1
|
Bao Z, Chen B, Yu K, Wei Y, Liang X, Yao H, Liao X, Xie W, Yin K. Microbiome dynamics and functional profiles in deep-sea wood-fall micro-ecosystem: insights into drive pattern of community assembly, biogeochemical processes, and lignocellulose degradation. Appl Environ Microbiol 2025; 91:e0216524. [PMID: 39641605 PMCID: PMC11784029 DOI: 10.1128/aem.02165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Wood-fall micro-ecosystems contribute to biogeochemical processes in the oligotrophic deep ocean. However, the community assembly processes and biogeochemical functions of microbiomes in wood fall remain unclear. This study investigated the diversity, community structure, assembly processes, and functional profiles of bacteria and fungi in a deep-sea wood fall from the South China Sea using physicochemical indices, amplicon sequencing, and metagenomics. The results showed that distinct wood-fall contact surfaces exhibit habitat heterogeneity. The bacterial community of all contact surfaces and the fungal community of seawater contact surface (SWCS) were affected by homogeneous selection. In SWCS and transition region (TR), bacterial communities were influenced by dispersal limitation, whereas fungal communities were affected by homogenizing dispersal. The Venn diagram visualization revealed that the shared fungal community between SWCS and TR was dominated by Aspergillaceae. Additionally, the bacterial community demonstrated a higher genetic potential for sulfur, nitrogen, and methane metabolism than fungi. The sediment contact surface enriched modules were associated with dissimilatory sulfate reduction and methanogenesis, whereas the modules related to nitrate reduction exhibited enrichment characteristics in TR. Moreover, fungi showed a stronger potential for lignocellulase production compared to bacteria, with Microascaceae and Nectriaceae identified as potential contributors to lignocellulose degradation. These results indicate that environmental filtering and organism exchange levels regulated the microbial community assembly of wood fall. The biogeochemical cycling of sulfur, nitrogen, and methane was mainly driven by the bacterial community. Nevertheless, the terrestrial fungi Microascaceae and Nectriaceae might degrade lignocellulose via the combined action of multiple lignocellulases.IMPORTANCEThe presence and activity of microbial communities may play a crucial role in the biogeochemical cycle of deep-sea wood-fall micro-ecosystems. Previous studies on wood falls have focused on the microbiome diversity, community composition, and environmental impact, while few have investigated wood-fall micro-ecosystems by distinguishing among distinct contact surfaces. Our study investigated the microbiome dynamics and functional profiles of bacteria and fungi among distinct wood-fall contact surfaces. We found that the microbiome community assembly was regulated by environmental filtering and organism exchange levels. Bacteria drive the biogeochemical cycling of sulfur, nitrogen, and methane in wood fall through diverse metabolic pathways, whereas fungi are crucial for lignocellulose degradation. Ultimately, this study provides new insights into the driving pattern of community assembly, biogeochemical processes, and lignocellulose degradation in the microbiomes of deep-sea wood-fall micro-ecosystems, enhancing our comprehension of the ecological impacts of organic falls on deep-sea oligotrophic environments.
Collapse
Affiliation(s)
- Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xinyue Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Huanting Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xianrun Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kedong Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
2
|
Chamley A, Baley C, Matabos M, Vannier P, Sarradin PM, Freyermouth F, Davies P. Polymer material biodegradation in the deep sea. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177637. [PMID: 39579889 DOI: 10.1016/j.scitotenv.2024.177637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The phenomenon of marine plastic pollution is now well-established, with documented impacts on marine biodiversity and biogeochemical cycles. In order to mitigate this environmental impact, a significant amount of research has been conducted in recent years with the objective of developing biodegradable alternatives to conventional polymers and their composites in marine environments. The findings of this research significantly enhanced our understanding of biodegradation mechanisms and identified promising candidates. However, the majority of these studies have been conducted in coastal marine environments, which represent a minor component of the marine ecosystem. Recent models on the transport of plastic debris in the oceans indicate that deep-sea environments are likely to be the ultimate sink for a significant proportion of plastics entering the oceans. The aim of this review is to provide an overview of the processes of biodegradation of polymers in these deep-sea environments. The diversity and specific characteristics of these environments with respect to degradation mechanisms are discussed. While the majority of deep-sea conditions are not conducive to biodegradation, studies on organic falls (wood and whale carcasses) and a few investigations into materials previously shown to be biodegradable in coastal marine environments demonstrate mechanisms that are similar to those observed in shallow waters. Nevertheless, further research is necessary to reach definitive conclusions. It is essential to extend these studies to a broader range of deep-sea environments. Additionally, new methodologies that integrate microbiology and polymer science are required to accurately assess the process of assimilation of these materials in these environments.
Collapse
Affiliation(s)
- Alexandre Chamley
- Université Bretagne-Sud, IRDL, CNRS UMR 6027, BP 92116, Lorient Cedex 56321, France; Thales DMS, Brest, France; Ifremer RDT, Research and Technology Development Unit, Plouzané 29280, France.
| | - Christophe Baley
- Université Bretagne-Sud, IRDL, CNRS UMR 6027, BP 92116, Lorient Cedex 56321, France
| | - Marjolaine Matabos
- University Brest, CNRS, Ifremer, UMR 6197 Biologie Et Ecologie Des Ecosystèmes Marins Profonds, Plouzané 29280, France
| | - Pauline Vannier
- Laboratoire MAPIEM, E.A.4323, Université de Toulon, CS 60584, 83041 Cedex 9 Toulon, France
| | - Pierre Marie Sarradin
- University Brest, CNRS, Ifremer, UMR 6197 Biologie Et Ecologie Des Ecosystèmes Marins Profonds, Plouzané 29280, France
| | | | - Peter Davies
- Ifremer RDT, Research and Technology Development Unit, Plouzané 29280, France
| |
Collapse
|
3
|
Shen Z, Koch NM, Seid CA, Tilic E, Rouse GW. Three New Species of Deep-Sea Wood-Associated Sea Stars (Asteroidea: Caymanostellidae) from the Eastern Pacific. Zootaxa 2024; 5536:351-388. [PMID: 39646368 DOI: 10.11646/zootaxa.5536.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 12/10/2024]
Abstract
Caymanostellidae is a group of rarely collected and morphologically unusual sea stars that have been exclusively encountered on wood falls in the deep sea. There are currently three genera and seven species described, occurring in the Atlantic, Pacific and Indian Oceans with a depth range between 418 and 6780 m. Three new species are here described from specimens collected from wood falls in multiple localities across the Pacific margin of Costa Rica and near the Gulf of California (Mexico): Caymanostella scrippscognaticausa sp. nov., Caymanostella davidalani sp. nov. and Caymanostella loresae sp. nov. These records expand the known geographical distribution of caymanostellids and constitute their first report from wood falls found at methane seeps. This study also includes the first descriptions of early-stage juvenile caymanostellids and reveals that traits previously considered useful for diagnosis might represent intraspecific and ontogenetic variability, with important consequences for caymanostellid taxonomy.
Collapse
Affiliation(s)
- Zihui Shen
- Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA.
| | - Nicolás Mongiardino Koch
- Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA.
| | - Charlotte A Seid
- Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA.
| | - Ekin Tilic
- Department of Marine Zoology; Senckenberg Research Institute and Natural History Museum;60325 Frankfurt; Germany.
| | - Greg W Rouse
- Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA.
| |
Collapse
|
4
|
Zadjelovic V, Wright RJ, Borsetto C, Quartey J, Cairns TN, Langille MGI, Wellington EMH, Christie-Oleza JA. Microbial hitchhikers harbouring antimicrobial-resistance genes in the riverine plastisphere. MICROBIOME 2023; 11:225. [PMID: 37908022 PMCID: PMC10619285 DOI: 10.1186/s40168-023-01662-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND The widespread nature of plastic pollution has given rise to wide scientific and social concern regarding the capacity of these materials to serve as vectors for pathogenic bacteria and reservoirs for Antimicrobial Resistance Genes (ARG). In- and ex-situ incubations were used to characterise the riverine plastisphere taxonomically and functionally in order to determine whether antibiotics within the water influenced the ARG profiles in these microbiomes and how these compared to those on natural surfaces such as wood and their planktonic counterparts. RESULTS We show that plastics support a taxonomically distinct microbiome containing potential pathogens and ARGs. While the plastisphere was similar to those biofilms that grew on wood, they were distinct from the surrounding water microbiome. Hence, whilst potential opportunistic pathogens (i.e. Pseudomonas aeruginosa, Acinetobacter and Aeromonas) and ARG subtypes (i.e. those that confer resistance to macrolides/lincosamides, rifamycin, sulfonamides, disinfecting agents and glycopeptides) were predominant in all surface-related microbiomes, especially on weathered plastics, a completely different set of potential pathogens (i.e. Escherichia, Salmonella, Klebsiella and Streptococcus) and ARGs (i.e. aminoglycosides, tetracycline, aminocoumarin, fluoroquinolones, nitroimidazole, oxazolidinone and fosfomycin) dominated in the planktonic compartment. Our genome-centric analysis allowed the assembly of 215 Metagenome Assembled Genomes (MAGs), linking ARGs and other virulence-related genes to their host. Interestingly, a MAG belonging to Escherichia -that clearly predominated in water- harboured more ARGs and virulence factors than any other MAG, emphasising the potential virulent nature of these pathogenic-related groups. Finally, ex-situ incubations using environmentally-relevant concentrations of antibiotics increased the prevalence of their corresponding ARGs, but different riverine compartments -including plastispheres- were affected differently by each antibiotic. CONCLUSIONS Our results provide insights into the capacity of the riverine plastisphere to harbour a distinct set of potentially pathogenic bacteria and function as a reservoir of ARGs. The environmental impact that plastics pose if they act as a reservoir for either pathogenic bacteria or ARGs is aggravated by the persistence of plastics in the environment due to their recalcitrance and buoyancy. Nevertheless, the high similarities with microbiomes growing on natural co-occurring materials and even more worrisome microbiome observed in the surrounding water highlights the urgent need to integrate the analysis of all environmental compartments when assessing risks and exposure to pathogens and ARGs in anthropogenically-impacted ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Present address: Centro de Bioinnovación de Antofagasta (CBIA), Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, 1271155, Antofagasta, Chile.
| | - Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jeannelle Quartey
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tyler N Cairns
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Morgan G I Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| |
Collapse
|
5
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
6
|
Frequent Occurrence and Metabolic Versatility of Marinifilaceae Bacteria as Key Players in Organic Matter Mineralization in Global Deep Seas. mSystems 2022; 7:e0086422. [PMID: 36342154 PMCID: PMC9765461 DOI: 10.1128/msystems.00864-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transfer of animal and plant detritus of both terrestrial and marine origins to the deep sea occurs on a global scale. Microorganisms play an important role in mineralizing them therein, but these are yet to be identified in situ. To observe key bacteria involved, we conducted long-term in situ incubation and found that members of the family Marinifilaceae (MF) occurred as some of the most predominant bacteria thriving on the new inputs of plant and animal biomasses in the deep sea in both marginal and oceanic areas. This taxon is diverse and ubiquitous in marine environments. A total of 11 MAGs belonging to MF were retrieved from metagenomic data and diverged into four subgroups in the phylogenomic tree. Based on metagenomic and metatranscriptomic analyses, we described the metabolic features and in situ metabolizing activities of different subgroups. The MF-2 subgroup, which dominates plant detritus-enriched cultures, specializes in polysaccharide degradation and lignin oxidation and has high transcriptional activities of related genes in situ. Intriguingly, members of this subgroup encode a nitrogen fixation pathway to compensate for the shortage of nitrogen sources inside the plant detritus. In contrast, other subgroups dominating the animal tissue-supported microbiomes are distinguished from MF-2 with regard to carbon and nitrogen metabolism and exhibit high transcriptional activity for proteolysis in situ. Despite these metabolic divergences of MF lineages, they show high in situ transcriptional activities for organic fermentation and anaerobic respiration (reductions of metal and/or dimethyl sulfoxide). These results highlight the role of previously unrecognized Marinifilaceae bacteria in organic matter mineralization in marine environments by coupling carbon and nitrogen cycling with metal and sulfur. IMPORTANCE Microbial mineralization of organic matter has a significant impact on the global biogeochemical cycle. This report confirms the role of Marinifilaceae in organic degradation in the oceans, with a contribution to ocean carbon cycling that has previously been underestimated. It was the dominant taxon thriving on plant and animal biomasses in our in situ incubator, as well as in whale falls and wood falls. At least 9 subgroups were revealed, and they were widely distributed in oceans globally but predominant in organic-matter-rich environments, with an average relative abundance of 8.3%. Different subgroups display a preference for the degradation of different macromolecules (polysaccharides, lignin, and protein) and adapt to their environments via special metabolic mechanisms.
Collapse
|
7
|
Land-use change alters the bacterial community structure, but not forest management. Folia Microbiol (Praha) 2022; 68:277-290. [PMID: 36273059 DOI: 10.1007/s12223-022-01009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
Abstract
Deforestation has a large impact on soil fertility, especially on steep slopes, but by applying sustainable management practices, local communities in Oaxaca (Mexico) have tried to avoid the most negative effects on the forest ecosystems they manage. In this study, the characteristics and bacterial community structure were investigated from soil sampled in triplicate (n = 3) with different land use, i.e., arable, natural forest, sustainable managed, and reforested soil. The pH was significantly higher in the arable (6.2) than in the forest soils (≤ 5.3), while the organic matter was > 2 times higher in the natural forest (80.4 g/kg) and sustainable managed soil (86.3 g/kg) than in the arable (36.8 g/kg) and cleared and reforested soil (39.3 g/kg). The higher organic matter content in the first two soils was due to leaf litter, absent in the other soils. The species richness (q = 0), the typical (q = 1) and dominant bacteria (q = 2) were not affected significantly by land use. The beta diversity, however, showed a significant effect of land use on species richness (p = 0.0029). Proteobacteria (40.135%) and Actinobacteria (20.15%) were the dominant bacterial phyla, and Halomonas (14.50%) and the Verrucomicrobia DA101 (3.39%) were the dominant genera. The bacterial communities were highly significantly different in soil with different land use considering the taxonomic level of genus and OTUs (p ≤ 0.003). It was found that the sustainable managed forest provided the local community with sellable wood while maintaining the soil organic matter content, i.e., sequestered C and without altering the bacterial community structure.
Collapse
|
8
|
Li Y, Altamia MA, Shipway JR, Brugler MR, Bernardino AF, de Brito TL, Lin Z, da Silva Oliveira FA, Sumida P, Smith CR, Trindade-Silva A, Halanych KM, Distel DL. Contrasting modes of mitochondrial genome evolution in sister taxa of wood-eating marine bivalves (Teredinidae and Xylophagaidae). Genome Biol Evol 2022; 14:evac089. [PMID: 35714221 PMCID: PMC9226539 DOI: 10.1093/gbe/evac089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 11/14/2022] Open
Abstract
The bivalve families Teredinidae and Xylophagaidae include voracious consumers of wood in shallow and deep-water marine environments, respectively. The taxa are sister clades whose members consume wood as food with the aid of intracellular cellulolytic endosymbionts housed in their gills. This combination of adaptations is found in no other group of animals and was likely present in the common ancestor of both families. Despite these commonalities, the two families have followed dramatically different evolutionary paths with respect to anatomy, life history and distribution. Here we present 42 new mitochondrial genome sequences from Teredinidae and Xylophagaidae and show that distinct trajectories have also occurred in the evolution and organization of their mitochondrial genomes. Teredinidae display significantly greater rates of amino acid substitution but absolute conservation of protein-coding gene order, whereas Xylophagaidae display significantly less amino acid change but have undergone numerous and diverse changes in genome organization since their divergence from a common ancestor. As with many bivalves, these mitochondrial genomes encode two ribosomal RNAs, 12 protein coding genes, and 22 tRNAs; atp8 was not detected. We further show that their phylogeny, as inferred from amino acid sequences of 12 concatenated mitochondrial protein-coding genes, is largely congruent with those inferred from their nuclear genomes based on 18S and 28S ribosomal RNA sequences. Our results provide a robust phylogenetic framework to explore the tempo and mode of mitochondrial genome evolution and offer directions for future phylogenetic and taxonomic studies of wood-boring bivalves.
Collapse
Affiliation(s)
- Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Marvin A Altamia
- Ocean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, Massachusetts 01908, USA
| | - J Reuben Shipway
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Mercer R Brugler
- Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, South Carolina 29902, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA
| | | | - Thaís Lima de Brito
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Ceará, Brazil
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | - Paulo Sumida
- Departamento de Oceanografia Biológica, Instituto Oceanográfico da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawai’i at Mãnoa, Hawaii, USA
| | - Amaro Trindade-Silva
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Ceará, Brazil
| | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, North Carolina, USA
| | - Daniel L Distel
- Ocean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, Massachusetts 01908, USA
| |
Collapse
|
9
|
Ferrer A, Heath KD, Mosquera SL, Suaréz Y, Dalling JW. Assembly of wood-inhabiting archaeal, bacterial and fungal communities along a salinity gradient: common taxa are broadly distributed but locally abundant in preferred habitats. FEMS Microbiol Ecol 2022; 98:6566339. [PMID: 35404430 DOI: 10.1093/femsec/fiac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Wood decomposition in water is a key ecosystem process driven by diverse microbial taxa that likely differ in their affinities for freshwater, estuarine, and marine habitats. How these decomposer communities assemble in situ or potentially colonize from other habitats remains poorly understood. At three watersheds on Coiba Island, Panama, we placed replicate sections of branch wood of a single tree species on land, and in freshwater, estuarine and marine habitats that constitute a downstream salinity gradient. We sequenced archaea, bacteria and fungi from wood samples collected after 3, 9, and 15 months to examine microbial community composition, and to examine habitat specificity and abundance patterns. We found these microbial communities were broadly structured by similar factors, with a strong effect of salinity, but little effect of watershed identity on compositional variation. Moreover, common aquatic taxa were also present in wood incubated on land. Our results suggest that taxa either dispersed to both terrestrial and aquatic habitats, or that microbes with broad habitat ranges were initially present in the wood as endophytes. Nonetheless, these habitat generalists varied greatly in abundance across habitats suggesting an important role for habitat filtering in maintaining distinct aquatic communities in freshwater, estuarine and marine habitats.
Collapse
Affiliation(s)
- Astrid Ferrer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sergio L Mosquera
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Yaraví Suaréz
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - James W Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
10
|
Zhao R, Zhao F, Zheng S, Li X, Wang J, Xu K. Bacteria, Protists, and Fungi May Hold Clues of Seamount Impact on Diversity and Connectivity of Deep-Sea Pelagic Communities. Front Microbiol 2022; 13:773487. [PMID: 35464911 PMCID: PMC9024416 DOI: 10.3389/fmicb.2022.773487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
The topography and hydrography around seamounts have a strong influence on plankton biogeography. The intrinsic properties of various biological taxa inherently also shape their distribution. Therefore, it is hypothesized that different pelagic groups respond differently to effects of seamounts regarding their distribution and connectivity patterns. Herein, bacterial, protist, and fungal diversity was investigated across the water column around the Kocebu Guyot in the western Pacific Ocean. A higher connectivity was detected for bacteria than for protists and an extremely low connectivity for fungi, which might be attributed to parasitic and commensal interactions of many fungal taxa. The seamount enhanced the vertical connectivity of bacterial and protist communities, but significantly reduced protist connectivity along horizontal dimension. Such effects provide ecological opportunities for eukaryotic adaption and diversification. All the bacterial, protist, and fungal communities were more strongly affected by deterministic than stochastic processes. Drift appeared to have a more significant role in influencing the fungal community than other groups. Our study indicates the impact of seamounts on the pelagic community distribution and connectivity and highlights the mechanism of horizontally restricted dispersal combined with vertical mixing, which promotes the diversification of eukaryotic life.
Collapse
Affiliation(s)
- Rongjie Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shan Zheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuegang Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
11
|
16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay, Kenya. PLoS One 2021; 16:e0248485. [PMID: 33755699 PMCID: PMC7987175 DOI: 10.1371/journal.pone.0248485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/28/2021] [Indexed: 12/30/2022] Open
Abstract
Prokaryotic communities play key roles in biogeochemical transformation and cycling of nutrients in the productive mangrove ecosystem. In this study, the vertical distribution of rhizosphere bacteria was evaluated by profiling the bacterial diversity and community structure in the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) from Mida Creek and Gazi Bay, Kenya, using DNA-metabarcoding. Alpha diversity was not significantly different between sites, but, significantly higher in the rhizospheres of S. alba and R. mucronata in Gazi Bay than in Mida Creek. Chemical parameters of the mangrove sediments significantly correlated inversely with alpha diversity metrics. The bacterial community structure was significantly differentiated by geographical location, mangrove species and sampling depth, however, differences in mangrove species and sediment chemical parameters explained more the variation in bacterial community structure. Proteobacteria (mainly Deltaproteobacteria and Gammaproteobacteria) was the dominant phylum while the families Desulfobacteraceae, Pirellulaceae and Syntrophobacteraceae were dominant in both study sites and across all mangrove species. Constrained redundancy analysis indicated that calcium, potassium, magnesium, electrical conductivity, pH, nitrogen, sodium, carbon and salinity contributed significantly to the species–environment relationship. Predicted functional profiling using PICRUSt2 revealed that pathways for sulfur and carbon metabolism were significantly enriched in Gazi Bay than Mida Creek. Overall, the results indicate that bacterial community composition and their potential function are influenced by mangrove species and a fluctuating influx of nutrients in the mangrove ecosystems of Gazi Bay and Mida Creek.
Collapse
|
12
|
Raut MP, Pandhal J, Wright PC. Effective pretreatment of lignocellulosic co-substrates using barley straw-adapted microbial consortia to enhanced biomethanation by anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 321:124437. [PMID: 33271363 DOI: 10.1016/j.biortech.2020.124437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/23/2023]
Abstract
Microbial pretreatments have been identified as a compatible and sustainable process with anaerobic digestion compared to energy-intensive physicochemical pretreatments. In this study, barley straw and hay co-substrate was pretreated with a microaerobic barley straw-adapted microbial (BSAM) consortium prior to anaerobic digestion. The improved digestibility was investigated through 16S rRNA gene sequencing, microbial counts and C:N ratios. BSAM pretreatment resulted in 15.2 L kg-1 TS of methane yield after 35 days, almost 40 times more than the control. The methane content in total biogas produced were 58% (v/v) and 10% (v/v) in BSAM and control, respectively. This research demonstrated that BSAM-based pretreatment significantly increased the digestibility and surface area of the lignocellulosic material and considerably enhanced biomethanation. This study generates new potential bio-research opportunities in the emerging field of lignocellulosic anaerobic digestion-biorefineries.
Collapse
Affiliation(s)
- Mahendra P Raut
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Jagroop Pandhal
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Phillip C Wright
- School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
13
|
Cragg SM, Friess DA, Gillis LG, Trevathan-Tackett SM, Terrett OM, Watts JEM, Distel DL, Dupree P. Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:469-497. [PMID: 31505131 DOI: 10.1146/annurev-marine-010318-095333] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems-salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available. We show that the fate of this detritus differs markedly from that of strictly marine origin, because the former contains lignocellulose-an energy-rich polymer complex of cellulose, hemicelluloses, and lignin that is resistant to enzymatic breakdown. This complex can be depolymerized for nutritional purposes by specialized marine prokaryotes, fungi, protists, and invertebrates using enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases to release sugar monomers. The lignin component, however, is less readily depolymerized, and detritus therefore becomes lignin enriched, particularly in anoxic sediments, and forms a major carbon sink in blue carbon ecosystems. Eventual lignin breakdown releases a wide variety of small molecules that may contribute significantly to the oceanic pool of recalcitrant dissolved organic carbon. Marine carbon fluxes and sinks dependent on lignocellulosic detritus are important ecosystem services that are vulnerable to human interventions. These services must be considered when protecting blue carbon ecosystems and planning initiatives aimed at mitigating anthropogenic carbon emissions.
Collapse
Affiliation(s)
- Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth PO4 9LY, United Kingdom;
| | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore 117570;
| | - Lucy G Gillis
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany;
| | - Stacey M Trevathan-Tackett
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, Victoria 3125, Australia;
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom;
| | - Daniel L Distel
- Ocean Genome Legacy Center of New England Biolabs, Marine Science Center, Northeastern University, Nahant, Massachusetts 01908, USA;
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| |
Collapse
|
14
|
Dong D, Xu P, Li XZ, Wang C. Munidopsis species (Crustacea: Decapoda: Munidopsidae) from carcass falls in Weijia Guyot, West Pacific, with recognition of a new species based on integrative taxonomy. PeerJ 2019; 7:e8089. [PMID: 31772841 PMCID: PMC6876489 DOI: 10.7717/peerj.8089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 12/04/2022] Open
Abstract
Several squat lobster specimens of the genus Munidopsis were collected from an artificially placed carcass fall (cow bones) on Weijia Guyot in the western Pacific Ocean. Based on morphological comparisons and molecular analysis, three specimens were confirmed as juveniles of M. albatrossaePequegnat & Pequegnat, 1973, which represents the first record of this species in the western Pacific. The other specimens collected are newly described as Munidopsis spinifrons sp. nov., which is distinguished from the closely related species in having a spinose rostrum and basal lateral eyespine on the eyestalk. The M. albatrossae from Weijia Guyot exhibited very low genetic distances when compared with a conspecific sample from Monterey Bay, USA, and the closely related species M. aries (A. Milne Edwards, 1880) from the northeastern Atlantic. A phylogenetic tree based on the mtCOI gene shows M. spinifrons sp. nov. as sister to M. vrijenhoekiJones & Macpherson, 2007 and M. nitida (A. Milne Edwards, 1880), although M. vrijenhoeki presents a complex relationship with other species in the clade. The systematic status of the new species and the closely related species are discussed.
Collapse
Affiliation(s)
- Dong Dong
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Peng Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Xin-Zheng Li
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
In situ development of a methanotrophic microbiome in deep-sea sediments. ISME JOURNAL 2018; 13:197-213. [PMID: 30154496 PMCID: PMC6298960 DOI: 10.1038/s41396-018-0263-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 01/11/2023]
Abstract
Emission of the greenhouse gas methane from the seabed is globally controlled by marine aerobic and anaerobic methanotrophs gaining energy via methane oxidation. However, the processes involved in the assembly and dynamics of methanotrophic populations in complex natural microbial communities remain unclear. Here we investigated the development of a methanotrophic microbiome following subsurface mud eruptions at Håkon Mosby mud volcano (1250 m water depth). Freshly erupted muds hosted deep-subsurface communities that were dominated by Bathyarchaeota, Atribacteria and Chloroflexi. Methanotrophy was initially limited to a thin surface layer of Methylococcales populations consuming methane aerobically. With increasing distance to the eruptive center, anaerobic methanotrophic archaea, sulfate-reducing Desulfobacterales and thiotrophic Beggiatoaceae developed, and their respective metabolic capabilities dominated the biogeochemical functions of the community. Microbial richness, evenness, and cell numbers of the entire microbial community increased up to tenfold within a few years downstream of the mud flow from the eruptive center. The increasing diversity was accompanied by an up to fourfold increase in sequence abundance of relevant metabolic genes of the anaerobic methanotrophic and thiotrophic guilds. The communities fundamentally changed in their structure and functions as reflected in the metagenome turnover with distance from the eruptive center, and this was reflected in the biogeochemical zonation across the mud volcano caldera. The observed functional succession provides a framework for the response time and recovery of complex methanotrophic communities after disturbances of the deep-sea bed.
Collapse
|
16
|
Pop Ristova P, Pichler T, Friedrich MW, Bühring SI. Bacterial Diversity and Biogeochemistry of Two Marine Shallow-Water Hydrothermal Systems off Dominica (Lesser Antilles). Front Microbiol 2017; 8:2400. [PMID: 29255454 PMCID: PMC5722836 DOI: 10.3389/fmicb.2017.02400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas, indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments.
Collapse
Affiliation(s)
- Petra Pop Ristova
- Hydrothermal Geomicrobiology Group, MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Thomas Pichler
- Geochemistry and Hydrogeology, University of Bremen, Bremen, Germany
| | - Michael W. Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Solveig I. Bühring
- Hydrothermal Geomicrobiology Group, MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
17
|
Bacteria alone establish the chemical basis of the wood-fall chemosynthetic ecosystem in the deep-sea. ISME JOURNAL 2017; 12:367-379. [PMID: 28984846 PMCID: PMC5776450 DOI: 10.1038/ismej.2017.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/29/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
Wood-fall ecosystems host chemosynthetic bacteria that use hydrogen sulfide as an electron donor. The production of hydrogen sulfide from decaying wood in the deep-sea has long been suspected to rely on the activity of wood-boring bivalves, Xylophaga spp. However, recent mesocosm experiments have shown hydrogen sulfide production in the absence of wood borers. Here, we combined in situ chemical measurements, amplicon sequencing and metagenomics to test whether the presence of Xylophaga spp.-affected hydrogen sulfide production and wood microbial community assemblages. During a short-term experiment conducted in a deep-sea canyon, we found that wood-fall microbial communities could produce hydrogen sulfide in the absence of Xylophaga spp. The presence of wood borers had a strong impact on the microbial community composition on the wood surface but not in the wood centre, where communities were observed to be homogeneous among different samples. When wood borers were excluded, the wood centre community did not have the genetic potential to degrade cellulose or hemicellulose but could use shorter carbohydrates such as sucrose. We conclude that wood centre communities produce fermentation products that can be used by the sulfate-reducing bacteria detected near the wood surface. We thus demonstrate that microorganisms alone could establish the chemical basis essential for the recruitment of chemolithotrophic organisms in deep-sea wood falls.
Collapse
|
18
|
Biological early diagenesis and insolation-paced paleoproductivity signified in deep core sediment organic matter. Sci Rep 2017; 7:1581. [PMID: 28484263 PMCID: PMC5431472 DOI: 10.1038/s41598-017-01759-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/30/2017] [Indexed: 11/22/2022] Open
Abstract
The dynamics of a large stock of organic matter contained in deep sediments of marginal seas plays pivotal role in global carbon cycle, yet it is poorly constrained. Here, dissolved organic matter (DOM) in sediments was investigated for core sediment up to ~240 meters deep in the East/Japan Sea. The upper downcore profile (≤118 mbsf, or meters below seafloor) at a non-chimney site (U1) featured the exponential production of dissolved organic carbon (DOC) and optically active DOM with time in the pore water above sulfate-methane-transition-zone (SMTZ), concurrent with the increases of nutrients and alkalinity, and the reduction of sulfate. Such depth profiles signify a biological pathway of the DOM production during the early diagenesis of particulate organic matter presumably dominated by sulfate reduction. Below the SMTZ, an insolation-paced oscillation of DOM in a ~405-Kyr cycle of orbital eccentricity was observed at site U1, implying astronomically paced paleoproductivity stimulated by light availability. Furthermore, DOM dynamics of the deep sediments were likely governed by intensive humification as revealed by the less pronounced protein-like fluorescence and the lower H/C and O/C ratios below SMTZ among 15,281 formulas identified. Our findings here provide novel insights into organic matter dynamics in deep sediments.
Collapse
|