye Cesur
- Center for Nanotechnology and Biomaterials Research, Marmara University, Istanbul 34722, Turkey.,Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Gul Sinemcan Ozcan
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Gokce Erdemir
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Ursula Edirisinghe
- Accident and Emergency Department, Hillingdon Hospital, NHS Foundation Trust, Pield Heath Road, Uxbridge UB8 3NN, UK
| | - Dilek Akakin
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Durdane Serap Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Levent Kabasakal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Research, Marmara University, Istanbul 34722, Turkey.,Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
25
|
Meliala DIP, Silalahi J, Yuandani Y, Margata L, Satria D. The Role of Coconut Oil to Increase Expression of MMP-9, PDGF-BB, and TGF-β1 in NIH-3T3 Cell Line. Open Access Maced J Med Sci 2019; 7:3733-3736. [PMID: 32127964 PMCID: PMC7048352 DOI: 10.3889/oamjms.2019.492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/06/2022] Open
Abstract
AIM: The objective of the study was to evaluate protein expression in NIH 3T3 cells that are treated with virgin coconut oil (VCO) and hydrolysed of virgin coconut oil (HVCO) in vitro. METHODS: Coconut oil used in this study was virgin coconut oil (VCO) and VCO hydrolysed by Rhizomucor miehei (HVCO). NIH 3T3 cells (5x105 cells/well) were seeded in nine wells and incubated for overnight, then divided into three groups. Each group consisted of three wells. Group one without treatment, group two added VCO, and group three added HVCO and then incubated for overnight. One well in each group was added MMP-9, PDGF-BB, and TGF-β1 and incubated one hour. Finally, expressions of MMP-9, PDGF-BB, and TGF-β1 were detected using immunocytochemistry method. RESULTS: The results of the study showed that VCO and HVCO increased protein expressions of MMP-9, PDGF-BB, and TGF-β1. Percentage of MMP-9 expressions treated by VCO increased from 2.89 ± 0.07 to 28.16 ± 0.34, PDGF-BB from 28.11 ± 0.13 to 48.53 ± 0.49, and TGF-β1 from 4.19 ± 0.08 to 18.41 ± 0.54. Percentage of MMP-9 expressions treated by HVCO increased from 2.89 ± 0.07 to 55.40 ± 0.94, PDGF-BB from 28.11 ± 0.13 to 61.65 ± 0.42, and TGF-β1 from 4.19 ± 0.08 to 36.35 ± 0.67. CONCLUSION: VCO and HVCO increase the expression of MMP-9, PDGF-BB, dan TGF-β1 in NIH3T3 cells and therefore, coconut oil active in the wound healing process. HVCO is more than active than VCO.
Collapse
Affiliation(s)
| | - Jansen Silalahi
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani Yuandani
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Linda Margata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Denny Satria
- Doctoral Programme, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
26
|
Docosahexaenoic acid slows inflammation resolution and impairs the quality of healed skin tissue. Clin Sci (Lond) 2019; 133:2345-2360. [DOI: 10.1042/cs20190753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 02/01/2023]
Abstract
Abstract
There is no consensus on the effects of omega-3 (ω-3) fatty acids (FA) on cutaneous repair. To solve this problem, we used 2 different approaches: (1) FAT-1 transgenic mice, capable of producing endogenous ω-3 FA; (2) wild-type (WT) mice orally supplemented with DHA-enriched fish oil. FAT-1 mice had higher systemic (serum) and local (skin tissue) ω-3 FA levels, mainly docosahexaenoic acid (DHA), in comparison with WT mice. FAT-1 mice had increased myeloperoxidase (MPO) activity and content of CXCL-1 and CXCL-2, and reduced IL-10 in the skin wound tissue three days after the wound induction. Inflammation was maintained by an elevated TNF-α concentration and presence of inflammatory cells and edema. Neutrophils and macrophages, isolated from FAT-1 mice, also produced increased TNF-α and reduced IL-10 levels. In these mice, the wound closure was delayed, with a wound area 6-fold bigger in relation with WT group, on the last day of analysis (14 days post-wounding). This was associated with poor orientation of collagen fibers and structural aspects in repaired tissue. Similarly, DHA group had a delay during late inflammatory phase. This group had increased TNF-α content and CD45+F4/80+ cells at the third day after skin wounding and increased concentrations of important metabolites derived from ω-3, like 18-HEPE, and reduced concentrations of those from ω-6 FA. In conclusion, elevated DHA content, achieved in both FAT-1 and DHA groups, slowed inflammation resolution and impaired the quality of healed skin tissue.
Collapse
|
27
|
Silalahi J, Yuandani Y, Meliala DIPB, Margata L, Satria D. The Activity of Hydrolyzed Virgin Coconut Oil to Increase Proliferation and Cyclooxygenase-2 Expression towards on NIH 3T3 Cell Line in Wound Healing Process. Open Access Maced J Med Sci 2019; 7:3164-3168. [PMID: 31949510 PMCID: PMC6953946 DOI: 10.3889/oamjms.2019.804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022] Open
Abstract
AIM: This study aims to determine the effect of hydrolysed virgin coconut oil (HVCO) to increase cell proliferation, COX-2 expression of NIH 3T3. METHODS: The sample used was Virgin Coconut Oil (VCO). VCO was partially hydrolysed using lipase from Rhizomucor miehei (active on sn-1,3 position) to produce hydrolysed VCO (HVCO) composed of free fatty acids, 2-monoglycerides. Then acid value was determined. The effect of HVCO on proliferation was evaluated using the MTT method. Wound healing assay was established by a cell migration method, and COX-2 expression was determined using RT-PCR. RESULTS: Acid value is 135.89 ± 0.12 mg NaOH/g oil and free fatty acids (FFA) is 48.50 ± 0.06%. The effect of HVCO 62.5 µg/mL on cell proliferation after 24h, 48h, and 72h incubation found as viable cells are 109.24 ± 0.52%; 118.26 ± 0.91% and 106.59 ± 0.74%. Percent of wound closed after 24 h and 48 h incubation are 69.94 ± 0.54% and 100.00 ± 0.00%, and expression of COX-2 increased from 1 (control) to 1.83 (HVCO). CONCLUSION: The results suggest that HVCO is effective to increase cells proliferation and hence wound healing process.
Collapse
Affiliation(s)
- Jansen Silalahi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Jalan Tri Dharma No. 5, Kampus USU, Medan, 20155, Indonesia
| | - Yuandani Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Jalan Tri Dharma No. 5, Kampus USU, Medan, 20155, Indonesia
| | - Dian Ika Perbina Br Meliala
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Jalan Tri Dharma No. 5, Kampus USU, Medan, 20155, Indonesia
| | - Linda Margata
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Jalan Tri Dharma No. 5, Kampus USU, Medan, 20155, Indonesia
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Jalan Tri Dharma No. 5, Kampus USU, Medan, 20155, Indonesia
| |
Collapse
|
28
|
Burger B, Kühl CMC, Candreva T, Cardoso RDS, Silva JR, Castelucci BG, Consonni SR, Fisk HL, Calder PC, Vinolo MAR, Rodrigues HG. Oral administration of EPA-rich oil impairs collagen reorganization due to elevated production of IL-10 during skin wound healing in mice. Sci Rep 2019; 9:9119. [PMID: 31235718 PMCID: PMC6591225 DOI: 10.1038/s41598-019-45508-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
Wound healing is an essential process for organism survival. Some fatty acids have been described as modulators of wound healing. However, the role of omega-3 fatty acids is unclear. In the present work, we investigate the effects of oral administration of eicosapentaenoic acid (EPA)-rich oil on wound healing in mice. After 4 weeks of EPA-rich oil supplementation (2 g/kg of body weight), mice had increased serum concentrations of EPA (20:5ω-3) (6-fold) and docosahexaenoic acid (DHA; 22:6ω-3) (33%) in relation to control mice. Omega-3 fatty acids were also incorporated into skin in the EPA fed mice. The wound healing process was delayed at the 3rd and 7th days after wounding in mice that received EPA-rich oil when compared to control mice but there was no effect on the total time required for wound closure. Collagen reorganization, that impacts the quality of the wound tissue, was impaired after EPA-rich oil supplementation. These effects were associated with an increase of M2 macrophages (twice in relation to control animals) and interleukin-10 (IL-10) concentrations in tissue in the initial stages of wound healing. In the absence of IL-10 (IL-10-/- mice), wound closure and organization of collagen were normalized even when EPA was fed, supporting that the deleterious effects of EPA-rich oil supplementation were due to the excessive production of IL-10. In conclusion, oral administration of EPA-rich oil impairs the quality of wound healing without affecting the wound closure time likely due to an elevation of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Carolina M C Kühl
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Thamiris Candreva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Renato da S Cardoso
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Jéssica R Silva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Bianca G Castelucci
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Sílvio R Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Helena L Fisk
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Marco Aurélio R Vinolo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Hosana G Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
29
|
Topical essential fatty acid oil on wounds: Local and systemic effects. PLoS One 2019; 14:e0210059. [PMID: 30608959 PMCID: PMC6319702 DOI: 10.1371/journal.pone.0210059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The use of medicinal plants and their derivatives is increasing, and approximately one-third of all traditional herbal medicines are intended for wound treatment. Natural products used in these treatments include vegetable oils, which are rich in essential fatty acids. Once in contact with an ulcerative surface, the oil reaches the blood and lymphatic vessels, thus eliciting systemic effects. OBJECTIVE This study evaluated the local and possible systemic effects of essential fatty acids (sunflower oil) applied topically to rat wounds. METHODS Cutaneous punch wounds (6 mm) were produced on the dorsa of 30 rats. Saline (SS), mineral oil (MO) or essential fatty acid (EFA) solutions were applied topically. Healing was evaluated after 2, 4 and 10 days (n = 5 per group) by visual and histological/morphometric examination, second harmonic generation (SHG) microscopy, and cytokine and growth factor quantification in the scar tissue (real-time PCR) and in serum (ELISA). RESULTS MO/EFA-treated animals had higher IGF-1, leptin, IL-6 and IFN-γ mRNA expression and lower serum IL-6 levels than the control (SS/MO) animals. SHG analysis showed no difference in collagen density between the animals treated with MO and EFA. CONCLUSION EFA treatment induces topical (observed by local IGF-1, leptin, IL-6 and IFN-γ production) and systemic effects, lowering IL-6 levels in the serum. As the oil is widely used to shorten ulcer healing time, studies are needed to evaluate the treatment safety and possible undesired effects.
Collapse
|
30
|
Huang TH, Wang PW, Yang SC, Chou WL, Fang JY. Cosmetic and Therapeutic Applications of Fish Oil's Fatty Acids on the Skin. Mar Drugs 2018; 16:E256. [PMID: 30061538 PMCID: PMC6117694 DOI: 10.3390/md16080256] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023] Open
Abstract
Fish oil has been broadly reported as a potential supplement to ameliorate the severity of some skin disorders such as photoaging, skin cancer, allergy, dermatitis, cutaneous wounds, and melanogenesis. There has been increasing interest in the relationship of fish oil with skin protection and homeostasis, especially with respect to the omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). The other PUFAs, such as α-linolenic acid (ALA) and linoleic acid (LA), also show a beneficial effect on the skin. The major mechanisms of PUFAs for attenuating cutaneous inflammation are the competition with the inflammatory arachidonic acid and the inhibition of proinflammatory eicosanoid production. On the other hand, PUFAs in fish oil can be the regulators that affect the synthesis and activity of cytokines for promoting wound healing. A systemic review was conducted to demonstrate the association between fish oil supplementation and the benefits to the skin. The following describes the different cosmetic and therapeutic approaches using fatty acids derived from fish oil, especially ALA, LA, DHA, and EPA. This review summarizes the cutaneous application of fish oil and the related fatty acids in the cell-based, animal-based, and clinical models. The research data relating to fish oil treatment of skin disorders suggest a way forward for generating advances in cosmetic and dermatological uses.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 33303, Taiwan.
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Wei-Ling Chou
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 33302, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan 33305, Taiwan.
| |
Collapse
|
31
|
Andrade PHM, Portugal LC, Rondon ES, Kadri MCT, Matos MDFC. Effect of powdered shells treatment of the snail Megalobulimus lopesi on wounds of diabetic rats. Acta Cir Bras 2018. [PMID: 29513817 DOI: 10.1590/s0102-865020180020000010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To analyzed the healing effect of the powdered shell of the Megalobulimus lopesi snail on wounds of diabetic rats, since in non-diabetic rats the powdered shell presented healing potential. METHODS Seventy-two Wistar rats (Rattus norvegicus albinus) were divided into three groups: Control group (GC.diab), no therapeutic intervention on the wound; Vehicle's Control group, topical via, in diabetic rats (GCvt.diab): Powder Shell Group (PC) applied topically (GPCvt.diab): Experimental group was administered topically shortly after wound dressing and once a day during the experimental period (3, 7, 14 and 21 days) the composition containing the powdered shell of the snail. The following variables related to the healing potential were analyzed: macroscopic one, where the capacity of reduction of the wound area was evaluated; histological analysis in HE, angiogenic activity, morphometric analysis (re-epithelization), leukocyte inflammatory infiltrate; leukocyte count and also differentiation in peripheral blood. RESULTS The topical application in wounds of diabetic rats presented healing activity, accelerating wound closure, stimulating angiogenesis and being pro-inflammatory in the early and anti-inflammatory stages in the final times of the healing process. CONCLUSION The topical administration of the powdered shell on wounds of diabetic patients becomes a therapeutic option of low cost, with ease in the administration and access as well.
Collapse
Affiliation(s)
- Paulo Henrique Muleta Andrade
- Fellow PhD degree, Postgraduate Program in Health and Development of the Central West Region, Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande-MS, Brazil. Acquisition, analysis and interpretation of data; manuscript writing
| | - Luciane Canderolo Portugal
- PhD, Department of Morphophysiology, UFMS, Campo Grande-MS, Brazil. Histopathological examinations, manuscript preparation, critical revision
| | - Eric Schmidt Rondon
- PhD, Department of Veterinary Medicine, UFMS, Campo Grande-MS, Brazil. Acquisition, analysis and interpretation of data; manuscript preparation; critical revision
| | - Monica Cristina Toffoli Kadri
- PhD, Center for Biological and Health Sciences (CCBS), UFMS, Campo Grande-MS, Brazil. Manuscript preparation, critical revision
| | - Maria de Fátima Cepa Matos
- PhD, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande-MS, Brazil. Acquisition, analysis and interpretation of data; manuscript preparation, critical revision
| |
Collapse
|
32
|
Wound Healing and Omega-6 Fatty Acids: From Inflammation to Repair. Mediators Inflamm 2018; 2018:2503950. [PMID: 29849484 PMCID: PMC5925018 DOI: 10.1155/2018/2503950] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/08/2018] [Indexed: 12/25/2022] Open
Abstract
Wound healing is an evolutionarily conserved process that is essential for species survival. Wound healing involves a series of biochemical and cellular events that are tightly controlled, divided into 3 concomitant and overlapping phases: inflammation, proliferation, and remodelling. Poor wound healing or a chronic wound represents a silent epidemic that affects billions of people worldwide. Considering the involvement of immune cells in its resolution, recent studies are focused on investigating the roles of immune nutrients such as amino acids, minerals, and fatty acids on wound healing. Among the fatty acids, much attention has been given to omega-6 (ω-6) fatty acids since they can modulate cell migration and proliferation, phagocytic capacity, and production of inflammatory mediators. The present review summarizes current knowledge about the role of ω-6 fatty acids in the wound healing context.
Collapse
|
33
|
Guo XB, Deng X, Wei Y. Homing of Cultured Endothelial Progenitor Cells and Their Effect on Traumatic Brain Injury in Rat Model. Sci Rep 2017. [PMID: 28646184 PMCID: PMC5482798 DOI: 10.1038/s41598-017-04153-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Transplanted endothelial progenitor cells (EPCs) may play an important role in reestablishing the endothelial integrity of the vessels after brain injury, and contribute to neurogenesis. We, therefore, tested the homing of ex vivo cultured peripheral blood-derived EPCs and their effect on injured brain tissue after intravenous administration. To track the homing of implanted EPCs in injured brain tissues, EPCs were labeled with DAPI and BrdU in vitro before transplantation. EPCs were transplanted into the host animal through peripheral administration through the femoral vein, and homing of EPCs was evaluated. The integration of intravenously injected EPCs into the injured brain tissue was demonstrated. Immunohistochemical staining showed that microvessel density in the perifocal region of EPCs-transplanted rats was significantly increased, and the numbers of BrdU+ cells in the DG of subventricular zone were increased in EPCs-transplanted rats as compared to the control group. Transplanted EPCs may play an important role in reestablishing the endothelial integrity in the vessels after brain injury and further contribute to neurogenesis. EPCs enhanced recovery following brain injury in a rat model of TBI.
Collapse
Affiliation(s)
- Xin-Bin Guo
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China.
| | - Xin Deng
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| | - Ying Wei
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| |
Collapse
|
34
|
Rodrigues HG, Vinolo MAR, Sato FT, Magdalon J, Kuhl CMC, Yamagata AS, Pessoa AFM, Malheiros G, Dos Santos MF, Lima C, Farsky SH, Camara NOS, Williner MR, Bernal CA, Calder PC, Curi R. Correction: Oral Administration of Linoleic Acid Induces New Vessel Formation and Improves Skin Wound Healing in Diabetic Rats. PLoS One 2017; 12:e0179071. [PMID: 28562657 PMCID: PMC5451087 DOI: 10.1371/journal.pone.0179071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Linoleic Acid: A Nutritional Quandary. Healthcare (Basel) 2017; 5:healthcare5020025. [PMID: 28531128 PMCID: PMC5492028 DOI: 10.3390/healthcare5020025] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 01/29/2023] Open
Abstract
Over the course of the twentieth century, there was a 20-fold increase in consumption of vegetable oils resulting both from their increased availability and from recommendations to consume these oils as an aid to lower blood cholesterol levels. This dietary change markedly increased the consumption of linoleic acid to current levels of approximately 6% of total dietary energy. While considerable research has focused on the effects of dietary linoleic acid on cardiovascular health, questions about optimum dietary levels remain. For example, meta-analyses disagree about the role of dietary linoleic acid in atherosclerosis, and recent publications indicate that linoleic acid's reduction of blood cholesterol levels does not predict its effect on the development of atherosclerosis. Further, there are also detrimental effects of elevated dietary linoleic acid on human health related to its role in inflammation and its activity as a promoter of cancer in animals. Current data do not allow determination of the level of dietary linoleic acid needed for optimum health. Studies of the effects of a wide range of linoleic acid consumption may help determine dietary recommendations that are optimal for human health.
Collapse
|