1
|
Han SM, Robert A, Masuda S, Yasaka T, Kanda S, Komori K, Saito N, Suzuki M, Endo A, Baguelin M, Ariyoshi K. Transmission dynamics of seasonal influenza in a remote island population. Sci Rep 2023; 13:5393. [PMID: 37012350 PMCID: PMC10068240 DOI: 10.1038/s41598-023-32537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Seasonal influenza outbreaks remain an important public health concern, causing large numbers of hospitalizations and deaths among high-risk groups. Understanding the dynamics of individual transmission is crucial to design effective control measures and ultimately reduce the burden caused by influenza outbreaks. In this study, we analyzed surveillance data from Kamigoto Island, Japan, a semi-isolated island population, to identify the drivers of influenza transmission during outbreaks. We used rapid influenza diagnostic test (RDT)-confirmed surveillance data from Kamigoto island, Japan and estimated age-specific influenza relative illness ratios (RIRs) over eight epidemic seasons (2010/11 to 2017/18). We reconstructed the probabilistic transmission trees (i.e., a network of who-infected-whom) using Bayesian inference with Markov-chain Monte Carlo method and then performed a negative binomial regression on the inferred transmission trees to identify the factors associated with onwards transmission risk. Pre-school and school-aged children were most at risk of getting infected with influenza, with RIRs values consistently above one. The maximal RIR values were 5.99 (95% CI 5.23, 6.78) in the 7-12 aged-group and 5.68 (95%CI 4.59, 6.99) in the 4-6 aged-group in 2011/12. The transmission tree reconstruction suggested that the number of imported cases were consistently higher in the most populated and busy districts (Tainoura-go and Arikawa-go) ranged from 10-20 to 30-36 imported cases per season. The number of secondary cases generated by each case were also higher in these districts, which had the highest individual reproduction number (Reff: 1.2-1.7) across the seasons. Across all inferred transmission trees, the regression analysis showed that cases reported in districts with lower local vaccination coverage (incidence rate ratio IRR = 1.45 (95% CI 1.02, 2.05)) or higher number of inhabitants (IRR = 2.00 (95% CI 1.89, 2.12)) caused more secondary transmissions. Being younger than 18 years old (IRR = 1.38 (95%CI 1.21, 1.57) among 4-6 years old and 1.45 (95% CI 1.33, 1.59) 7-12 years old) and infection with influenza type A (type B IRR = 0.83 (95% CI 0.77, 0.90)) were also associated with higher numbers of onwards transmissions. However, conditional on being infected, we did not find any association between individual vaccination status and onwards transmissibility. Our study showed the importance of focusing public health efforts on achieving high vaccine coverage throughout the island, especially in more populated districts. The strong association between local vaccine coverage (including neighboring regions), and the risk of transmission indicate the importance of achieving homogeneously high vaccine coverage. The individual vaccine status may not prevent onwards transmission, though it may reduce the severity of infection.
Collapse
Affiliation(s)
- Su Myat Han
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Alexis Robert
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Shingo Masuda
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Internal Medicine, Kamigoto Hospital, Kamigoto, Japan
| | - Takahiro Yasaka
- Department of Internal Medicine, Kamigoto Hospital, Kamigoto, Japan
| | - Satoshi Kanda
- Department of Internal Medicine, Kamigoto Hospital, Kamigoto, Japan
| | - Kazuhiri Komori
- Department of Internal Medicine, Kamigoto Hospital, Kamigoto, Japan
| | - Nobuo Saito
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Japan
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Motoi Suzuki
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Endo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Marc Baguelin
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- MRC Centre for Global Infectious Disease Analysis and the Abdul Latif Jameel Institute for Disease, London, UK
| | - Koya Ariyoshi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Pellegrini F, Buonavoglia A, Omar AH, Diakoudi G, Lucente MS, Odigie AE, Sposato A, Augelli R, Camero M, Decaro N, Elia G, Bányai K, Martella V, Lanave G. A Cold Case of Equine Influenza Disentangled with Nanopore Sequencing. Animals (Basel) 2023; 13:ani13071153. [PMID: 37048408 PMCID: PMC10093709 DOI: 10.3390/ani13071153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Massive sequencing techniques have allowed us to develop straightforward approaches for the whole genome sequencing of viruses, including influenza viruses, generating information that is useful for improving the levels and dimensions of data analysis, even for archival samples. Using the Nanopore platform, we determined the whole genome sequence of an H3N8 equine influenza virus, identified from a 2005 outbreak in Apulia, Italy, whose origin had remained epidemiologically unexplained. The virus was tightly related (>99% at the nucleotide level) in all the genome segments to viruses identified in Poland in 2005–2008 and it was seemingly introduced locally with horse trading for the meat industry. In the phylogenetic analysis based on the eight genome segments, strain ITA/2005/horse/Bari was found to cluster with sub-lineage Florida 2 in the HA and M genes, whilst in the other genes it clustered with strains of the Eurasian lineage, revealing a multi-reassortant nature.
Collapse
Affiliation(s)
- Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Alessio Buonavoglia
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Ahmed H. Omar
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Maria S. Lucente
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Amienwanlen E. Odigie
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Alessio Sposato
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | | | - Michele Camero
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Krisztián Bányai
- Veterinary Medical Research Institute, 1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1400 Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
- Correspondence:
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| |
Collapse
|
3
|
Shamsir MS, Krauss SE, Ismail IA, Ab Jalil H, Johar MA, Abdul Rahman I. Development of a Haddon Matrix Framework for Higher Education Pandemic Preparedness: Scoping Review and Experiences of Malaysian Universities During the COVID-19 Pandemic. HIGHER EDUCATION POLICY 2021; 35:439-478. [PMID: 34594092 PMCID: PMC7808121 DOI: 10.1057/s41307-020-00221-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Managing education and research during pandemics has increased in importance since the onset of epidemics such as avian flu, SARS and now CoViD-19. Successful management in times of crisis ensures business continuity and institutional survival, making preparedness preceding an impending pandemic essential. Institutions of higher education (IHEs) must maintain balance between academic continuity and preventing morbidity during a pandemic crisis. To date, however, no general pandemic preparedness frameworks exist for IHEs. The aim of this paper is to report on the development of a Haddon matrix framework for IHE pandemic preparedness based on a scoping literature review of past IHE responses including pre-, during and post-pandemic phases. First, a review of previous global responses by IHEs during past pandemics was carried out. The review findings were then collated into a new IHE-centric Haddon matrix for pandemic preparedness. The content of the matrix is then illustrated through the documented responses of Malaysian universities during the early stages of the COVID-19 pandemic. The resulting IHE Haddon matrix can be used by universities as a general guide to identify preparedness gaps and intervention opportunities for business continuity during pandemics.
Collapse
Affiliation(s)
- Mohd Shahir Shamsir
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, 84600 Muar, Johor Malaysia
| | - Steven Eric Krauss
- Innovative Learning Sciences Research Centre of Excellence (INNOVATE), Faculty of Educational Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Ismi Arif Ismail
- Innovative Learning Sciences Research Centre of Excellence (INNOVATE), Faculty of Educational Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Habibah Ab Jalil
- Innovative Learning Sciences Research Centre of Excellence (INNOVATE), Faculty of Educational Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Muhammad Akmal Johar
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor Malaysia
| | - Ismail Abdul Rahman
- Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor Malaysia
| |
Collapse
|
4
|
Ivan FX, Zhou X, Lau SH, Rashid S, Teo JSM, Lee HK, Koay ES, Chan KP, Leo YS, Chen MIC, Kwoh CK, Chow VT. Molecular insights into evolution, mutations and receptor-binding specificity of influenza A and B viruses from outpatients and hospitalized patients in Singapore. Int J Infect Dis 2020; 90:84-96. [PMID: 31669593 DOI: 10.1016/j.ijid.2019.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study compared the genomes of influenza viruses that caused mild infections among outpatients and severe infections among hospitalized patients in Singapore, and characterized their molecular evolution and receptor-binding specificity. METHODS The complete genomes of influenza A/H1N1, A/H3N2 and B viruses that caused mild infections among outpatients and severe infections among inpatients in Singapore during 2012-2015 were sequenced and characterized. Using various bioinformatics approaches, we elucidated their evolutionary, mutational and structural patterns against the background of global and vaccine strains. RESULTS The phylogenetic trees of the 8 gene segments revealed that the outpatient and inpatient strains overlapped with representative global and vaccine strains. We observed a cluster of inpatients with A/H3N2 strains that were closely related to vaccine strain A/Texas/50/2012(H3N2). Several protein sites could accurately discriminate between outpatient versus inpatient strains, with site 221 in neuraminidase (NA) achieving the highest accuracy for A/H3N2. Interestingly, amino acid residues of inpatient but not outpatient isolates at those sites generally matched the corresponding residues in vaccine strains, except at site 145 of hemagglutinin (HA). This would be especially relevant for future surveillance of A/H3N2 strains in relation to their antigenicity and virulence. Furthermore, we observed a trend in which the HA proteins of influenza A/H3N2 and A/H1N1 exhibited enhanced ability to bind both avian and human host cell receptors. In contrast, the binding ability to each receptor was relatively stable for the HA of influenza B. CONCLUSIONS Overall, our findings extend our understanding of the molecular and structural evolution of influenza virus strains in Singapore within the global context of these dynamic viruses.
Collapse
Affiliation(s)
- Fransiskus X Ivan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Xinrui Zhou
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Suk Hiang Lau
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shamima Rashid
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Jasmine S M Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hong Kai Lee
- Molecular Diagnosis Centre, National University Hospital, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Evelyn S Koay
- Molecular Diagnosis Centre, National University Hospital, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kwai Peng Chan
- Department of Pathology, Singapore General Hospital, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore
| | - Mark I C Chen
- National Centre for Infectious Diseases, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Egli A, Saalfrank C, Goldman N, Brunner M, Hollenstein Y, Vogel T, Augustin N, Wüthrich D, Seth-Smith HMB, Roth E, Syedbasha M, Mueller NF, Vogt D, Bauer J, Amar-Sliwa N, Meinel DM, Dubuis O, Naegele M, Tschudin-Sutter S, Buser A, Nickel CH, Zeller A, Ritz N, Battegay M, Stadler T, Schneider-Sliwa R. Identification of influenza urban transmission patterns by geographical, epidemiological and whole genome sequencing data: protocol for an observational study. BMJ Open 2019; 9:e030913. [PMID: 31434783 PMCID: PMC6707652 DOI: 10.1136/bmjopen-2019-030913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Urban transmission patterns of influenza viruses are complex and poorly understood, and multiple factors may play a critical role in modifying transmission. Whole genome sequencing (WGS) allows the description of patient-to-patient transmissions at highest resolution. The aim of this study is to explore urban transmission patterns of influenza viruses in high detail by combining geographical, epidemiological and immunological data with WGS data. METHODS AND ANALYSIS The study is performed at the University Hospital Basel, University Children's Hospital Basel and a network of paediatricians and family doctors in the Canton of Basel-City, Switzerland. The retrospective study part includes an analysis of PCR-confirmed influenza cases from 2013 to 2018. The prospective study parts include (1) a household survey regarding influenza-like illness (ILI) and vaccination against influenza during the 2015/2016 season; (2) an analysis of influenza viruses collected during the 2016/2017 season using WGS-viral genomic sequences are compared with determine genetic relatedness and transmissions; and (3) measurement of influenza-specific antibody titres against all vaccinated and circulated strains during the 2016/2017 season from healthy individuals, allowing to monitor herd immunity across urban quarters. Survey data and PCR-confirmed cases are linked to data from the Statistics Office of the Canton Basel-City and visualised using geo-information system mapping. WGS data will be analysed in the context of patient epidemiological data using phylodynamic analyses, and the obtained herd immunity for each quarter. Profound knowledge on the key geographical, epidemiological and immunological factors influencing urban influenza transmission will help to develop effective counter measurements. ETHICS AND DISSEMINATION The study is registered and approved by the regional ethics committee as an observational study (EKNZ project ID 2015-363 and 2016-01735). It is planned to present the results at conferences and publish the data in scientific journals. TRIAL REGISTRATION NUMBER NCT03010007.
Collapse
Affiliation(s)
- Adrian Egli
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Biomedicine, University of Basel, Basel, Switzerland
- Clinical Research, University of Basel, Basel, Switzerland
| | - Claudia Saalfrank
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Nina Goldman
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Myrta Brunner
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | | | - Thomas Vogel
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Noémie Augustin
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Daniel Wüthrich
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Biomedicine, University of Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Helena M B Seth-Smith
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Elisa Roth
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Biomedicine, University of Basel, Basel, Switzerland
| | | | - Nicola F Mueller
- Swiss Institute for Bioinformatics, Basel, Switzerland
- Biosystems Science and Engineering, ETH Zurich D-BSSE, Basel, Basel-Stadt, Switzerland
| | - Dominik Vogt
- Biomedicine, University of Basel, Basel, Switzerland
| | - Jan Bauer
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Nadezhda Amar-Sliwa
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Dominik M Meinel
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland
- Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier Dubuis
- Microbiology, Viollier AG, Allschwil, Basel-Landschaft, Switzerland
| | - Michael Naegele
- Microbiology, Viollier AG, Allschwil, Basel-Landschaft, Switzerland
| | - Sarah Tschudin-Sutter
- Clinical Research, University of Basel, Basel, Switzerland
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Andreas Buser
- Blood Donation Center of Both Basel, Basel, Switzerland
| | | | - Andreas Zeller
- Centre for Primary Health Care, University of Basel, Basel, Switzerland
| | - Nicole Ritz
- Pediatric Infectious Diseases and Vaccinology, UKBB Universitats-Kinderspital, Basel, Switzerland
| | - Manuel Battegay
- Clinical Research, University of Basel, Basel, Switzerland
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Tanja Stadler
- Swiss Institute for Bioinformatics, Basel, Switzerland
- Biosystems Science and Engineering, ETH Zurich D-BSSE, Basel, Basel-Stadt, Switzerland
| | - Rita Schneider-Sliwa
- Human Geography, Department of Environmental Science, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Evaluation of two workflows for whole genome sequencing-based typing of influenza A viruses. J Virol Methods 2019; 266:30-33. [PMID: 30677464 DOI: 10.1016/j.jviromet.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
We compared two sample preparation protocols for whole genome sequencing of influenza A viruses. Each protocol was assessed using cDNA quantity and quality and the resulting mean genome coverage after sequencing. Both protocols produced acceptable result for samples with high viral load, whereas one protocol performed slightly better with limited virus count.
Collapse
|