1
|
Singh G, Satpathi S, Gopala Reddy BV, Singh MK, Sarangi S, Behera PK, Nayak B. Impact of various detergent-based immersion and perfusion decellularization strategies on the novel caprine pancreas derived extracellular matrix scaffold. Front Bioeng Biotechnol 2023; 11:1253804. [PMID: 37790257 PMCID: PMC10544968 DOI: 10.3389/fbioe.2023.1253804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Limited availability of the organs donors has facilitated the establishment of xenogeneic organ sources for transplantation. Numerous studies have decellularized several organs and assessed their implantability in order to provide such organs. Among all the decellularized organs studies for xenotransplantation, the pancreas has garnered very limited amount of research. The presently offered alternatives for pancreas transplantation are unable to liberate patients from donor dependence. The rat and mice pancreas are not of an accurate size for transplantation but can only be used for in-vitro studies mimicking in-vivo immune response in humans, while the porcine pancreas can cause zoonotic diseases as it carries porcine endogenous retrovirus (PERV- A/B/C). Therefore, we propose caprine pancreas as a substitute for these organs, which not only reduces donor dependence but also poses no risk of zoonosis. Upon decellularization the extracellular matrix (ECM) of different tissues responds differently to the detergents used for decellularization at physical and physiological level; this necessitates a comprehensive analysis of each tissue independently. This study investigates the impact of decellularization by ionic (SDS and SDC), non-ionic (Triton X-100 and Tween-20), and zwitterionic detergents (CHAPS). All these five detergents have been used to decellularize caprine pancreas via immersion (ID) and perfusion (PD) set-up. In this study, an extensive comparison of these two configurations (ID and PD) with regard to each detergent has been conducted. The final obtained scaffold with each set-up has been evaluated for the left-over cytosolic content, ECM components like sGAG, collagen, and fibronectin were estimated via Prussian blue and Immunohistochemical staining respectively, and finally for the tensile strength and antimicrobial activity. All the detergents performed consistently superior in PD than in ID. Conclusively, PD with SDS, SDC, and TX-100 successfully decellularizes caprine pancreatic tissue while retaining ECM architecture and mechanical properties. This research demonstrates the viability of caprine pancreatic tissue as a substitute scaffold for porcine organs and provides optimal decellularization protocol for this xenogeneic tissue. This research aims to establish a foundation for further investigations into potential regenerative strategies using this ECM in combination with other factors.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Bora Venu Gopala Reddy
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Manish Kumar Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Samchita Sarangi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
2
|
Singh G, Senapati S, Satpathi S, Behera PK, Das B, Nayak B. Establishment of decellularized extracellular matrix scaffold derived from caprine pancreas as a novel alternative template over porcine pancreatic scaffold for prospective biomedical application. FASEB J 2022; 36:e22574. [PMID: 36165227 DOI: 10.1096/fj.202200807r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
In this study, the caprine pancreas has been presented as an alternative to the porcine organ for pancreatic xenotransplantation with lesser risk factors. The obtained caprine pancreas underwent a systematic cycle of detergent perfusion for decellularization. It was perfused using anionic (0.5% w/v sodium dodecyl sulfate) as well as non-ionic (0.1% v/v triton X-100, t-octyl phenoxy polyethoxy ethanol) detergents and washed intermittently with 1XPBS supplemented with 0.1% v/v antibiotic and nucleases in a gravitation-driven set-up. After 48 h, a white decellularized pancreas was obtained, and its extracellular matrix (ECM) content was examined for scaffold-like properties. The ECM content was assessed for removal of cellular content, and nuclear material was evaluated with temporal H&E staining. Quantified DNA was found to be present in a negligible amount in the resultant decellularized pancreas tissue (DPT), thus prohibiting it from triggering any immunogenicity. Collagen and fibronectin were confirmed to be preserved upon trichrome and immunohistochemical staining, respectively. SEM and AFM images reveal interconnected collagen fibril networks in the DPT, confirming that collagen was unaffected. sGAG was visualized using Prussian blue staining and quantified with DMMB assay, where DPT has effectively retained this ECM component. Uniaxial tensile analysis revealed that DPT possesses better elasticity than NPT (native pancreatic tissue). Physical parameters like tensile strength, stiffness, biodegradation, and swelling index were retained in the DPT with negligible loss. The cytocompatibility analysis of DPT has shown no cytotoxic effect for up to 72 h on normal insulin-producing cells (MIN-6) and cancerous glioblastoma (LN229) cells in vitro. The scaffold was recellularized using isolated mouse islets, which have established in vitro cell proliferation for up to 9 days. The scaffold received at the end of the decellularization cycle was found to be non-toxic to the cells, retained biological and physical properties of the native ECM, suitable for recellularization, and can be used as a safer and better alternative as a transplantable organ from a xenogeneic source.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | | | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
3
|
Campos Calero G, Caballero Gómez N, Lavilla Lerma L, Benomar N, Knapp CW, Abriouel H. In silico mapping of microbial communities and stress responses in a porcine slaughterhouse and pork products through its production chain, and the efficacy of HLE disinfectant. Food Res Int 2020; 136:109486. [PMID: 32846568 DOI: 10.1016/j.foodres.2020.109486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/10/2023]
Abstract
The use of shotgun metagenomic sequencing to understand ecological-level spread of microbes and their genes has provided new insights for the prevention, surveillance and control of microbial contaminants in the slaughterhouse environment. Here, microbial samples were collected from products and surrounding areas though a porcine slaughter process; shotgun metagenomic DNA-sequencing of these samples revealed a high community diversity within the porcine slaughterhouse and pork products, in zones originating from animal arrival through to the sale zones. Bacteria were more prevalent in the first zones, such as arrival- and anesthesia-zones, and DNA viruses were prevalent in the scorching-and-whip zone, animal products and sale zone. Data revealed the dominance of Firmicutes and Proteobacteria phyla followed by Actinobacteria, with a clear shift in the relative abundance of lactic acid bacteria (mainly Lactobacillus sp.) from early slaughtering steps to Proteobacteria and then to viruses suggesting site-specific community compositions occur in the slaughterhouse. Porcine-type-C oncovirus was the main virus found in slaughterhouse, which causes malignant diseases in animals and humans. As such, to guarantee food safety in a slaughterhouse, a better decipher of ecology and adaptation strategies of microbes becomes crucial. Analysis of functional genes further revealed high abundance of diverse genes associated with stress, especially in early zones (animal and environmental surfaces of arrival zone with 57,710 and 40,806 genes, respectively); SOS responsive genes represented the most prevalent, possibly associated with genomic changes responsible of biofilm formation, stringent response, heat shock, antimicrobial production and antibiotic response. The presence of several antibiotic resistance genes suggests horizontal gene transfer, thus increasing the likelihood for resistance selection in human pathogens. These findings are of great concern, with the suggestion to focus control measures and establish good disinfection strategies to avoid gene spread and microbial contaminants (bacteria and viruses) from the animal surface into the food chain and environment, which was achieved by applying HLE disinfectant after washing with detergent.
Collapse
Affiliation(s)
- Guillermo Campos Calero
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Charles W Knapp
- Centre for Water, Environment, Sustainability & Public Health, Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain.
| |
Collapse
|
4
|
Detection of Pig Cells Harboring Porcine Endogenous Retroviruses in Non-Human Primate Bladder After Renal Xenotransplantation. Viruses 2019; 11:v11090801. [PMID: 31470671 PMCID: PMC6784250 DOI: 10.3390/v11090801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022] Open
Abstract
Pigs are used as potential donor animals for xenotransplantation. However, porcine endogenous retrovirus (PERV), shown to infect both human and non-human primate (NHP) cells in vitro, presents a risk of transmission to humans in xenotransplantation. In this study, we analyzed PERV transmission in various organs after pig-to-NHP xenotransplantation. We utilized pig-to-NHP xenotransplant tissue samples obtained using two types of transgenic pigs from the National Institute of Animal Science (NIAS, Republic of Korea), and examined them for the existence of PERV genes in different organs via PCR and RT-PCR with specific primers. To determine PERV insertion into chromosomes, inverse PCR using PERV long terminal repeat (LTR) region-specific primers was conducted. The PERV gene was not detected in NHP organs in cardiac xenotransplantation but detected in NHP bladders in renal xenotransplantation. The insertion experiment confirmed that PERVs originate from porcine donor cells rather than integrated provirus in the NHP chromosome. We also demonstrate the presence of pig cells in the NHP bladder after renal xenotransplantation using specific-porcine mitochondrial DNA gene PCR. The PERV sequence was detected in the bladder of NHPs after renal xenotransplantation by porcine cell-microchimerism but did not integrate into the NHP chromosome.
Collapse
|
5
|
Song YW, Pan ZQ. Reducing porcine corneal graft rejection, with an emphasis on porcine endogenous retrovirus transmission safety: a review. Int J Ophthalmol 2019; 12:324-332. [PMID: 30809491 DOI: 10.18240/ijo.2019.02.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
Donor cornea shortage is a primary hurdle in the development of corneal transplantation. Of all species, porcine corneas are the ideal transplantation material for humans. However, the xenoimmune rejection induced by porcine corneal xenotransplantation compromises surgical efficacy. Although the binding of IgM/IgG in human serum to a genetically modified porcine cornea is significantly weaker than that of the wild type (WT), genetically modified porcine corneas do not display a prolonged graft survival time in vivo. Conversely, costimulatory blockade drugs, such as anti-CD40 antibodies, can reduce the xenoimmune response and prolong graft survival time in animal experiments. Moreover, porcine endothelial grafts can survive for more than 6mo with only the subconjunctival injection of a steroid-based immunosuppressants regime; therefore, they show great value for treating corneal endothelial disease. In addition, zoonotic transmission is a primary concern of xenotransplantation. Porcine endogenous retrovirus (PERV) is the most significant virus assessed by ophthalmologists. PERV integrates into the porcine genome and infects human cells in vitro. Fortunately, no evidence from in vivo studies has yet shown that PERV can be transmitted to hosts.
Collapse
Affiliation(s)
- Yao-Wen Song
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
| | - Zhi-Qiang Pan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
| |
Collapse
|
6
|
Cho Y, Heo Y, Choi H, Park KH, Kim S, Jang Y, Lee HJ, Kim M, Kim YB. Porcine endogenous retrovirus envelope coated baculoviral DNA vaccine against porcine reproductive and respiratory syndrome virus. Anim Biotechnol 2018; 31:32-41. [PMID: 30570378 DOI: 10.1080/10495398.2018.1531014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PERV is a major virus concerning xenotransplantation study. However, the interesting part is that PERV is present in all kinds of pigs without pathogenicity and immune response. Furthermore, since pig cells have receptors for PERV, the gene delivery system using PERV envelope is highly likely to develop into an excellent viral vector in pigs. We developed a recombinant baculovirus with a modified surface for expressing the porcine endogenous retrovirus (PERV) envelope. Porcine reproductive and respiratory syndrome virus (PRRSV) infection is a severe concern in the porcine industry due to reproduction failure and respiratory symptoms. GP5 and M proteins are major immunogenic proteins of PRRSV. Using PERV-modified baculovirus (Ac mPERV) as a delivery vector, we constructed a dual antigen (GP5 and M)-encoding DNA vaccine system, Ac mPERV-C5/C6. Intramuscular immunization in mice and pigs, Ac mPERV-C5/C6 induced comparative high humoral and cellular immune responses. Our results support further development of Ac mPERV-C5/C6 as a potential PRRSV vaccine in the porcine industry. In addition, the Ac mPERV system may be applied to the generation of other effective DNA vaccines against porcine viral diseases.
Collapse
Affiliation(s)
- Yeondong Cho
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Yoonki Heo
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Hanul Choi
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Ki Hoon Park
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Sehyun Kim
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Yuyeon Jang
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Minji Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Young Bong Kim
- Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea.,Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Bourneuf E. The MeLiM Minipig: An Original Spontaneous Model to Explore Cutaneous Melanoma Genetic Basis. Front Genet 2017; 8:146. [PMID: 29081790 PMCID: PMC5645500 DOI: 10.3389/fgene.2017.00146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest skin cancer and is a major public health concern with a growing incidence worldwide. As for other complex diseases, animal models are needed in order to better understand the mechanisms leading to pathology, identify potential biomarkers to be used in the clinics, and eventually molecular targets for therapeutic solutions. Cutaneous melanoma, arising from skin melanocytes, is mainly caused by environmental factors such as UV radiation; however a significant genetic component participates in the etiology of the disease. The pig is a recognized model for spontaneous development of melanoma with features similar to the human ones, followed by a complete regression and a vitiligo-like depigmentation. Three different pig models (MeLiM, Sinclair, and MMS-Troll) have been maintained through the last decades, and different genetic studies have evidenced a complex inheritance of the disease. As in humans, pigmentation seems to play a prominent role, notably through MC1R and MITF signaling. Conversely, cell cycle genes as CDKN2A and CDK4 have been excluded as predisposing for melanoma in MeLiM. So far, only sparse studies have focused on somatic changes occurring during oncogenesis, and have revealed major cytological changes and a potential dysfunction of the telomere maintenance system. Finally, the spontaneous tumor progression and regression occurring in these models could shed light on the interplay between endogenous retroviruses, melanomagenesis, and adaptive immune response.
Collapse
Affiliation(s)
- Emmanuelle Bourneuf
- LREG, CEA, Université Paris-Saclay, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|