1
|
Liu Z, Meng X, Tang X, Zhang J, Zhang Z, He Y. A novel allosteric driver mutation of β-glucuronidase promotes head and neck squamous cell carcinoma progression through STT3B-mediated PD-L1 N-glycosylation. MedComm (Beijing) 2025; 6:e70062. [PMID: 39830021 PMCID: PMC11742429 DOI: 10.1002/mco2.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops and advances because of the accumulation of somatic mutations located in orthosteric and allosteric areas. However, the biological effects of allosteric driver mutations during tumorigenesis are mostly unknown. Here, we mapped somatic mutations generated from 10 tumor-normal matched HNSCC samples into allosteric sites to prioritize the mutated allosteric proteins via whole-exome sequencing and AlloDriver, identifying the specific mutation H351Q in β-glucuronidase (GUSB), a lysosomal enzyme, as a novel allosteric driver mutation, which considerably encouraged HNSCC progression both in vitro and in vivo. Mechanistically, the allosteric mutation of H351Q remarkably attenuated protein trafficking from the endoplasmic reticulum (ER) to lysosomes, leading to ER retention, in which GUSB-H351Q facilitated the aberrant N-glycosylation of PD-L1 through increasing protein stability and mRNA transcripts of the STT3 oligosaccharyltransferase complex catalytic subunit B, an oligosaccharyltransferase complex. Moreover, GUSB-H351Q reshaped a more immunosuppressive microenvironment featuring increased infiltration of exhausted CD8+ T cells and remodeled tumor metabolism, characterized by increased activity of the purine metabolism pathways and pyruvic acid accumulation. This study provides a mechanism-driven approach to overcoming HNSCC progression and immune evasion and identifies novel druggable targets based on the presence of GUSB allosteric driver mutation.
Collapse
Affiliation(s)
- Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center of StomatologyNational Clinical Research Center for Oral DiseaseShanghaiChina
| | - Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center of StomatologyNational Clinical Research Center for Oral DiseaseShanghaiChina
| | - Xiao Tang
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center of StomatologyNational Clinical Research Center for Oral DiseaseShanghaiChina
| | - Jian Zhang
- Medicinal Bioinformatics CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center of StomatologyNational Clinical Research Center for Oral DiseaseShanghaiChina
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center of StomatologyNational Clinical Research Center for Oral DiseaseShanghaiChina
| |
Collapse
|
2
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Lefevre C, Thibaut MM, Loumaye A, Thissen JP, Neyrinck AM, Navez B, Delzenne NM, Feron O, Bindels LB. Tumoral acidosis promotes adipose tissue depletion by fostering adipocyte lipolysis. Mol Metab 2024; 83:101930. [PMID: 38570069 PMCID: PMC11027574 DOI: 10.1016/j.molmet.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
OBJECTIVE Tumour progression drives profound alterations in host metabolism, such as adipose tissue depletion, an early event of cancer cachexia. As fatty acid consumption by cancer cells increases upon acidosis of the tumour microenvironment, we reasoned that fatty acids derived from distant adipose lipolysis may sustain tumour fatty acid craving, leading to the adipose tissue loss observed in cancer cachexia. METHODS To evaluate the pro-lipolytic capacities of acid-exposed cancer cells, primary mouse adipocytes from subcutaneous and visceral adipose tissue were exposed to pH-matched conditioned medium from human and murine acid-exposed cancer cells (pH 6.5), compared to naive cancer cells (pH 7.4). To further address the role of tumoral acidosis on adipose tissue loss, a pH-low insertion peptide was injected into tumour-bearing mice, and tumoral acidosis was neutralised with a sodium bicarbonate buffer. Prolipolytic mediators were identified by transcriptomic approaches and validated on murine and human adipocytes. RESULTS Here, we reveal that acid-exposed cancer cells promote lipolysis from subcutaneous and visceral adipocytes and that dampening acidosis in vivo inhibits adipose tissue depletion. We further found a set of well-known prolipolytic factors enhanced upon acidosis adaptation and unravelled a role for β-glucuronidase (GUSB) as a promising new actor in adipocyte lipolysis. CONCLUSIONS Tumoral acidosis promotes the mobilization of fatty acids derived from adipocytes via the release of soluble factors by cancer cells. Our work paves the way for therapeutic approaches aimed at tackling cachexia by targeting the tumour acidic compartment.
Collapse
Affiliation(s)
- Camille Lefevre
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Morgane M Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey Loumaye
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Department of Endocrinology, Diabetology and Nutrition, IREC, UCLouvain, Brussels, Belgium
| | - Jean-Paul Thissen
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Department of Endocrinology, Diabetology and Nutrition, IREC, UCLouvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Benoit Navez
- Department of Abdominal Surgery and Transplantation, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium; Welbio Department, WEL Research Institute, Wavre, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium; Welbio Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
4
|
Reis e Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
5
|
Choudhury QJ, Ambati S, Link CD, Lin X, Lewis ZA, Meagher RB. Dectin-3-targeted antifungal liposomes efficiently bind and kill diverse fungal pathogens. Mol Microbiol 2023; 120:723-739. [PMID: 37800599 PMCID: PMC10823756 DOI: 10.1111/mmi.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
DectiSomes are anti-infective drug-loaded liposomes targeted to pathogenic cells by pathogen receptors including the Dectins. We have previously used C-type lectin (CTL) pathogen receptors Dectin-1, Dectin-2, and DC-SIGN to target DectiSomes to the extracellular oligoglycans surrounding diverse pathogenic fungi and kill them. Dectin-3 (also known as MCL, CLEC4D) is a CTL pathogen receptor whose known cognate ligands are partly distinct from other CTLs. We expressed and purified a truncated Dectin-3 polypeptide (DEC3) comprised of its carbohydrate recognition domain and stalk region. We prepared amphotericin B (AmB)-loaded pegylated liposomes (AmB-LLs) and coated them with this isoform of Dectin-3 (DEC3-AmB-LLs), and we prepared control liposomes coated with bovine serum albumin (BSA-AmB-LLs). DEC3-AmB-LLs bound to the exopolysaccharide matrices of Candida albicans, Rhizopus delemar (formerly known as R. oryzae), and Cryptococcus neoformans from one to several orders of magnitude more strongly than untargeted AmB-LLs or BSA-AmB-LLs. The data from our quantitative fluorescent binding assays were standardized using a CellProfiler program, AreaPipe, that was developed for this purpose. Consistent with enhanced binding, DEC3-AmB-LLs inhibited and/or killed C. albicans and R. delemar more efficiently than control liposomes and significantly reduced the effective dose of AmB. In conclusion, Dectin-3 targeting has the potential to advance our goal of building pan-antifungal DectiSomes.
Collapse
Affiliation(s)
| | - Suresh Ambati
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | - Collin D. Link
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Xiaorong Lin
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | | |
Collapse
|
6
|
Meagher RB, Lewis ZA, Ambati S, Lin X. DectiSomes: C-type lectin receptor-targeted liposomes as pan-antifungal drugs. Adv Drug Deliv Rev 2023; 196:114776. [PMID: 36934519 PMCID: PMC10133202 DOI: 10.1016/j.addr.2023.114776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
Combatting the ever-increasing threat from invasive fungal pathogens faces numerous fundamental challenges, including constant human exposure to large reservoirs of species in the environment, the increasing population of immunocompromised or immunosuppressed individuals, the unsatisfactory efficacy of current antifungal drugs and their associated toxicity, and the scientific and economic barriers limiting a new antifungal pipeline. DectiSomes represent a new drug delivery platform that enhances antifungal efficacy for diverse fungal pathogens and reduces host toxicity for current and future antifungals. DectiSomes employ pathogen receptor proteins - C-type lectins - to target drug-loaded liposomes to conserved fungal cognate ligands and away from host cells. DectiSomes represent one leap forward for urgently needed effective pan-antifungal therapy. Herein, we discuss the problems of battling fungal diseases and the state of DectiSome development.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zachary A Lewis
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Zhan L, Tian X, Lin J, Zhang Y, Zheng H, Peng X, Zhao G. Honokiol reduces fungal burden and ameliorate inflammation lesions of Aspergillus fumigatus keratitis via Dectin-2 down-regulation. Int Immunopharmacol 2023; 118:109849. [PMID: 36933490 DOI: 10.1016/j.intimp.2023.109849] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To screen and identify the mechanism of honokiol on anti-fungi and anti-inflammation in fungal keratitis (FK) through bioinformatic analysis and biological experiments. METHODS Transcriptome profile demonstrated differential expression genes (DEGs) of Aspergillus fumigatus keratitis between PBS-treated and honokiol-treated groups via bioinformatics analyses. Inflammatory substances were quantified by qRT-PCR, Western blot and ELISA, and macrophage polarization was examined by flow cytometry. Periodic acid Schiff staining and morphological interference assay were used to detect hyphal distribution in vivo and fungal germination in vitro, respectively. Electron microscopy was to illustrate hyphal microstructure. RESULTS Illumina sequencing demonstrated that compared with the honokiol group, 1175 up-regulated and 383 down-regulated genes were induced in C57BL/6 mice Aspergillus fumigatus keratitis with PBS treatment. Through GO analysis, some differential expression proteins (DEPs) played major roles in biological processes, especially fungal defense and immune activation. KEGG analysis provided fungus-related signaling pathways. PPI analysis demonstrated that DEPs from multiple pathways form a close-knit network, providing a broader context for FK treatment. In biological experiments, Dectin-2, NLRP3 and IL-1β were upregulated by Aspergillus fumigatus to evaluate immune response. Honokiol could reverse the trend, comparable to Dectin-2 siRNA interference. Meanwhile, honokiol could also play an anti-inflammatory role via promoting M2 phenotype polarization. Moreover, honokiol reduced hyphal distribution in the stroma, delayed germination, and destroyed the hyphal cell membrane in-vitro. CONCLUSIONS Honokiol possesses anti-fungal and anti-inflammatory effects in Aspergillus fumigatus keratitis and may develop a potential and safe therapeutic modality for FK.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine 540 E. Canfield Avenue Detroit, MI 48201, USA
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Ophthalmology, University of Washington, Seattle WA98104, USA.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Watanabe M, Motooka D, Yamasaki S. The kinetics of signaling through the common FcRγ chain determine cytokine profiles in dendritic cells. Sci Signal 2023; 16:eabn9909. [PMID: 36881655 DOI: 10.1126/scisignal.abn9909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The common Fc receptor γ (FcRγ) chain is a signaling subunit common to several immune receptors, but cellular responses induced by FcRγ-coupled receptors are diverse. We investigated the mechanisms by which FcRγ generates divergent signals when coupled to Dectin-2 and Mincle, structurally similar C-type lectin receptors that induce the release of different cytokines from dendritic cells. Chronological tracing of transcriptomic and epigenetic changes upon stimulation revealed that Dectin-2 induced early and strong signaling, whereas Mincle-mediated signaling was delayed, which reflects their expression patterns. Generation of early and strong FcRγ-Syk signaling by engineered chimeric receptors was sufficient to recapitulate a Dectin-2-like gene expression profile. Early Syk signaling selectively stimulated the activity of the calcium ion-activated transcription factor NFAT, which rapidly altered the chromatin status and transcription of the Il2 gene. In contrast, proinflammatory cytokines, such as TNF, were induced regardless of FcRγ signaling kinetics. These results suggest that the strength and timing of FcRγ-Syk signaling can alter the quality of cellular responses through kinetics-sensing signaling machineries.
Collapse
Affiliation(s)
- Miyuki Watanabe
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
9
|
Shimizu T, Schutt CR, Izumi Y, Tomiyasu N, Omahdi Z, Kano K, Takamatsu H, Aoki J, Bamba T, Kumanogoh A, Takao M, Yamasaki S. Direct activation of microglia by β-glucosylceramide causes phagocytosis of neurons that exacerbates Gaucher disease. Immunity 2023; 56:307-319.e8. [PMID: 36736320 DOI: 10.1016/j.immuni.2023.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease caused by recessive mutations in the degrading enzyme of β-glucosylceramide (β-GlcCer). However, it remains unclear how β-GlcCer causes severe neuronopathic symptoms, which are not fully treated by current therapies. We herein found that β-GlcCer accumulating in GD activated microglia through macrophage-inducible C-type lectin (Mincle) to induce phagocytosis of living neurons, which exacerbated Gaucher symptoms. This process was augmented by tumor necrosis factor (TNF) secreted from activated microglia that sensitized neurons for phagocytosis. This characteristic pathology was also observed in human neuronopathic GD. Blockade of these pathways in mice with a combination of FDA-approved drugs, minocycline (microglia activation inhibitor) and etanercept (TNF blocker), effectively protected neurons and ameliorated neuronopathic symptoms. In this study, we propose that limiting unrestrained microglia activation using drug repurposing provides a quickly applicable therapeutic option for fatal neuronopathic GD.
Collapse
Affiliation(s)
- Takashi Shimizu
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Charles R Schutt
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Noriyuki Tomiyasu
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Zakaria Omahdi
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Abstract
The term "lectin" is derived from the Latin word lego- (aggregate) (Boyd & Shapleigh, 1954). Indeed, lectins' folds can flexibly alter their pocket structures just like Lego blocks, which enables them to grab a wide-variety of substances. Thus, this useful fold is well-conserved among various organisms. Through evolution, prototypic soluble lectins acquired transmembrane regions and signaling motifs to become C-type lectin receptors (CLRs). While CLRs seem to possess certain intrinsic affinity to self, some CLRs adapted to efficiently recognize glycoconjugates present in pathogens as pathogen-associated molecular patterns (PAMPs) and altered self. CLRs further extended their diversity to recognize non-glycosylated targets including pathogens and self-derived molecules. Thus, CLRs seem to have developed to monitor the internal/external stresses to maintain homeostasis by sensing various "unfamiliar" targets. In this review, we will summarize recent advances in our understanding of CLRs, their ligands and functions and discuss future perspectives.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
11
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
12
|
Torigoe S, Schutt CR, Yamasaki S. Immune discrimination of environmental spectrum through C-type lectin receptors. Int Immunol 2021; 33:847-851. [PMID: 34599808 DOI: 10.1093/intimm/dxab074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Our bodies are continuously assaulted by infection and tissue damage; most of these injurious insults are primarily sensed by immune receptors to maintain tissue homeostasis. Although immune recognition of proteins or nucleic acids has been well characterized, the molecular mechanisms by which immune receptors discriminate lipids to elicit suitable immune responses remain elusive. Recent studies have demonstrated that the C-type lectin receptor (CLR) family functions as immune sensors for adjuvant lipids derived from pathogens and damaged-tissues, thereby promoting innate/acquired immunity. In this review, we will discuss how these receptors recognize lipid components to initiate appropriate, but sometimes deleterious, immune responses against environmental stimuli. We will also discuss an aspect of inhibitory CLRs; their ligands might reflect normal self which silences the immune response regarded as "silence"-associated molecular patterns or may be associated with escape strategies of pathogens as "evasion"-associated molecular patterns.
Collapse
Affiliation(s)
- Shota Torigoe
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Charles R Schutt
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Yamadaoka, Suita, Osaka, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Laboratory of Molecular Immunology, Center for Infectious Disease Education and Research (CiDER), Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
13
|
Yamaguchi K, Kanno E, Tanno H, Sasaki A, Kitai Y, Miura T, Takagi N, Shoji M, Kasamatsu J, Sato K, Sato Y, Niiyama M, Goto Y, Ishii K, Imai Y, Saijo S, Iwakura Y, Tachi M, Kawakami K. Distinct Roles for Dectin-1 and Dectin-2 in Skin Wound Healing and Neutrophilic Inflammatory Responses. J Invest Dermatol 2020; 141:164-176.e8. [PMID: 32511980 DOI: 10.1016/j.jid.2020.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
C-type lectin receptors recognize microbial polysaccharides. The C-type lectin receptors such as dendritic cell-associated C-type lectin (Dectin)-1 and Dectin-2, which are triggered by β-glucan and α-mannan, respectively, contribute to upregulation of the inflammatory response. Recently, we demonstrated that activation of the Dectin-2 signal delayed wound healing; in previous studies, triggering the Dectin-1 signal promoted this response. However, the precise roles of these C-type lectin receptors in skin wound healing remain unclear. This study was conducted to determine the roles of Dectin-1 and Dectin-2 in skin wound healing, with a particular focus on the kinetics of neutrophilic inflammatory response. Full-thickness wounds were created on the backs of C57BL/6 mice, and the effects of Dectin-1 or Dectin-2 deficiency and those of β-glucan or α-mannan administration were examined. We also analyzed wound closure, histological findings, and neutrophilic inflammatory response, including neutrophil extracellular trap formation at the wound sites. We found that Dectin-1 contributed to the acceleration of wound healing by inducing early-phase neutrophil accumulation, whereas Dectin-2 was involved in prolonged neutrophilic responses and neutrophil extracellular trap formation, leading to delayed wound healing. Dectin-2 deficiency also improved collagen deposition and TGF-β1 expression. These results suggest that Dectin-1 and Dectin-2 have different roles in wound healing through their different effects on the neutrophilic response.
Collapse
Affiliation(s)
- Kenji Yamaguchi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ayako Sasaki
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takayuki Miura
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Naoyuki Takagi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuka Sato
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Momoko Niiyama
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuka Goto
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shinobu Saijo
- Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | - Yoichiro Iwakura
- Division of Laboratory Animals, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
14
|
Thiem K, Hoeke G, Zhou E, Hijmans A, Houben T, Boels MG, Mol IM, Lutgens E, Shiri-Sverdlov R, Bussink J, Kanneganti TD, Boon MR, Stienstra R, Tack CJ, Rensen PCN, Netea MG, Berbée JFP, van Diepen JA. Deletion of haematopoietic Dectin-2 or CARD9 does not protect from atherosclerosis development under hyperglycaemic conditions. Diab Vasc Dis Res 2020; 17:1479164119892140. [PMID: 31868000 PMCID: PMC7510497 DOI: 10.1177/1479164119892140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND C-type lectin receptors, including Dectin-2, are pattern recognition receptors on monocytes and macrophages that mainly recognize sugars and sugar-like structures present on fungi. Activation of C-type lectin receptors induces downstream CARD9 signalling, leading to the production of cytokines. We hypothesized that under hyperglycaemic conditions, as is the case in diabetes mellitus, glycosylated protein (sugar-like) structures activate C-type lectin receptors, leading to immune cell activation and increased atherosclerosis development. METHODS Low-density lipoprotein receptor-deficient mice were lethally irradiated and transplanted with bone marrow from control wild-type, Dectin-2-/- or Card9-/- mice. After 6 weeks of recovery, mice received streptozotocin injections (50 mg/g BW; 5 days) to induce hyperglycaemia. After an additional 2 weeks, mice were fed a Western-type diet (0.1% cholesterol) for 10 weeks. RESULTS AND CONCLUSION Deletion of haematopoietic Dectin-2 reduced the number of circulating Ly6Chi monocytes, increased pro-inflammatory cytokine production, but did not affect atherosclerosis development. Deletion of haematopoietic CARD9 tended to reduce macrophage and collagen content in atherosclerotic lesions, again without influencing the lesion size. Deletion of haematopoietic Dectin-2 did not influence atherosclerosis development under hyperglycaemic conditions, despite some minor effects on inflammation. Deletion of haematopoietic CARD9 induced minor alterations in plaque composition under hyperglycaemic conditions, without affecting lesion size.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/etiology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biomarkers/blood
- Blood Glucose/metabolism
- Bone Marrow Transplantation
- CARD Signaling Adaptor Proteins/deficiency
- CARD Signaling Adaptor Proteins/genetics
- Cells, Cultured
- Collagen/metabolism
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diet, Western
- Gene Deletion
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/metabolism
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/metabolism
- Monocytes/pathology
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
Collapse
Affiliation(s)
- Kathrin Thiem
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
- Kathrin Thiem, Department of Internal
Medicine and Radboud Institute for Molecular Life Sciences, Radboud University
Medical Center, 463, Geert Grooteplein zuid 8, 6525 GA Nijmegen, The
Netherlands.
| | - Geerte Hoeke
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Enchen Zhou
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke Hijmans
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
| | - Tom Houben
- Departments of Molecular Genetics, Human
Biology and Surgery, School of Nutrition and Translational Research in Metabolism
(NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Margien G Boels
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Division of Nephrology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Isabel M Mol
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Esther Lutgens
- Division of Experimental Vascular
Biology, Department of Medical Biochemistry, Academic Medical Center, University of
Amsterdam, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention,
Ludwig Maximilians University of Munich, Munich, Germany
| | - Ronit Shiri-Sverdlov
- Departments of Molecular Genetics, Human
Biology and Surgery, School of Nutrition and Translational Research in Metabolism
(NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology,
Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Mariëtte R Boon
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
- Division of Human Nutrition,
Wageningen University, Wageningen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
| | - Patrick CN Rensen
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
- Department for Genomics and
Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn,
Bonn, Germany
| | - Jimmy FP Berbée
- Division of Endocrinology, Department of
Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental
Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Janna A van Diepen
- Department of Internal Medicine and
Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,
Nijmegen, The Netherlands
| |
Collapse
|
15
|
Chiffoleau E. C-Type Lectin-Like Receptors As Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets. Front Immunol 2018; 9:227. [PMID: 29497419 PMCID: PMC5818397 DOI: 10.3389/fimmu.2018.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/26/2018] [Indexed: 01/19/2023] Open
Abstract
Over the last decade, C-type lectin-like receptors (CTLRs), expressed mostly by myeloid cells, have gained increasing attention for their role in the fine tuning of both innate and adaptive immunity. Not only CTLRs recognize pathogen-derived ligands to protect against infection but also endogenous ligands such as self-carbohydrates, proteins, or lipids to control homeostasis and tissue injury. Interestingly, CTLRs act as antigen-uptake receptors via their carbohydrate-recognition domain for internalization and subsequent presentation to T-cells. Furthermore, CTLRs signal through a complex intracellular network leading to the secretion of a particular set of cytokines that differently polarizes downstream effector T-cell responses according to the ligand and pattern recognition receptor co-engagement. Thus, by orchestrating the balance between inflammatory and resolution pathways, CTLRs are now considered as driving players of sterile inflammation whose dysregulation leads to the development of various pathologies such as autoimmune diseases, allergy, or cancer. For examples, the macrophage-inducible C-type lectin (MINCLE), by sensing glycolipids released during cell-damage, promotes skin allergy and the pathogenesis of experimental autoimmune uveoretinitis. Besides, recent studies described that tumors use physiological process of the CTLRs’ dendritic cell-associated C-type lectin-1 (DECTIN-1) and MINCLE to locally suppress myeloid cell activation and promote immune evasion. Therefore, we aim here to overview the current knowledge of the pivotal role of CTLRs in sterile inflammation with special attention given to the “Dectin-1” and “Dectin-2” families. Moreover, we will discuss the potential of these receptors as promising therapeutic targets to treat a wide range of acute and chronic diseases.
Collapse
Affiliation(s)
- Elise Chiffoleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,IHU Cesti, Nantes, France.,Labex Immunotherapy Graft Oncology (IGO), Nantes, France
| |
Collapse
|
16
|
Mayer S, Moeller R, Monteiro JT, Ellrott K, Josenhans C, Lepenies B. C-Type Lectin Receptor (CLR)-Fc Fusion Proteins As Tools to Screen for Novel CLR/Bacteria Interactions: An Exemplary Study on Preselected Campylobacter jejuni Isolates. Front Immunol 2018; 9:213. [PMID: 29487596 PMCID: PMC5816833 DOI: 10.3389/fimmu.2018.00213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
C-type lectin receptors (CLRs) are carbohydrate-binding receptors that recognize their ligands often in a Ca2+-dependent manner. Upon ligand binding, myeloid CLRs in innate immunity trigger or inhibit a variety of signaling pathways, thus initiating or modulating effector functions such as cytokine production, phagocytosis, and antigen presentation. CLRs bind to various pathogens, including viruses, fungi, parasites, and bacteria. The bacterium Campylobacter jejuni (C. jejuni) is a very frequent Gram-negative zoonotic pathogen of humans, causing severe intestinal symptoms. Interestingly, C. jejuni expresses several glycosylated surface structures, for example, the capsular polysaccharide (CPS), lipooligosaccharide (LOS), and envelope proteins. This “Methods” paper describes applications of CLR–Fc fusion proteins to screen for yet unknown CLR/bacteria interactions using C. jejuni as an example. ELISA-based detection of CLR/bacteria interactions allows a first prescreening that is further confirmed by flow cytometry-based binding analysis and visualized using confocal microscopy. By applying these methods, we identified Dectin-1 as a novel CLR recognizing two selected C. jejuni isolates with different LOS and CPS genotypes. In conclusion, the here-described applications of CLR–Fc fusion proteins represent useful methods to screen for and identify novel CLR/bacteria interactions.
Collapse
Affiliation(s)
- Sabine Mayer
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Rebecca Moeller
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - João T Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Kerstin Ellrott
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Christine Josenhans
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.,Max von Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
17
|
Shiokawa M, Yamasaki S, Saijo S. C-type lectin receptors in anti-fungal immunity. Curr Opin Microbiol 2017; 40:123-130. [PMID: 29169147 DOI: 10.1016/j.mib.2017.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
Host immune systems are constantly engaged with fungal pathogens which are common in environments as well as in healthy human skin and mucosa. C-type lectin receptors (CLRs) are expressed in myeloid cells and play central roles in host defenses against fungal infections by coordinating innate and adaptive immune systems. Upon ligand binding, CLRs stimulate cellular responses by inducing the production of cytokines and reactive oxygen species via the Syk/CARD9 signaling pathway, leading to fungal elimination. Due to identification and characterization of the CLRs, the underlying mechanisms of the anti-fungal immunity are being unveiled in the present decade. In this review, we focus on the anti-fungal activities of CLRs and summarize of current knowledge of the related expression profiles, modes of ligand recognition, and signaling cascades.
Collapse
Affiliation(s)
- Moe Shiokawa
- Division of Host Defense, Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sho Yamasaki
- Division of Host Defense, Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| |
Collapse
|
18
|
Takano T, Motozono C, Imai T, Sonoda KH, Nakanishi Y, Yamasaki S. Dectin-1 intracellular domain determines species-specific ligand spectrum by modulating receptor sensitivity. J Biol Chem 2017; 292:16933-16941. [PMID: 28848046 DOI: 10.1074/jbc.m117.800847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/09/2017] [Indexed: 01/09/2023] Open
Abstract
C-type lectin receptors (CLRs) comprise a large family of immunoreceptors that recognize polysaccharide ligands exposed on pathogen surfaces and are conserved among mammals. However, interspecies differences in their ligand spectrums are not fully understood. Dectin-1 is a well-characterized CLR that recognizes β-glucan. We report here that seaweed-derived fucan activates cells expressing human Dectin-1 but not mouse Dectin-1. Low-valency β-glucan components within fucan appeared to be responsible for this activation, as the ligand activity was eliminated by β-glucanase treatment. The low-valency β-glucan laminarin also acted as an agonist for human Dectin-1 but not for mouse Dectin-1, whereas the high-valency β-glucan curdlan activated both human and mouse Dectin-1. Reciprocal mutagenesis analysis revealed that the ligand-binding domain of human Dectin-1 does not determine its unique sensitivity to low-valency β-glucan. Rather, we found that its intracellular domain renders human Dectin-1 reactive to low-valency β-glucan ligand. Substitution with two amino acids, Glu2 and Pro5, located in the human Dectin-1 intracellular domain was sufficient to confer sensitivity to low-valency β-glucan in mouse Dectin-1. Conversely, the introduction of mouse-specific amino acids, Lys2 and Ser5, to human Dectin-1 reduced the reactivity to low-valency β-glucan. Indeed, low-valency ligands induced a set of proinflammatory genes in human but not mouse dendritic cells. These results suggest that the intracellular domain, not ligand-binding domain, of Dectin-1 determines the species-specific ligand profile.
Collapse
Affiliation(s)
- Tomotsugu Takano
- From the Division of Molecular Immunology, Medical Institute of Bioregulation.,Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, and.,the Department of Molecular Immunology, Research Institute for Microbial Diseases, and.,Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, and
| | - Chihiro Motozono
- the Department of Molecular Immunology, Research Institute for Microbial Diseases, and .,Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, and.,Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Takashi Imai
- From the Division of Molecular Immunology, Medical Institute of Bioregulation.,the Department of Molecular Immunology, Research Institute for Microbial Diseases, and.,Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, and
| | - Koh-Hei Sonoda
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, and
| | - Sho Yamasaki
- From the Division of Molecular Immunology, Medical Institute of Bioregulation, .,the Department of Molecular Immunology, Research Institute for Microbial Diseases, and.,Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, and.,the Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
19
|
Cell-surface C-type lectin-like receptor CLEC-1 dampens dendritic cell activation and downstream Th17 responses. Blood Adv 2017; 1:557-568. [PMID: 29296975 DOI: 10.1182/bloodadvances.2016002360] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/22/2017] [Indexed: 01/20/2023] Open
Abstract
Dendritic cells (DCs) represent essential antigen-presenting cells that are critical for linking innate and adaptive immunity, and influencing T-cell responses. Among pattern recognition receptors, DCs express C-type lectin receptors triggered by both exogenous and endogenous ligands, therefore dictating pathogen response, and also shaping T-cell immunity. We previously described in rat, the expression of the orphan C-type lectin-like receptor-1 (CLEC-1) by DCs and demonstrated in vitro its inhibitory role in downstream T helper 17 (Th17) activation. In this study, we examined the expression and functionality of CLEC-1 in human DCs, and show a cell-surface expression on the CD16- subpopulation of blood DCs and on monocyte-derived DCs (moDCs). CLEC-1 expression on moDCs is downregulated by inflammatory stimuli and enhanced by transforming growth factor β. Moreover, we demonstrate that CLEC-1 is a functional receptor on human moDCs and that although not modulating the spleen tyrosine kinase-dependent canonical nuclear factor-κB pathway, represses subsequent Th17 responses. Interestingly, a decreased expression of CLEC1A in human lung transplants is predictive of the development of chronic rejection and is associated with a higher level of interleukin 17A (IL17A). Importantly, using CLEC-1-deficient rats, we showed that disruption of CLEC-1 signaling led to an enhanced Il12p40 subunit expression in DCs, and to an exacerbation of downstream in vitro and in vivo CD4+ Th1 and Th17 responses. Collectively, our results establish a role for CLEC-1 as an inhibitory receptor in DCs able to dampen activation and downstream effector Th responses. As a cell-surface receptor, CLEC-1 may represent a useful therapeutic target for modulating T-cell immune responses in a clinical setting.
Collapse
|