1
|
Leber A, Hontecillas R, Tubau-Juni N, Fitch SN, Bassaganya-Riera J. Immunometabolic Mechanisms of LANCL2 in CD4+ T Cells and Phagocytes Provide Protection from Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1429-1440. [PMID: 39365106 DOI: 10.4049/jimmunol.2400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Lanthionine synthetase C-like 2 (LANCL2) is an immunoregulatory therapeutic target for autoimmune diseases. NIM-1324 is an investigational new drug aimed at addressing the unmet clinical needs of patients with systemic lupus erythematosus (SLE) by targeting the LANCL2 immunometabolic pathway. In R848 and bm12 adoptive transfer models of systemic inflammation that share pathologies with SLE, Lancl2-/- mice experienced greater mortality, increased spleen weight, and reduced CD25hi FOXP3+ CD4+ regulatory T cells compared with the wild type. Conversely, treatment with NIM-1324 in the wild type increased CD25hi FOXP3+ regulatory T cells while reducing inflammatory IL-17+ and IL-21+ CD4+ T cell subsets in the spleen. In traditional mouse models of SLE (NZB/W F1 and MRL/lpr), oral treatment with NIM-1324 protected against weight loss and proteinuria, decreased anti-dsDNA titers, and provided similar changes to the CD4+ T cell compartment in the spleen. The pharmacological activation of LANCL2 by NIM-1324 rescued hypocomplementemia, reduced kidney histopathological scores, and decreased blood IFN response genes and inflammatory cytokines. The loss of LANCL2 in phagocytes impairs phagosome processing, leading to increased uptake of material and inflammatory cytokine production, yet decreased markers of endosomal maturation, phagosome turnover, and lysozyme activity. Treatment with NIM-1324 increases metabolic and lysozyme activity in the phagosome, providing support for increased markers of early phagosome function. This efficacy translated to human PBMCs from patients with SLE, because ex vivo treatment with NIM-1324 resulted in reduced levels of IFN-α, IL-6, and IL-8. Consequently, the activation of LANCL2 effectively modulates CD4+ T cell differentiation and phagocyte activation, supporting immune tolerance in SLE.
Collapse
|
2
|
Birnbaum EM, Xie L, Serrano P, Rockwell P, Figueiredo-Pereira ME. BT-11 repurposing potential for Alzheimer's disease and insights into its mode of actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620882. [PMID: 39553925 PMCID: PMC11565763 DOI: 10.1101/2024.10.29.620882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neuroinflammation is a key pathological hallmark of Alzheimer's disease (AD). Investigational and FDA approved drugs targeting inflammation already exist, thus drug repurposing for AD is a suitable approach. BT-11 is an investigational drug that reduces inflammation in the gut and improves cognitive function. BT-11 is orally active and binds to lanthionine synthetase C-like 2 (LANCL2), a glutathione-s-transferase, thus potentially reducing oxidative stress. We investigated the effects of BT-11 long-term treatment on the TgF344-AD rat model. BT-11 reduced hippocampal-dependent spatial memory deficits, Aβ plaque load and neuronal loss in males, and mitigated microglia numbers in females. BT-11 treatment led to hippocampal transcriptomic changes in signaling receptor, including G-protein coupled receptor pathways. We detected LANCL2 in hippocampal nuclear and cytoplasmic fractions with potential different post-translational modifications, suggesting distinct functions based on its subcellular localization. LANCL2 was present in oligodendrocytes, showing a role in oligodendrocyte function. To our knowledge, these last two findings have not been reported. Overall, our data suggest that targeting LANCL2 with BT-11 improves cognition and reduces AD-like pathology by potentially modulating G-protein signaling and oligodendrocyte function. Our studies contribute to the field of novel immunomodulatory AD therapeutics, and merit further research on the role of LANCL2 in this disease.
Collapse
|
3
|
Baker R, Hontecillas R, Tubau-Juni N, Leber AJ, Kale S, Bassaganya-Riera J. Computational modeling of complex bioenergetic mechanisms that modulate CD4+ T cell effector and regulatory functions. NPJ Syst Biol Appl 2022; 8:45. [DOI: 10.1038/s41540-022-00263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractWe built a computational model of complex mechanisms at the intersection of immunity and metabolism that regulate CD4+ T cell effector and regulatory functions by using coupled ordinary differential equations. The model provides an improved understanding of how CD4+ T cells are shaping the immune response during Clostridioides difficile infection (CDI), and how they may be targeted pharmacologically to produce a more robust regulatory (Treg) response, which is associated with improved disease outcomes during CDI and other diseases. LANCL2 activation during CDI decreased the effector response, increased regulatory response, and elicited metabolic changes that favored Treg. Interestingly, LANCL2 activation provided greater immune and metabolic modulation compared to the addition of exogenous IL-2. Additionally, we identified gluconeogenesis via PEPCK-M as potentially responsible for increased immunosuppressive behavior in Treg cells. The model can perturb immune signaling and metabolism within a CD4+ T cell and obtain clinically relevant outcomes that help identify novel drug targets for infectious, autoimmune, metabolic, and neurodegenerative diseases.
Collapse
|
4
|
Identification of new regulatory genes through expression pattern analysis of a global RNA-seq dataset from a Helicobacter pylori co-culture system. Sci Rep 2020; 10:11506. [PMID: 32661418 PMCID: PMC7359330 DOI: 10.1038/s41598-020-68439-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently colonizes the human stomach by inducing immunoregulatory responses. We have used a novel platform that integrates a bone marrow-derived macrophage and live H. pylori co-culture with global time-course transcriptomics analysis to identify new regulatory genes based on expression patterns resembling those of genes with known regulatory function. We have used filtering criteria based on cellular location and novelty parameters to select 5 top lead candidate targets. Of these, Plexin domain containing 2 (Plxdc2) was selected as the top lead immunoregulatory target. Loss of function studies with in vivo models of H. pylori infection as well as a chemically-induced model of colitis, confirmed its predicted regulatory function and significant impact on modulation of the host immune response. Our integrated bioinformatics analyses and experimental validation platform has enabled the discovery of new immunoregulatory genes. This pipeline can be used for the identification of genes with therapeutic applications for treating infectious, inflammatory, and autoimmune diseases.
Collapse
|
5
|
Magnone M, Sturla L, Guida L, Spinelli S, Begani G, Bruzzone S, Fresia C, Zocchi E. Abscisic Acid: A Conserved Hormone in Plants and Humans and a Promising Aid to Combat Prediabetes and the Metabolic Syndrome. Nutrients 2020; 12:nu12061724. [PMID: 32526875 PMCID: PMC7352484 DOI: 10.3390/nu12061724] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Abscisic acid (ABA) is a hormone with a very long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely the descendants, well before separation of the plant and animal kingdoms, with a conserved role as a signal regulating cell responses to environmental challenges. In mammals, nanomolar ABA controls the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue with an insulin-independent mechanism and increasing energy expenditure in the brown and white adipose tissues. Activation by ABA of AMP-dependent kinase (AMPK), in contrast to the insulin-induced activation of AMPK-inhibiting Akt, is responsible for stimulation of GLUT4-mediated muscle glucose uptake, and for the browning effect on white adipocytes. Intake of micrograms per Kg body weight of ABA improves glucose tolerance in both normal and in borderline subjects and chronic intake of such a dose of ABA improves blood glucose, lipids and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and the metabolic syndrome. This review summarizes the most recent results obtained in vivo with microgram amounts of ABA, the role of the receptor LANCL2 in the hormone’s action and the significance of the endowment by mammals of two different hormones controlling the metabolic response to glucose availability. Finally, open issues in need of further investigation and perspectives for the clinical use of nutraceutical ABA are discussed.
Collapse
Affiliation(s)
- Mirko Magnone
- Nutravis S.r.l., Via Corsica 2/19, 16128 Genova, Italy
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
- Correspondence: (M.M.); (E.Z.); Tel.: +39-10-3538131 (M.M.); +39-10-3538161 (E.Z.)
| | - Laura Sturla
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Lucrezia Guida
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Sonia Spinelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Giulia Begani
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
| | - Chiara Fresia
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA;
| | - Elena Zocchi
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (L.S.); (L.G.); (S.S.); (G.B.); (S.B.)
- Correspondence: (M.M.); (E.Z.); Tel.: +39-10-3538131 (M.M.); +39-10-3538161 (E.Z.)
| |
Collapse
|
6
|
Verma M, Bassaganya-Riera J, Leber A, Tubau-Juni N, Hoops S, Abedi V, Chen X, Hontecillas R. High-resolution computational modeling of immune responses in the gut. Gigascience 2020; 8:5513894. [PMID: 31185494 PMCID: PMC6559340 DOI: 10.1093/gigascience/giz062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/19/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori causes gastric cancer in 1–2% of cases but is also beneficial for protection against allergies and gastroesophageal diseases. An estimated 85% of H. pylori–colonized individuals experience no detrimental effects. To study the mechanisms promoting host tolerance to the bacterium in the gastrointestinal mucosa and systemic regulatory effects, we investigated the dynamics of immunoregulatory mechanisms triggered by H. pylori using a high-performance computing–driven ENteric Immunity SImulator multiscale model. Immune responses were simulated by integrating an agent-based model, ordinary, and partial differential equations. Results The outputs were analyzed using 2 sequential stages: the first used a partial rank correlation coefficient regression–based and the second a metamodel-based global sensitivity analysis. The influential parameters screened from the first stage were selected to be varied for the second stage. The outputs from both stages were combined as a training dataset to build a spatiotemporal metamodel. The Sobol indices measured time-varying impact of input parameters during initiation, peak, and chronic phases of infection. The study identified epithelial cell proliferation and epithelial cell death as key parameters that control infection outcomes. In silico validation showed that colonization with H. pylori decreased with a decrease in epithelial cell proliferation, which was linked to regulatory macrophages and tolerogenic dendritic cells. Conclusions The hybrid model of H. pylori infection identified epithelial cell proliferation as a key factor for successful colonization of the gastric niche and highlighted the role of tolerogenic dendritic cells and regulatory macrophages in modulating the host responses and shaping infection outcomes.
Collapse
Affiliation(s)
- Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, 1 Riverside Circle, Roanoke, VA 24016, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Xi Chen
- Grado Department of Industrial and Systems Engineering, Virginia Tech, 250 Perry St, Blacksburg, VA 24061, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Lérias JR, Paraschoudi G, de Sousa E, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Microbes as Master Immunomodulators: Immunopathology, Cancer and Personalized Immunotherapies. Front Cell Dev Biol 2020; 7:362. [PMID: 32039196 PMCID: PMC6989410 DOI: 10.3389/fcell.2019.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The intricate interplay between the immune system and microbes is an essential part of the physiological homeostasis in health and disease. Immunological recognition of commensal microbes, such as bacterial species resident in the gut or lung as well as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV), in combination with a balanced immune regulation, is central to achieve immune-protection. Emerging evidence suggests that immune responses primed to guard against commensal microbes may cause unexpected pathological outcomes, e.g., chronic inflammation and/or malignant transformation. Furthermore, translocation of immune cells from one anatomical compartment to another, i.e., the gut-lung axis via the lymphatics or blood has been identified as an important factor in perpetrating systemic inflammation, tissue destruction, as well as modulating host-protective immune responses. We present in this review immune response patterns to pathogenic as well as non-pathogenic microbes and how these immune-recognition profiles affect local immune responses or malignant transformation. We discuss personalized immunological therapies which, directly or indirectly, target host biological pathways modulated by antimicrobial immune responses.
Collapse
Affiliation(s)
- Joana R. Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - Antonio Beltrán
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
8
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Chauhan J, Bassaganya-Riera J. Oral Treatment with BT-11 Ameliorates Inflammatory Bowel Disease by Enhancing Regulatory T Cell Responses in the Gut. THE JOURNAL OF IMMUNOLOGY 2019; 202:2095-2104. [PMID: 30760618 DOI: 10.4049/jimmunol.1801446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is an expanding autoimmune disease afflicting millions that remains difficult to treat due to the accumulation of multiple immunological changes. BT-11 is an investigational new drug for IBD that is orally active, gut restricted, and targets the lanthionine synthetase C-like 2 immunometabolic pathway. CD25+ FOXP3+ CD4+ T cells are increased locally within the colon of BT-11-treated mice in Citrobacter rodentium and IL-10-/- mouse models of colitis. The maintained efficacy of BT-11 in the absence of IL-10 combined with the loss of efficacy when direct cell-cell interactions are prevented suggest that the regulatory T cell (Treg)-related elements of suppression are cell contact-mediated. When PD-1 is inhibited, both in vitro and in vivo, the efficacy of BT-11 is reduced, validating this assertion. The depletion of CD25+ cells in vivo abrogated the retention of therapeutic efficacy postdiscontinuation of treatment, indicating that Tregs are implicated in the maintenance of tolerance mediated by BT-11. Furthermore, the involvement of CD25 suggested a role of BT-11 in IL-2 signaling. Cotreatment with BT-11 and IL-2 greatly enhances the differentiation of CD25+ FOXP3+ cells from naive CD4+ T cells relative to either alone. BT-11 enhances phosphorylation of STAT5, providing a direct linkage to the regulation of FOXP3 transcription. Notably, when STAT5 is inhibited, the effects of BT-11 on the differentiation of Tregs are blocked. BT-11 effectively enhances the IL-2/STAT5 signaling axis to induce the differentiation and stability of CD25+ FOXP3+ cells in the gastrointestinal mucosa to support immunoregulation and immunological tolerance in IBD.
Collapse
|
9
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Bassaganya-Riera J. Activation of LANCL2 by BT-11 Ameliorates IBD by Supporting Regulatory T Cell Stability Through Immunometabolic Mechanisms. Inflamm Bowel Dis 2018; 24:1978-1991. [PMID: 29718324 PMCID: PMC6241665 DOI: 10.1093/ibd/izy167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) afflicts 5 million people and is increasing in prevalence. There is an unmet clinical need for safer and effective treatments for IBD. The BT-11 is a small molecule oral therapeutic that ameliorates IBD by targeting lanthionine synthetase C-like 2 (LANCL2) and has a benign safety profile in rats. METHODS Mdr1a-/-, dextran sodium sulphate , and adoptive transfer mouse models of colitis were employed to validate therapeutic efficacy and characterize the mechanisms of therapeutic efficacy of BT-11. In vitro cultures of CD4+ T cell differentiation and human peripheral blood mononuclear cells from Crohn's disease patients were used to determine its potential for human translation. RESULTS BT-11 reduces inflammation in multiple mouse models of IBD. Oral treatment with BT-11 increases the numbers of lamina propria regulatory T cells (Tregs) in a LANCL2-dependent manner. In vitro, BT-11 increases the differentiation in Treg phenotypes, the upregulation of genes implicated in Treg cell stability, and conditions Treg cells to elicit greater suppressive actions. These immunoregulatory effects are intertwined with the ability of BT-11 to regulate late stage glycolysis and tricarboxylic acid cycle. Immunometabolic mechanistic findings translate into human peripheral blood mononuclear cells from healthy individuals and Crohn's disease patients. CONCLUSIONS BT-11 is a safe, efficacious oral therapeutic for IBD with a human translatable mechanism of action that involves activation of LANCL2, immunometabolic modulation of CD4+ T cell subsets leading to stable regulatory phenotypes in the colonic LP.
Collapse
Affiliation(s)
| | | | | | - Josep Bassaganya-Riera
- Landos Biopharma Inc, Blacksburg, VA,Correspondence address: Dr Josep Bassaganya-Riera Landos Biopharma Inc, 1800 Kraft Drive, Suite 216 Blacksburg VA 24060. E-mail:
| |
Collapse
|
10
|
Mayorga LS, Verma M, Hontecillas R, Hoops S, Bassaganya-Riera J. Agents and networks to model the dynamic interactions of intracellular transport. CELLULAR LOGISTICS 2017; 7:e1392401. [PMID: 29296512 DOI: 10.1080/21592799.2017.1392401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023]
Abstract
Cell biology is increasingly evolving to become a more formal and quantitative science. The field of intracellular transport is no exception. However, it is extremely challenging to formulate mathematical and computational models for processes that involve dynamic structures that continuously change their shape, position and composition, leading to information transfer and functional outcomes. The two major strategies employed to represent intracellular trafficking are based on "ordinary differential equations" and "agent-" based modeling. Both approaches have advantages and drawbacks. Combinations of both modeling strategies have promising characteristics to generate meaningful simulations for intracellular transport and allow the formulation of new hypotheses and provide new insights. In the near future, cell biologists will encounter and hopefully overcome the challenge of translating descriptive cartoon representations of biological systems into mathematical network models.
Collapse
Affiliation(s)
- Luis S Mayorga
- IHEM (Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| | - Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
11
|
Abstract
Helicobacter pylori is usually acquired in early childhood and the infection persists lifelong without causing symptoms. In a small of cases, the infection leads to gastric or duodenal ulcer disease, or gastric cancer. Why disease occurs in these individuals remains unclear, however the host response is known to play a very important part. Understanding the mechanisms involved in maintaining control over the immune and inflammatory response is therefore extremely important. Vaccines against H. pylori have remained elusive but are desperately needed for the prevention of gastric carcinogenesis. This review focuses on research findings which may prove useful in the development of prognostic tests for gastric cancer development, therapeutic agents to control immunopathology, and effective vaccines.
Collapse
Affiliation(s)
- Karen Robinson
- Nottingham Digestive Diseases Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Kazuyo Kaneko
- Nottingham Digestive Diseases Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Leif Percival Andersen
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
12
|
Lievens L, Pollier J, Goossens A, Beyaert R, Staal J. Abscisic Acid as Pathogen Effector and Immune Regulator. FRONTIERS IN PLANT SCIENCE 2017; 8:587. [PMID: 28469630 PMCID: PMC5395610 DOI: 10.3389/fpls.2017.00587] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/31/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a sesquiterpene signaling molecule produced in all kingdoms of life. To date, the best known functions of ABA are derived from its role as a major phytohormone in plant abiotic stress resistance. Different organisms have developed different biosynthesis and signal transduction pathways related to ABA. Despite this, there are also intriguing common themes where ABA often suppresses host immune responses and is utilized by pathogens as an effector molecule. ABA also seems to play an important role in compatible mutualistic interactions such as mycorrhiza and rhizosphere bacteria with plants, and possibly also the animal gut microbiome. The frequent use of ABA in inter-species communication could be a possible reason for the wide distribution and re-invention of ABA as a signaling molecule in different organisms. In humans and animal models, it has been shown that ABA treatment or nutrient-derived ABA is beneficial in inflammatory diseases like colitis and type 2 diabetes, which confer potential to ABA as an interesting nutraceutical or pharmacognostic drug. The anti-inflammatory activity, cellular metabolic reprogramming, and other beneficial physiological and psychological effects of ABA treatment in humans and animal models has sparked an interest in this molecule and its signaling pathway as a novel pharmacological target. In contrast to plants, however, very little is known about the ABA biosynthesis and signaling in other organisms. Genes, tools and knowledge about ABA from plant sciences and studies of phytopathogenic fungi might benefit biomedical studies on the physiological role of endogenously generated ABA in humans.
Collapse
Affiliation(s)
- Laurens Lievens
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIBGhent, Belgium
- Department of Biomedical Molecular Biology, Ghent UniversityGhent, Belgium
| | - Jacob Pollier
- VIB-UGent Center for Plant Systems Biology, VIBGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Alain Goossens
- VIB-UGent Center for Plant Systems Biology, VIBGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIBGhent, Belgium
- Department of Biomedical Molecular Biology, Ghent UniversityGhent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIBGhent, Belgium
- Department of Biomedical Molecular Biology, Ghent UniversityGhent, Belgium
- *Correspondence: Jens Staal
| |
Collapse
|