1
|
Horisawa K, Suzuki A. The role of pioneer transcription factors in the induction of direct cellular reprogramming. Regen Ther 2023; 24:112-116. [PMID: 37397229 PMCID: PMC10314230 DOI: 10.1016/j.reth.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Regenerative medicine is a highly advanced medical field that aims to restore tissues and organs lost due to diseases and injury using a person's own cells or those of others. Direct cellular reprogramming is a promising technology that can directly induce cell-fate conversion from terminally differentiated cells to other cell types and is expected to play a pivotal role in applications in regenerative medicine. The induction of direct cellular reprogramming requires one or more master transcription factors with the potential to reconstitute cell type-specific transcription factor networks. The set of master transcription factors may contain unique transcription factors called pioneer factors that can open compacted chromatin structures and drive the transcriptional activation of target genes. Therefore, pioneer factors may play a central role in direct cellular reprogramming. However, our understanding of the molecular mechanisms by which pioneer factors induce cell-fate conversion is still limited. This review briefly summarizes the outcomes of recent findings and discusses future perspectives, focusing on the role of pioneer factors in direct cellular reprogramming.
Collapse
|
2
|
Orge ID, Gadd VL, Barouh JL, Rossi EA, Carvalho RH, Smith I, Allahdadi KJ, Paredes BD, Silva DN, Damasceno PKF, Sampaio GL, Forbes SJ, Soares MBP, Souza BSDF. Phenotype instability of hepatocyte-like cells produced by direct reprogramming of mesenchymal stromal cells. Stem Cell Res Ther 2020; 11:154. [PMID: 32276654 PMCID: PMC7323614 DOI: 10.1186/s13287-020-01665-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocyte-like cells (iHEPs) generated by transcription factor-mediated direct reprogramming of somatic cells have been studied as potential cell sources for the development of novel therapies targeting liver diseases. The mechanisms involved in direct reprogramming, stability after long-term in vitro expansion, and safety profile of reprogrammed cells in different experimental models, however, still require further investigation. METHODS iHEPs were generated by forced expression of Foxa2/Hnf4a in mouse mesenchymal stromal cells and characterized their phenotype stability by in vitro and in vivo analyses. RESULTS The iHEPs expressed mixed hepatocyte and liver progenitor cell markers, were highly proliferative, and presented metabolic activities in functional assays. A progressive loss of hepatic phenotype, however, was observed after several passages, leading to an increase in alpha-SMA+ fibroblast-like cells, which could be distinguished and sorted from iHEPs by differential mitochondrial content. The resulting purified iHEPs proliferated, maintained liver progenitor cell markers, and, upon stimulation with lineage maturation media, increased expression of either biliary or hepatocyte markers. In vivo functionality was assessed in independent pre-clinical mouse models. Minimal engraftment was observed following transplantation in mice with acute acetaminophen-induced liver injury. In contrast, upon transplantation in a transgenic mouse model presenting host hepatocyte senescence, widespread engraftment and uncontrolled proliferation of iHEPs was observed, forming islands of epithelial-like cells, adipocyte-like cells, or cells presenting both morphologies. CONCLUSION The results have significant implications for cell reprogramming, suggesting that iHEPs generated by Foxa2/Hnf4a expression have an unstable phenotype and depend on transgene expression for maintenance of hepatocyte-like characteristics, showing a tendency to return to the mesenchymal phenotype of origin and a compromised safety profile.
Collapse
Affiliation(s)
- Iasmim Diniz Orge
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
| | | | - Judah Leão Barouh
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
| | - Erik Aranha Rossi
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | - Ian Smith
- MRC Centre for Regenerative Medicine, Edinburgh, UK
| | - Kyan James Allahdadi
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | | | - Gabriela Louise Sampaio
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
| | | | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil.
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil.
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil.
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil.
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, CEP: 40296-710, Brazil.
| |
Collapse
|
3
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
4
|
Khazaei N, Rastegar-Pouyani S, O'Toole N, Wee P, Mohammadnia A, Yaqubi M. Regulating the transcriptomes that mediate the conversion of fibroblasts to various nervous system neural cell types. J Cell Physiol 2017; 233:3603-3614. [PMID: 29044560 DOI: 10.1002/jcp.26221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Abstract
Our understanding of the mechanism of cell fate transition during the direct reprogramming of fibroblasts into various central nervous system (CNS) neural cell types has been limited by the lack of a comprehensive analysis on generated cells, independently and in comparison with other CNS neural cell types. Here, we applied an integrative approach on 18 independent high throughput expression data sets to gain insight into the regulation of the transcriptome during the conversion of fibroblasts into induced neural stem cells, induced neurons (iNs), induced astrocytes, and induced oligodendrocyte progenitor cells (iOPCs). We found common down-regulated genes to be mostly related to fibroblast-specific functions, and suggest their potential as markers for screening of the silencing of the fibroblast-specific program. For example, Tagln was significantly down-regulated across all considered data sets. In addition, we identified specific profiles of up-regulated genes for each CNS neural cell types, which could be potential markers for maturation and efficiency screenings. Furthermore, we identified the main TFs involved in the regulation of the gene expression program during direct reprogramming. For example, in the generation of iNs from fibroblasts, the Rest TF was the main regulator of this reprogramming. In summary, our computational approach for meta-analyzing independent expression data sets provides significant details regarding the molecular mechanisms underlying the regulation of the gene expression program, and also suggests potentially useful candidate genes for screening down-regulation of fibroblast gene expression profile, maturation, and efficiency, as well as candidate TFs for increasing the efficiency of the reprogramming process.
Collapse
Affiliation(s)
- Niusha Khazaei
- Meakins-Christie Laboratories, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montréal, Canada
| | | | - Nicholas O'Toole
- Douglas Mental Health University Institute, McGill University, Ludmer Centre for Neuroinformatics and Mental Health Montreal, Quebec, Canada
| | - Ping Wee
- Faculty of Medicine and Dentistry, Department of Medical Genetics and Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | | - Moein Yaqubi
- Department of Psychiatry, Sackler Program for Epigenetics and Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|