1
|
Hayashi M, Ohmori S, Kawai Y, Moriguchi T. Endothelial GATA3 is involved in coagulofibrinolytic homeostasis during endotoxin sepsis. Exp Anim 2025; 74:104-113. [PMID: 39231733 PMCID: PMC11742476 DOI: 10.1538/expanim.24-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Sepsis-induced acute lung injury represents a significant threat to human health and is frequently associated with pulmonary thrombosis due to dysregulation of the coagulofibrinolytic system. Plasmin, the major protease that degrades fibrin aggregates, is activated predominantly by tissue-plasminogen activator (tPA), whereas tPA is negatively regulated by plasminogen activator inhibitor (PAI-1). Under septic conditions, the imbalance between coagulation and fibrinolysis results in excessive microthrombosis. Pulmonary capillary endothelial cells serve as a primary source of tPA and PAI-1. The molecular pathways regulating their expression levels depend on the differential activity of transcription factors. In this study, we elucidated the role of the zinc-finger transcription factor GATA3 in response to sepsis-induced pulmonary embolism. Endothelial cell-specific GATA3-deficient mice (G3-ECKO) presented increased susceptibility to bacterial endotoxin-induced pulmonary embolism, which was associated with increased PAI-1 expression levels and decreased tPA expression levels in the lungs. Septic lung extracts from G3-ECKO mice consistently presented decreased plasmin activity, which likely underlies the increased coagulation. These results demonstrate that GATA3 plays a protective role against bacterial endotoxin-induced pulmonary vascular embolism. Our findings will contribute to understanding the molecular mechanisms involving GATA3 in preventing pulmonary embolism.
Collapse
Affiliation(s)
- Moyuru Hayashi
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Shin'ya Ohmori
- Laboratory of Allergy and Immunology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan
| | - Yoshiko Kawai
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, School of Medicine, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| |
Collapse
|
2
|
Danese E, Montagnana M, Gelati M, Lippi G. The Role of Epigenetics in the Regulation of Hemostatic Balance. Semin Thromb Hemost 2020; 47:53-62. [PMID: 33368118 DOI: 10.1055/s-0040-1718400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics, a term conventionally used to explain the intricate interplay between genes and the environment, is now regarded as the fundament of developmental biology. Several lines of evidence garnered over the past decades suggest that epigenetic alterations, mostly encompassing DNA methylation, histone tail modifications, and generation of microRNAs, play an important, though still incompletely explored, role in both primary and secondary hemostasis. Epigenetic variations may interplay with platelet functions and their responsiveness to antiplatelet drugs, and they may also exert a substantial contribution in modulating the production and release into the bloodstream of proteins involved in blood coagulation and fibrinolysis. This emerging evidence may have substantial biological and clinical implications. An enhanced understanding of posttranscriptional mechanisms would help to clarify some remaining enigmatic issues in primary and secondary hemostasis, which cannot be thoughtfully explained by genetics or biochemistry alone. Increased understanding would also pave the way to developing innovative tests for better assessment of individual risk of bleeding or thrombosis. The accurate recognition of key epigenetic mechanisms in hemostasis would then contribute to identify new putative therapeutic targets, and develop innovative agents that could be helpful for preventing or managing a vast array of hemostasis disturbances.
Collapse
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Martina Montagnana
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo Gelati
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Moschny N, Jahn K, Bajbouj M, Maier HB, Ballmaier M, Khan AQ, Pollak C, Bleich S, Frieling H, Neyazi A. DNA Methylation of the t-PA Gene Differs Between Various Immune Cell Subtypes Isolated From Depressed Patients Receiving Electroconvulsive Therapy. Front Psychiatry 2020; 11:571. [PMID: 32636772 PMCID: PMC7319092 DOI: 10.3389/fpsyt.2020.00571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) represents a tremendous health threat to the world's population. Electroconvulsive therapy (ECT) is the most effective treatment option for refractory MDD patients. Ample evidence suggests brain-derived neurotrophic factor (BDNF) to play a crucial role in ECT's mode of action. Tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) are involved in BDNF production. HYPOTHESIS The DNA methylation of gene regions encoding for t-PA and PAI-1 might be a suitable biomarker for ECT response prediction. METHODS We withdrew blood from two cohorts of treatment-resistant MDD patients receiving ECT. In the first cohort (n = 59), blood was collected at baseline only. To evaluate DNA methylation changes throughout the treatment course, we acquired a second group (n = 28) and took blood samples at multiple time points. DNA isolated from whole blood and defined immune cell subtypes (B cells, monocytes, natural killer cells, and T cells) served for epigenetic analyses. RESULTS Mixed linear models (corrected for multiple testing by Sidak's post-hoc test) revealed (1) no detectable baseline blood DNA methylation differences between ECT remitters (n = 33) and non-remitters (n = 53) in the regions analyzed, but (2) a significant difference in t-PA's DNA methylation between the investigated immune cell subtypes instead (p < 0.00001). This difference remained stable throughout the treatment course, showed no acute changes after ECT, and was independent of clinical remission. CONCLUSION DNA methylation of both proteins seems to play a minor role in ECT's mechanisms. Generally, we recommend using defined immune cell subtypes (instead of whole blood only) for DNA methylation analyses.
Collapse
Affiliation(s)
- Nicole Moschny
- Laboratory for Molecular Neurosciences, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience, Hannover Graduate School for Veterinary Pathobiology, Neuroinfectiology, and Translational Medicine (HGNI), Hannover, Germany
| | - Kirsten Jahn
- Laboratory for Molecular Neurosciences, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Hannah Benedictine Maier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | - Abdul Qayyum Khan
- Laboratory for Molecular Neurosciences, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Christoph Pollak
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Center for Systems Neuroscience, Hannover Graduate School for Veterinary Pathobiology, Neuroinfectiology, and Translational Medicine (HGNI), Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Helge Frieling
- Laboratory for Molecular Neurosciences, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience, Hannover Graduate School for Veterinary Pathobiology, Neuroinfectiology, and Translational Medicine (HGNI), Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Center for Systems Neuroscience, Hannover Graduate School for Veterinary Pathobiology, Neuroinfectiology, and Translational Medicine (HGNI), Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Liao Y, Bae HJ, Zhang J, Kwon Y, Koo B, Jung IH, Kim HM, Park JH, Lew JH, Ryu JH. The Ameliorating Effects of Bee Pollen on Scopolamine-Induced Cognitive Impairment in Mice. Biol Pharm Bull 2019; 42:379-388. [DOI: 10.1248/bpb.b18-00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yulan Liao
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Jiabao Zhang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Yubeen Kwon
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Bokyung Koo
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - In Ho Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | | | - Jong Hun Park
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Jae Hwan Lew
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
- Department of Oriental Pharmaceutical Science, Kyung Hee University
| |
Collapse
|
5
|
Kidoguchi M, Noguchi E, Nakamura T, Ninomiya T, Morii W, Yoshida K, Morikawa T, Kato Y, Imoto Y, Sakashita M, Takabayashi T, Fujieda S. DNA Methylation of Proximal PLAT Promoter in Chronic Rhinosinusitis With Nasal Polyps. Am J Rhinol Allergy 2018; 32:374-379. [DOI: 10.1177/1945892418782236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Nasal polyps (NP) are characterized by pseudocysts derived from stromal tissue edema and cause persistent infections in patients with chronic rhinosinusitis (CRS). A low level of tissue-type plasminogen activator (gene name PLAT) is considered a cause of stromal tissue edema because of insufficient plasmin activation in NP; however, the mechanism regulating PLAT gene expression levels is still unclear. The epigenetic mechanism regulating the PLAT gene expression has been studied in other tissues. Objective We aimed to investigate the methylation levels in the proximal PLAT promoter and their effects on gene expression in NP tissue. Methods We investigated the methylation levels at 3 CpG sites in the proximal PLAT promoter regions (−618, −121, and −105 with respect to the transcription initiation site) by bisulfite pyrosequencing and their effects on the gene expression by quantitative real-time polymerase chain reaction (qPCR) in 20 paired samples of NP and inferior turbinate tissue (IT) from patients with CRS. Results The DNA methylation levels at all CpG sites were higher ( P < .01), and the PLAT expression was lower ( P < .001) in NP compared with IT. The methylation changes at the −618 site showed a negative correlation with the gene expression changes between NP and IT ( r = −.65, P < .01). Conclusions Hypermethylation of PLAT promoter may downregulate the gene expression in NP, leading to excessive fibrin deposition by aberrant coagulation cascade. DNA methylation of proximal PLAT promoter may contribute to NP growth and have a potential as a new therapeutic target.
Collapse
Affiliation(s)
- Masanori Kidoguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takako Nakamura
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takahiro Ninomiya
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Wataru Morii
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kanako Yoshida
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Taiyo Morikawa
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Yukinori Kato
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Yoshimasa Imoto
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| |
Collapse
|
6
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|