1
|
Norris RHC, Bizley JK. Ferret contributions to the business of sensory neurobiology. Curr Opin Neurobiol 2024; 89:102929. [PMID: 39488005 DOI: 10.1016/j.conb.2024.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
In this brief review, we will highlight the ferret Mustela putorius furo as an increasingly utilized animal model for sensory systems and cognitive neuroscience research. In particular, the human like hearing range of the ferret, coupled with their amenability to training, make them an especially useful model for auditory and multisensory neuroscience. These factors, combined with the increasing availability of virally mediated circuit dissection methods, mean they occupy a unique niche as a versatile and valuable research model.
Collapse
Affiliation(s)
- Rebecca H C Norris
- University College London, UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Jennifer K Bizley
- University College London, UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
2
|
Angeloni CF, Młynarski W, Piasini E, Williams AM, Wood KC, Garami L, Hermundstad AM, Geffen MN. Dynamics of cortical contrast adaptation predict perception of signals in noise. Nat Commun 2023; 14:4817. [PMID: 37558677 PMCID: PMC10412650 DOI: 10.1038/s41467-023-40477-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Neurons throughout the sensory pathway adapt their responses depending on the statistical structure of the sensory environment. Contrast gain control is a form of adaptation in the auditory cortex, but it is unclear whether the dynamics of gain control reflect efficient adaptation, and whether they shape behavioral perception. Here, we trained mice to detect a target presented in background noise shortly after a change in the contrast of the background. The observed changes in cortical gain and behavioral detection followed the dynamics of a normative model of efficient contrast gain control; specifically, target detection and sensitivity improved slowly in low contrast, but degraded rapidly in high contrast. Auditory cortex was required for this task, and cortical responses were not only similarly affected by contrast but predicted variability in behavioral performance. Combined, our results demonstrate that dynamic gain adaptation supports efficient coding in auditory cortex and predicts the perception of sounds in noise.
Collapse
Affiliation(s)
- Christopher F Angeloni
- Psychology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiktor Młynarski
- Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| | - Eugenio Piasini
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Aaron M Williams
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine C Wood
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda Garami
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Maria N Geffen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA.
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Reversible Inactivation of Ferret Auditory Cortex Impairs Spatial and Nonspatial Hearing. J Neurosci 2023; 43:749-763. [PMID: 36604168 PMCID: PMC9899081 DOI: 10.1523/jneurosci.1426-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
A key question in auditory neuroscience is to what extent are brain regions functionally specialized for processing specific sound features, such as location and identity. In auditory cortex, correlations between neural activity and sounds support both the specialization of distinct cortical subfields, and encoding of multiple sound features within individual cortical areas. However, few studies have tested the contribution of auditory cortex to hearing in multiple contexts. Here we determined the role of ferret primary auditory cortex in both spatial and nonspatial hearing by reversibly inactivating the middle ectosylvian gyrus during behavior using cooling (n = 2 females) or optogenetics (n = 1 female). Optogenetic experiments used the mDLx promoter to express Channelrhodopsin-2 in GABAergic interneurons, and we confirmed both viral expression (n = 2 females) and light-driven suppression of spiking activity in auditory cortex, recorded using Neuropixels under anesthesia (n = 465 units from 2 additional untrained female ferrets). Cortical inactivation via cooling or optogenetics impaired vowel discrimination in colocated noise. Ferrets implanted with cooling loops were tested in additional conditions that revealed no deficit when identifying vowels in clean conditions, or when the temporally coincident vowel and noise were spatially separated by 180 degrees. These animals did, however, show impaired sound localization when inactivating the same auditory cortical region implicated in vowel discrimination in noise. Our results demonstrate that, as a brain region showing mixed selectivity for spatial and nonspatial features of sound, primary auditory cortex contributes to multiple forms of hearing.SIGNIFICANCE STATEMENT Neurons in primary auditory cortex are often sensitive to the location and identity of sounds. Here we inactivated auditory cortex during spatial and nonspatial listening tasks using cooling, or optogenetics. Auditory cortical inactivation impaired multiple behaviors, demonstrating a role in both the analysis of sound location and identity and confirming a functional contribution of mixed selectivity observed in neural activity. Parallel optogenetic experiments in two additional untrained ferrets linked behavior to physiology by demonstrating that expression of Channelrhodopsin-2 permitted rapid light-driven suppression of auditory cortical activity recorded under anesthesia.
Collapse
|
4
|
Wang X, Zhang Y, Zhu L, Bai S, Li R, Sun H, Qi R, Cai R, Li M, Jia G, Cao X, Schriver KE, Li X, Gao L. Selective corticofugal modulation on sound processing in auditory thalamus of awake marmosets. Cereb Cortex 2022; 33:3372-3386. [PMID: 35851798 PMCID: PMC10068278 DOI: 10.1093/cercor/bhac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cortical feedback has long been considered crucial for the modulation of sensory perception and recognition. However, previous studies have shown varying modulatory effects of the primary auditory cortex (A1) on the auditory response of subcortical neurons, which complicate interpretations regarding the function of A1 in sound perception and recognition. This has been further complicated by studies conducted under different brain states. In the current study, we used cryo-inactivation in A1 to examine the role of corticothalamic feedback on medial geniculate body (MGB) neurons in awake marmosets. The primary effects of A1 inactivation were a frequency-specific decrease in the auditory response of most MGB neurons coupled with an increased spontaneous firing rate, which together resulted in a decrease in the signal-to-noise ratio. In addition, we report for the first time that A1 robustly modulated the long-lasting sustained response of MGB neurons, which changed the frequency tuning after A1 inactivation, e.g. some neurons are sharper with corticofugal feedback and some get broader. Taken together, our results demonstrate that corticothalamic modulation in awake marmosets serves to enhance sensory processing in a manner similar to center-surround models proposed in visual and somatosensory systems, a finding which supports common principles of corticothalamic processing across sensory systems.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Yuanqing Zhang
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Lin Zhu
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Siyi Bai
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Runze Qi
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Min Li
- Division of Psychology , State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875 , China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Xinyuan Cao
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Kenneth E Schriver
- School of Brain Science and Brain Medicine , Zhejiang University School of Medicine, Hangzhou 310020 , China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
- Department of Neurobiology , NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310020 , China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
- Department of Neurobiology , NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310020 , China
| |
Collapse
|
5
|
Town SM, Bizley JK. Sound Localization of World and Head-Centered Space in Ferrets. J Neurosci 2022; 42:4580-4593. [PMID: 35501154 PMCID: PMC7612817 DOI: 10.1523/jneurosci.0291-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
The location of sounds can be described in multiple coordinate systems that are defined relative to ourselves, or the world around us. Evidence from neural recordings in animals point toward the existence of both head-centered and world-centered representations of sound location in the brain; however, it is unclear whether such neural representations have perceptual correlates in the sound localization abilities of nonhuman listeners. Here, we establish novel behavioral tests to determine the coordinate systems in which ferrets can localize sounds. We found that ferrets could learn to discriminate between sound locations that were fixed in either world-centered or head-centered space, across wide variations in sound location in the alternative coordinate system. Using probe sounds to assess broader generalization of spatial hearing, we demonstrated that in both head and world-centered tasks, animals used continuous maps of auditory space to guide behavior. Single trial responses of individual animals were sufficiently informative that we could then model sound localization using speaker position in specific coordinate systems and accurately predict ferrets' actions in held-out data. Our results demonstrate that ferrets, an animal model in which neurons are known to be tuned to sound location in egocentric and allocentric reference frames, can also localize sounds in multiple head and world-centered spaces.SIGNIFICANCE STATEMENT Humans can describe the location of sounds either relative to themselves, or in the world, independent of their momentary position. These different spaces are also represented in the activity of neurons in animals, but it is not clear whether nonhuman listeners also perceive both head and world-centered sound location. Here, we designed behavioral tasks in which ferrets discriminated between sounds using their position in the world, or relative to the head. Subjects learnt to solve both problems and generalized sound location in each space when presented with infrequent probe sounds. These findings reveal a perceptual correlate of neural sensitivity previously observed in the ferret brain and establish that, like humans, ferrets can access an auditory map of their local environment.
Collapse
Affiliation(s)
- Stephen M Town
- Ear Institute, University College London, London WC1X 8EE, United Kingdom
| | - Jennifer K Bizley
- Ear Institute, University College London, London WC1X 8EE, United Kingdom
| |
Collapse
|
6
|
Wang X, Zhang Y, Bai S, Qi R, Sun H, Li R, Zhu L, Cao X, Jia G, Li X, Gao L. Corticofugal Modulation of Temporal and Rate Representations in the Inferior Colliculus of the Awake Marmoset. Cereb Cortex 2022; 32:4080-4097. [PMID: 35029654 DOI: 10.1093/cercor/bhab467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 11/14/2022] Open
Abstract
Temporal processing is crucial for auditory perception and cognition, especially for communication sounds. Previous studies have shown that the auditory cortex and the thalamus use temporal and rate representations to encode slowly and rapidly changing time-varying sounds. However, how the primate inferior colliculus (IC) encodes time-varying sounds at the millisecond scale remains unclear. In this study, we investigated the temporal processing by IC neurons in awake marmosets to Gaussian click trains with varying interclick intervals (2-100 ms). Strikingly, we found that 28% of IC neurons exhibited rate representation with nonsynchronized responses, which is in sharp contrast to the current view that the IC only uses a temporal representation to encode time-varying signals. Moreover, IC neurons with rate representation exhibited response properties distinct from those with temporal representation. We further demonstrated that reversible inactivation of the primary auditory cortex modulated 17% of the stimulus-synchronized responses and 21% of the nonsynchronized responses of IC neurons, revealing that cortico-colliculus projections play a role, but not a crucial one, in temporal processing in the IC. This study has significantly advanced our understanding of temporal processing in the IC of awake animals and provides new insights into temporal processing from the midbrain to the cortex.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Yuanqing Zhang
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Siyi Bai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Runze Qi
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Lin Zhu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xinyuan Cao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, School of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
7
|
Jeschke M, Ohl FW, Wang X. Effects of Cortical Cooling on Sound Processing in Auditory Cortex and Thalamus of Awake Marmosets. Front Neural Circuits 2022; 15:786740. [PMID: 35069125 PMCID: PMC8766342 DOI: 10.3389/fncir.2021.786740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature. Cooling-induced increases in the width of extracellularly recorded spikes in auditory cortex were observed over the distance of several hundred micrometers away from the cooling probe. Cortical neurons displayed reduction in both spontaneous and stimulus driven firing rates with decreased cortical temperatures. In thalamus, cortical cooling led to increased spontaneous firing and either increased or decreased stimulus driven activity. Furthermore, response tuning to modulation frequencies of temporally modulated sounds and spatial tuning to sound source location could be altered (increased or decreased) by cortical cooling. Specifically, best modulation frequencies of individual MGB neurons could shift either toward higher or lower frequencies based on the vector strength or the firing rate. The tuning of MGB neurons for spatial location could both sharpen or widen. Elevation preference could shift toward higher or lower elevations and azimuth tuning could move toward ipsilateral or contralateral locations. Such bidirectional changes were observed in many parameters which suggests that the auditory thalamus acts as a filter that could be adjusted according to behaviorally driven signals from auditory cortex. Future work will have to delineate the circuit elements responsible for the observed effects.
Collapse
Affiliation(s)
- Marcus Jeschke
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Laboratory, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany,*Correspondence: Marcus Jeschke
| | - Frank W. Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Xiaoqin Wang
| |
Collapse
|
8
|
Slonina ZA, Poole KC, Bizley JK. What can we learn from inactivation studies? Lessons from auditory cortex. Trends Neurosci 2021; 45:64-77. [PMID: 34799134 PMCID: PMC8897194 DOI: 10.1016/j.tins.2021.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Inactivation experiments in auditory cortex (AC) produce widely varying results that complicate interpretations regarding the precise role of AC in auditory perception and ensuing behaviour. The advent of optogenetic methods in neuroscience offers previously unachievable insight into the mechanisms transforming brain activity into behaviour. With a view to aiding the design and interpretation of future studies in and outside AC, here we discuss the methodological challenges faced in manipulating neural activity. While considering AC’s role in auditory behaviour through the prism of inactivation experiments, we consider the factors that confound the interpretation of the effects of inactivation on behaviour, including the species, the type of inactivation, the behavioural task employed, and the exact location of the inactivation. Wide variation in the outcome of auditory cortex inactivation has been an impediment to clear conclusions regarding the roles of the auditory cortex in behaviour. Inactivation methods differ in their efficacy and specificity. The likelihood of observing a behavioural deficit is additionally influenced by factors such as the species being used, task design and reward. A synthesis of previous results suggests that auditory cortex involvement is critical for tasks that require integrating across multiple stimulus features, and less likely to be critical for simple feature discriminations. New methods of neural silencing provide opportunities for spatially and temporally precise manipulation of activity, allowing perturbation of individual subfields and specific circuits.
Collapse
|
9
|
Cheng Y, Zhang Y, Wang F, Jia G, Zhou J, Shan Y, Sun X, Yu L, Merzenich MM, Recanzone GH, Yang L, Zhou X. Reversal of Age-Related Changes in Cortical Sound-Azimuth Selectivity with Training. Cereb Cortex 2020; 30:1768-1778. [PMID: 31504260 DOI: 10.1093/cercor/bhz201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 02/03/2023] Open
Abstract
The compromised abilities to understand speech and localize sounds are two hallmark deficits in aged individuals. Earlier studies have shown that age-related deficits in cortical neural timing, which is clearly associated with speech perception, can be partially reversed with auditory training. However, whether training can reverse aged-related cortical changes in the domain of spatial processing has never been studied. In this study, we examined cortical spatial processing in ~21-month-old rats that were trained on a sound-azimuth discrimination task. We found that animals that experienced 1 month of training displayed sharper cortical sound-azimuth tuning when compared to the age-matched untrained controls. This training-induced remodeling in spatial tuning was paralleled by increases of cortical parvalbumin-labeled inhibitory interneurons. However, no measurable changes in cortical spatial processing were recorded in age-matched animals that were passively exposed to training sounds with no task demands. These results that demonstrate the effects of training on cortical spatial domain processing in the rodent model further support the notion that age-related changes in central neural process are, due to their plastic nature, reversible. Moreover, the results offer the encouraging possibility that behavioral training might be used to attenuate declines in auditory perception, which are commonly observed in older individuals.
Collapse
Affiliation(s)
- Yuan Cheng
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Fang Wang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Guoqiang Jia
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Jie Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Xinde Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | | | - Gregg H Recanzone
- Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, University of California at Davis, CA 95616, USA
| | - Lianfang Yang
- Department of Physical Education, Zhejiang University of Finance & Economics, Hangzhou 310018, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
10
|
Synthesis of Hemispheric ITD Tuning from the Readout of a Neural Map: Commonalities of Proposed Coding Schemes in Birds and Mammals. J Neurosci 2019; 39:9053-9061. [PMID: 31570537 DOI: 10.1523/jneurosci.0873-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 11/21/2022] Open
Abstract
A major cue to infer sound direction is the difference in arrival time of the sound at the left and right ears, called interaural time difference (ITD). The neural coding of ITD and its similarity across species have been strongly debated. In the barn owl, an auditory specialist relying on sound localization to capture prey, ITDs within the physiological range determined by the head width are topographically represented at each frequency. The topographic representation suggests that sound direction may be inferred from the location of maximal neural activity within the map. Such topographical representation of ITD, however, is not evident in mammals. Instead, the preferred ITD of neurons in the mammalian brainstem often lies outside the physiological range and depends on the neuron's best frequency. Because of these disparities, it has been assumed that how spatial hearing is achieved in birds and mammals is fundamentally different. However, recent studies reveal ITD responses in the owl's forebrain and midbrain premotor area that are consistent with coding schemes proposed in mammals. Particularly, sound location in owls could be decoded from the relative firing rates of two broadly and inversely ITD-tuned channels. This evidence suggests that, at downstream stages, the code for ITD may not be qualitatively different across species. Thus, while experimental evidence continues to support the notion of differences in ITD representation across species and brain regions, the latest results indicate notable commonalities, suggesting that codes driving orienting behavior in mammals and birds may be comparable.
Collapse
|
11
|
Neurons in primary auditory cortex represent sound source location in a cue-invariant manner. Nat Commun 2019; 10:3019. [PMID: 31289272 PMCID: PMC6616358 DOI: 10.1038/s41467-019-10868-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
Auditory cortex is required for sound localisation, but how neural firing in auditory cortex underlies our perception of sound sources in space remains unclear. Specifically, whether neurons in auditory cortex represent spatial cues or an integrated representation of auditory space across cues is not known. Here, we measured the spatial receptive fields of neurons in primary auditory cortex (A1) while ferrets performed a relative localisation task. Manipulating the availability of binaural and spectral localisation cues had little impact on ferrets’ performance, or on neural spatial tuning. A subpopulation of neurons encoded spatial position consistently across localisation cue type. Furthermore, neural firing pattern decoders outperformed two-channel model decoders using population activity. Together, these observations suggest that A1 encodes the location of sound sources, as opposed to spatial cue values. The brain's auditory cortex is involved not just in detection of sounds, but also in localizing them. Here, the authors show that neurons in ferret primary auditory cortex (A1) encode the location of sound sources, as opposed to merely reflecting spatial cues.
Collapse
|
12
|
Sound identity is represented robustly in auditory cortex during perceptual constancy. Nat Commun 2018; 9:4786. [PMID: 30429465 PMCID: PMC6235866 DOI: 10.1038/s41467-018-07237-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/23/2018] [Indexed: 12/02/2022] Open
Abstract
Perceptual constancy requires neural representations that are selective for object identity, but also tolerant across identity-preserving transformations. How such representations arise in the brain and support perception remains unclear. Here, we study tolerant representation of sound identity in the auditory system by recording neural activity in auditory cortex of ferrets during perceptual constancy. Ferrets generalize vowel identity across variations in fundamental frequency, sound level and location, while neurons represent sound identity robustly across acoustic variations. Stimulus features are encoded with distinct time-courses in all conditions, however encoding of sound identity is delayed when animals fail to generalize and during passive listening. Neurons also encode information about task-irrelevant sound features, as well as animals’ choices and accuracy, while population decoding out-performs animals’ behavior. Our results show that during perceptual constancy, sound identity is represented robustly in auditory cortex across widely varying conditions, and behavioral generalization requires conserved timing of identity information. Perceptual constancy requires neural representations selective for object identity, yet tolerant of identity-preserving transformations. Here, the authors show that sound identity is represented robustly in auditory cortex and that behavioral generalization requires precise timing of identity information.
Collapse
|
13
|
Atilgan H, Town SM, Wood KC, Jones GP, Maddox RK, Lee AKC, Bizley JK. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding. Neuron 2018; 97:640-655.e4. [PMID: 29395914 PMCID: PMC5814679 DOI: 10.1016/j.neuron.2017.12.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/28/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022]
Abstract
How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Visual stimuli can shape how auditory cortical neurons respond to sound mixtures Temporal coherence between senses enhances sound features of a bound multisensory object Visual stimuli elicit changes in the phase of the local field potential in auditory cortex Vision-induced phase effects are lost when visual cortex is reversibly silenced
Collapse
Affiliation(s)
- Huriye Atilgan
- The Ear Institute, University College London, London, UK
| | - Stephen M Town
- The Ear Institute, University College London, London, UK
| | | | - Gareth P Jones
- The Ear Institute, University College London, London, UK
| | - Ross K Maddox
- Department of Biomedical Engineering and Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA; Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Adrian K C Lee
- Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
14
|
Town SM, Brimijoin WO, Bizley JK. Egocentric and allocentric representations in auditory cortex. PLoS Biol 2017; 15:e2001878. [PMID: 28617796 PMCID: PMC5472254 DOI: 10.1371/journal.pbio.2001878] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/08/2017] [Indexed: 11/18/2022] Open
Abstract
A key function of the brain is to provide a stable representation of an object's location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subjects can be explained either by sensitivity to sound source location relative to the head (egocentric) or relative to the world (allocentric encoding). This coordinate frame ambiguity can be resolved by studying freely moving subjects; here we recorded spatial receptive fields in the auditory cortex of freely moving ferrets. We found that most spatially tuned neurons represented sound source location relative to the head across changes in head position and direction. In addition, we also recorded a small number of neurons in which sound location was represented in a world-centered coordinate frame. We used measurements of spatial tuning across changes in head position and direction to explore the influence of sound source distance and speed of head movement on auditory cortical activity and spatial tuning. Modulation depth of spatial tuning increased with distance for egocentric but not allocentric units, whereas, for both populations, modulation was stronger at faster movement speeds. Our findings suggest that early auditory cortex primarily represents sound source location relative to ourselves but that a minority of cells can represent sound location in the world independent of our own position.
Collapse
Affiliation(s)
- Stephen M. Town
- Ear Institute, University College London, London, United Kingdom
| | - W. Owen Brimijoin
- MRC/CSO Institute of Hearing Research – Scottish Section, Glasgow, United Kingdom
| | | |
Collapse
|