1
|
‘t Hart DC, van der Vlag J, Nijenhuis T. A Putative Role for TRPC6 in Immune-Mediated Kidney Injury. Int J Mol Sci 2023; 24:16419. [PMID: 38003608 PMCID: PMC10671681 DOI: 10.3390/ijms242216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Excessive activation of the immune system is the cause of a wide variety of renal diseases. However, the pathogenic mechanisms underlying the aberrant activation of the immune system in the kidneys often remain unknown. TRPC6, a member of the Ca2+-permeant family of TRPC channels, is important in glomerular epithelial cells or podocytes for the process of glomerular filtration. In addition, TRPC6 plays a crucial role in the development of kidney injuries by inducing podocyte injury. However, an increasing number of studies suggest that TRPC6 is also responsible for tightly regulating the immune cell functions. It remains elusive whether the role of TRPC6 in the immune system and the pathogenesis of renal inflammation are intertwined. In this review, we present an overview of the current knowledge of how TRPC6 coordinates the immune cell functions and propose the hypothesis that TRPC6 might play a pivotal role in the development of kidney injury via its role in the immune system.
Collapse
|
2
|
Costa IM, Cheng J, Osytek KM, Imberti C, Terry SYA. Methods and techniques for in vitro subcellular localization of radiopharmaceuticals and radionuclides. Nucl Med Biol 2021; 98-99:18-29. [PMID: 33964707 PMCID: PMC7610823 DOI: 10.1016/j.nucmedbio.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
In oncology, the holy grail of radiotherapy is specific radiation dose deposition in tumours with minimal healthy tissue toxicity. If used appropriately, injectable, systemic radionuclide therapies could meet these criteria, even for treatment of micrometastases and single circulating tumour cells. The clinical use of α and β- particle-emitting molecular radionuclide therapies is rising, however clinical translation of Auger electron-emitting radionuclides is hampered by uncertainty around their exact subcellular localisation, which in turn affects the accuracy of dosimetry. This review aims to discuss and compare the advantages and disadvantages of various subcellular localisation methods available to localise radiopharmaceuticals and radionuclides for in vitro investigations.
Collapse
Affiliation(s)
- Ines M Costa
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Jordan Cheng
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Katarzyna M Osytek
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Cinzia Imberti
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
3
|
Bardelli F, Brun F, De Panfilis S, Cloetens P, Capella S, Belluso E, Bellis D, Di Napoli A, Cedola A. Chemo-physical properties of asbestos bodies in human lung tissues studied at the nano-scale by non-invasive, label free x-ray imaging and spectroscopic techniques. Toxicol Lett 2021; 348:18-27. [PMID: 34023437 DOI: 10.1016/j.toxlet.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
In the lungs, asbestos develops an Fe-rich coating (Asbestos Body, AB) that becomes the actual interface between the foreign fibers and the host organism. Conventional approaches to study ABs require an invasive sample preparation that can alter them. In this work, a novel combination of x-ray tomography and spectroscopy allowed studying unaltered lung tissue samples with chrysotile and crocidolite asbestos. The thickness and mass density maps of the ABs obtained by x-ray tomography were used to derive a truly quantitative elemental analysis from scanning x-ray fluorescence spectroscopy data. The average mass density of the ABs is compatible with that of highly loaded ferritin, or hemosiderin. The composition of all ABs analyzed was similar, with only minor differences in the relative elemental fractions. Silicon concentration decreased in the core-to-rim direction, indicating a possible partial dissolution of the inner fiber. The Fe content in the ABs was higher than that possibly contained in chrysotile and crocidolite. This finding opens two opposite scenarios, the first with Fe coming from the fiber bulk and concentrating on the surface as long as the fiber dissolves, the second where the Fe that takes part to the formation of the AB originates from the host organism Fe-pool.
Collapse
Affiliation(s)
- Fabrizio Bardelli
- Institute of Nanotechnology - CNR-Nanotec, c/o Department of Physics, Sapienza University, Roma, Italy.
| | - Francesco Brun
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Simone De Panfilis
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Roma, Italy
| | - Peter Cloetens
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Silvana Capella
- Department of Earth Sciences, University of Torino, Torino, Italy; Interdepartmental Centre for the Study of Asbestos and Other Toxic Particulate "G. Scansetti", University of Torino, Torino, Italy
| | - Elena Belluso
- Department of Earth Sciences, University of Torino, Torino, Italy; Interdepartmental Centre for the Study of Asbestos and Other Toxic Particulate "G. Scansetti", University of Torino, Torino, Italy
| | - Donata Bellis
- Interdepartmental Centre for the Study of Asbestos and Other Toxic Particulate "G. Scansetti", University of Torino, Torino, Italy; Department of Surgery, Pathological Anatomy, Ospedale degli Infermi, Biella, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Pathology Unit, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Alessia Cedola
- Institute of Nanotechnology - CNR-Nanotec, c/o Department of Physics, Sapienza University, Roma, Italy
| |
Collapse
|
4
|
Zheng M, Li G, Hu Y, Nriagu J, Zama EF. Differing effects of inorganic and organic arsenic on uptake and distribution of multi-elements in Rice grain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7918-7928. [PMID: 33044695 DOI: 10.1007/s11356-020-11194-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) pollution can lead to an element imbalance in rice. A hydroponic study was carried out to examine the influence of inorganic (arsenate) and organic (dimethylarsinic acid (DMA)) arsenic compounds on the concentration and distribution of iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), nickel (Ni), carbon (C), nitrogen (N), and sulfur (S) in rice caryopsis at maturity using laser confocal microscopy and synchrotron X-ray fluorescence (SXRF). Results showed that treatments with inorganic (iAs) and organic (DMA) arsenic did not change the distribution characteristics of the above elements in rice grains. Fe, Mn, and iAs were mainly limited to the ventral ovular vascular trace, while Cu, Zn, and DMA extended into the endosperm. This implies that milling processes are likely to remove a majority of Fe, Mn, and iAs, but not Cu, Zn, and DMA. With regard to the average fluorescent intensity of the rice endosperm, iAs exposure caused significant reductions in Mn (53%), Fe (40%), Cu (27%), and Zn (74%) while DMA treatments decreased Mn (49%), Fe (37%), and Zn (21%). Compared with DMA, iAs exerted more influence on the reduction of these elements in rice caryopsis. In addition, the elemental analysis revealed a significant 12.7% increase for N and 8% reduction for S in DMA-treated rice caryopsis while a significant decrease of 24.0% for S in iAs-exposed rice caryopsis. These findings suggest that Cu, Zn, and S are more easily impacted by iAs, while N is mostly affected by DMA.
Collapse
Affiliation(s)
- Maozhong Zheng
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan Shi, 354300, Fujian Province, China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyishan, 354300, Fujian, China
- CAS Key Lab of Urban Environment and Health, Fujian Key Lab of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Gang Li
- CAS Key Lab of Urban Environment and Health, Fujian Key Lab of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Zhejiang Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environmental Observatory and Research Station, Institute of Urban Environment, Chinese Academy of Science, Ningbo, 361021, China.
| | - Yongle Hu
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan Shi, 354300, Fujian Province, China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyishan, 354300, Fujian, China
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI, 48109-2029, USA
| | - Eric Fru Zama
- CAS Key Lab of Urban Environment and Health, Fujian Key Lab of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environmental Observatory and Research Station, Institute of Urban Environment, Chinese Academy of Science, Ningbo, 361021, China
| |
Collapse
|
5
|
Micro x-ray fluorescence analysis of trace element distribution in frozen hydrated HeLa cells at the P06 beamline at Petra III. Biointerphases 2021; 16:011004. [PMID: 33706519 DOI: 10.1116/6.0000593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-ray fluorescence analysis enables the study of trace element distributions in biological specimens. When this analysis is done under cryogenic conditions, cells are cryofixed as closely as possible to their natural physiological state, and the corresponding intracellular elemental densities can be analyzed. Details about the experimental setup used for analysis at the P06 beamline at Petra III, DESY and the used cryo-transfer system are described in this work. The system was applied to analyze the elemental distribution in single HeLa cells, a cell line frequently used in a wide range of biological applications. Cells adhered to silicon nitride substrates were cryoprotected within an amorphous ice matrix. Using a continuous scanning scheme and a KB x-ray focus, the distribution of elements in the cells was studied. We were able to image the intracellular potassium and zinc levels in HeLa cells as two key elements relevant for the physiology of cells.
Collapse
|
6
|
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 2020; 11:12888-12917. [PMID: 34123239 PMCID: PMC8163330 DOI: 10.1039/d0sc04082g] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.
Collapse
Affiliation(s)
- Elizabeth J Anthony
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Elizabeth M Bolitho
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jane M Donnelly
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Edward C Lant
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Russell J Needham
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Marta Palau
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Huayun Shi
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Fang-Xin Wang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Wen-Ying Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Zijin Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
7
|
De Samber B, De Rycke R, De Bruyne M, Kienhuis M, Sandblad L, Bohic S, Cloetens P, Urban C, Polerecky L, Vincze L. Effect of sample preparation techniques upon single cell chemical imaging: A practical comparison between synchrotron radiation based X-ray fluorescence (SR-XRF) and Nanoscopic Secondary Ion Mass Spectrometry (nano-SIMS). Anal Chim Acta 2020; 1106:22-32. [PMID: 32145852 DOI: 10.1016/j.aca.2020.01.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Analytical capabilities of Nanoscopic Secondary Ion Mass Spectrometry (nano-SIMS) and Synchrotron Radiation based X-ray Fluorescence (SR nano-XRF) techniques were compared for nanochemical imaging of polymorphonuclear human neutrophils (PMNs). PMNs were high pressure frozen (HPF), cryo-substituted, embedded in Spurr's resin and cut in thin sections (500 nm and 2 μm for both techniques resp.) Nano-SIMS enabled nanoscale mapping of isotopes of C, N, O, P and S, while SR based nano-XRF enabled trace level imaging of metals like Ca, Mn, Fe, Ni, Cu and Zn at a resolution of approx. 50 nm. The obtained elemental distributions were compared with those of whole, cryofrozen PMNs measured at the newly developed ID16A nano-imaging beamline at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Similarities were observed for elements more tightly bound to the cell structure such as phosphorus and sulphur, while differences for mobile ions such as chlorine and potassium were more pronounced. Due to the observed elemental redistribution of mobile ions such as potassium and chlorine, elemental analysis of high pressure frozen (HPF), cryo-substituted and imbedded cells should be interpreted critically. Although decreasing analytical sensitivity occurs due to the presence of ice, analysis of cryofrozen cells - close to their native state - remains the golden standard. In general, we found nanoscale secondary ion mass spectrometry (nano-SIMS) and synchrotron radiation based nanoscopic X-ray fluorescence (SR nano-XRF) to be two supplementary alternatives for nanochemical imaging of single cells at the nanoscale.
Collapse
Affiliation(s)
- Björn De Samber
- Department of Chemistry, Ghent University, Ghent, Belgium; Imec - Vision Lab, University of Antwerp, Wilrijk, Belgium.
| | - Riet De Rycke
- Department for Biomedical Molecular Biology, Ghent University, Belgium and VIB Center for Inflammation Research, Ghent, Belgium; Ghent University Expertise Centre for Transmission Electron Microscopy and VIB Bio-Imaging Core, Ghent, Belgium
| | - Michiel De Bruyne
- Department for Biomedical Molecular Biology, Ghent University, Belgium and VIB Center for Inflammation Research, Ghent, Belgium; Ghent University Expertise Centre for Transmission Electron Microscopy and VIB Bio-Imaging Core, Ghent, Belgium
| | - Michiel Kienhuis
- Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht University, the Netherlands
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sylvain Bohic
- Inserm, UA07, Synchrotron Research for Biomedicine, Grenoble, France; European Synchrotron Radiation Facility, Grenoble, France
| | - Peter Cloetens
- European Synchrotron Radiation Facility, Grenoble, France
| | - Constantin Urban
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Lubos Polerecky
- Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht University, the Netherlands
| | - Laszlo Vincze
- Department of Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Cichon I, Ortmann W, Bednarz A, Lenartowicz M, Kolaczkowska E. Reduced Neutrophil Extracellular Trap (NET) Formation During Systemic Inflammation in Mice With Menkes Disease and Wilson Disease: Copper Requirement for NET Release. Front Immunol 2020; 10:3021. [PMID: 32010131 PMCID: PMC6974625 DOI: 10.3389/fimmu.2019.03021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) contribute to pathological disorders, and their release was directly linked to numerous diseases. With intravital microscopy (IVM), we showed previously that NETs also contribute to the pathology of systemic inflammation and are strongly deposited in liver sinusoids. Over a decade since NET discovery, still not much is known about the metabolic or microenvironmental aspects of their formation. Copper is a vital trace element essential for many biological processes, albeit its excess is potentially cytotoxic; thus, copper levels are tightly controlled by factors such as copper transporting ATPases, ATP7A, and ATP7B. By employing IVM, we studied the impact of copper on NET formation during endotoxemia in liver vasculature on two mice models of copper excess or deficiency, Wilson (ATP7B mutants) and Menkes (ATP7A mutants) diseases, respectively. Here, we show that respective ATP7 mutations lead to diminished NET release during systemic inflammation despite unaltered intrinsic capacity of neutrophils to cast NETs as tested ex vivo. In Menkes disease mice, the in vivo effect is mostly due to diminished neutrophil infiltration of the liver as unmutated mice with a subchronic copper deficiency release even more NETs than their controls during endotoxemia, whereas in Wilson disease mice, excess copper directly diminishes the capacity to release NETs, and this was further confirmed by ex vivo studies on isolated neutrophils co-cultured with exogenous copper and a copper-chelating agent. Taken together, the study extends our understanding on how microenvironmental factors affect NET release by showing that copper is not a prerequisite for NET release but its excess affects the trap casting by neutrophils.
Collapse
Affiliation(s)
- Iwona Cichon
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Weronika Ortmann
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Aleksandra Bednarz
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Malgorzata Lenartowicz
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Elzbieta Kolaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Rumancev C, Gräfenstein A, Vöpel T, Stuhr S, von Gundlach AR, Senkbeil T, Garrevoet J, Jolmes L, König B, Falkenberg G, Ebbinghaus S, Schroeder WH, Rosenhahn A. X-ray fluorescence analysis of metal distributions in cryogenic biological samples using large-acceptance-angle SDD detection and continuous scanning at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:60-66. [PMID: 31868737 PMCID: PMC6927521 DOI: 10.1107/s1600577519014048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
A new Rococo 2 X-ray fluorescence detector was implemented into the cryogenic sample environment at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III, DESY, Hamburg, Germany. A four sensor-field cloverleaf design is optimized for the investigation of planar samples and operates in a backscattering geometry resulting in a large solid angle of up to 1.1 steradian. The detector, coupled with the Xspress 3 pulse processor, enables measurements at high count rates of up to 106 counts per second per sensor. The measured energy resolution of ∼129 eV (Mn Kα at 10000 counts s-1) is only minimally impaired at the highest count rates. The resulting high detection sensitivity allows for an accurate determination of trace element distributions such as in thin frozen hydrated biological specimens. First proof-of-principle measurements using continuous-movement 2D scans of frozen hydrated HeLa cells as a model system are reported to demonstrate the potential of the new detection system.
Collapse
Affiliation(s)
- C. Rumancev
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - A. Gräfenstein
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - T. Vöpel
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| | - S. Stuhr
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - A. R. von Gundlach
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - T. Senkbeil
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - J. Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
| | - L. Jolmes
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - B. König
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - G. Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
| | - S. Ebbinghaus
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - W. H. Schroeder
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
- Nanotech Consulting, Arnoldsweilerstrasse 10, 52382 Niederzier, Germany
| | - A. Rosenhahn
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
10
|
De Samber B, Vanden Berghe T, Meul E, Bauters S, Seyrich M, Smet J, De Paepe B, da Silva JC, Bohic S, Cloetens P, Van Coster R, Vandenabeele P, Vincze L. Nanoscopic X-ray imaging and quantification of the iron cellular architecture within single fibroblasts of Friedreich's ataxia patients. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:185-198. [PMID: 31868751 DOI: 10.1107/s1600577519015510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease characterized by an increase in intracytoplasmic iron concentration. Here the nanoscale iron distribution within single fibroblasts from FRDA patients was investigated using synchrotron-radiation-based nanoscopic X-ray fluorescence and X-ray in-line holography at the ID16A nano-imaging beamline of the ESRF. This unique probe was deployed to uncover the iron cellular two-dimensional architecture of freeze-dried FRDA fibroblasts. An unsurpassed absolute detection capability of 180 iron atoms within a 30 nm × 50 nm nanoscopic X-ray beam footprint was obtained using state-of-the-art X-ray focusing optics and a large-solid-angle detection system. Various micrometre-sized iron-rich organelles could be revealed for the first time, tentatively identified as endoplasmic reticulum, mitochondria and lysosomes. Also a multitude of nanoscopic iron hot-spots were observed in the cytosol, interpreted as chaperoned iron within the fibroblast's labile iron pool. These observations enable new hypotheses on the storage and trafficking of iron in the cell and ultimately to a better understanding of iron-storage diseases such as Friedreich's ataxia.
Collapse
Affiliation(s)
- Björn De Samber
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| | | | - Eline Meul
- VIB Center for Inflammation Research, Ghent, Belgium
| | | | | | - Joél Smet
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Boel De Paepe
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | | | | | | | - Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | | | - Laszlo Vincze
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Skallberg A, Bunnfors K, Brommesson C, Uvdal K. Neutrophils Activated by Nanoparticles and Formation of Neutrophil Extracellular Traps: Work Function Mapping and Element Specific Imaging. Anal Chem 2019; 91:13514-13520. [DOI: 10.1021/acs.analchem.9b02579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A. Skallberg
- Department of Physics, Chemistry and Biology (IFM), Division of Molecular Surface Physics and Nano Science, Linköping University, Linköping SE-581 83, Sweden
| | - K. Bunnfors
- Department of Physics, Chemistry and Biology (IFM), Division of Molecular Surface Physics and Nano Science, Linköping University, Linköping SE-581 83, Sweden
| | - C. Brommesson
- Department of Physics, Chemistry and Biology (IFM), Division of Molecular Surface Physics and Nano Science, Linköping University, Linköping SE-581 83, Sweden
| | - K. Uvdal
- Department of Physics, Chemistry and Biology (IFM), Division of Molecular Surface Physics and Nano Science, Linköping University, Linköping SE-581 83, Sweden
| |
Collapse
|
12
|
Nanoscopic X-ray fluorescence imaging and quantification of intracellular key-elements in cryofrozen Friedreich's ataxia fibroblasts. PLoS One 2018; 13:e0190495. [PMID: 29342155 PMCID: PMC5771581 DOI: 10.1371/journal.pone.0190495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022] Open
Abstract
Synchrotron radiation based nanoscopic X-ray fluorescence (SR nano-XRF) analysis can visualize trace level elemental distribution in a fully quantitative manner within single cells. However, in-air XRF analysis requires chemical fixation modifying the cell's chemical composition. Here, we describe first nanoscopic XRF analysis upon cryogenically frozen (-150°C) fibroblasts at the ID16A-NI 'Nano-imaging' end-station located at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). Fibroblast cells were obtained from skin biopsies from control and Friedreich's ataxia (FRDA) patients. FRDA is an autosomal recessive disorder with dysregulation of iron metabolism as a key feature. By means of the X-ray Fundamental Parameter (FP) method, including absorption correction of the ice layer deposited onto the fibroblasts, background-corrected mass fraction elemental maps of P, S, Cl, K, Ca, Fe and Zn of entire cryofrozen human fibroblasts were obtained. Despite the presence of diffracting microcrystals in the vitreous ice matrix and minor sample radiation damage effects, clusters of iron-rich hot-spots with similar mass fractions were found in the cytoplasm of both control and FRDA fibroblasts. Interestingly, no significant difference in the mean iron concentration was found in the cytoplasm of FRDA fibroblasts, but a significant decrease in zinc concentration. This finding might underscore metal dysregulation, beyond iron, in cells derived from FRDA patients. In conclusion, although currently having slightly increased limits of detection (LODs) compared to non-cryogenic mode, SR based nanoscopic XRF under cryogenic sample conditions largely obliterates the debate on chemical sample preservation and provides a unique tool for trace level elemental imaging in single cells close to their native state with a superior spatial resolution of 20 nm.
Collapse
|
13
|
Imaging XPS and photoemission electron microscopy; surface chemical mapping and blood cell visualization. Biointerphases 2017; 12:02C408. [DOI: 10.1116/1.4982644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|