1
|
Peng W, Wu P, Yuan M, Yuan B, Zhu L, Zhou J, Li Q. Potential Molecular Mechanisms of Recurrent and Progressive Meningiomas: A Review of the Latest Literature. Front Oncol 2022; 12:850463. [PMID: 35712491 PMCID: PMC9196588 DOI: 10.3389/fonc.2022.850463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas, the most frequent primary intracranial tumors of the central nervous system in adults, originate from the meninges and meningeal spaces. Surgical resection and adjuvant radiation are considered the preferred treatment options. Although most meningiomas are benign and slow-growing, some patients suffer from tumor recurrence and disease progression, eventually resulting in poorer clinical outcomes, including malignant transformation and death. It is thus crucial to identify these "high-risk" tumors early; this requires an in-depth understanding of the molecular and genetic alterations, thereby providing a theoretical foundation for establishing personalized and precise treatment in the future. Here, we review the most up-to-date knowledge of the cellular biological alterations involved in the progression of meningiomas, including cell proliferation, neo-angiogenesis, inhibition of apoptosis, and immunogenicity. Focused genetic alterations, including chromosomal abnormalities and DNA methylation patterns, are summarized and discussed in detail. We also present latest therapeutic targets and clinical trials for meningiomas' treatment. A further understanding of cellular biological and genetic alterations will provide new prospects for the accurate screening and treatment of recurrent and progressive meningiomas.
Collapse
Affiliation(s)
- Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
| | - Bo Yuan
- Department of Nephrology, The Dazu District People’s Hospital, Chongqing, China
| | - Lian Zhu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Jiesong Zhou
- Department of Plastic Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Wilson TA, Huang L, Ramanathan D, Lopez-Gonzalez M, Pillai P, De Los Reyes K, Kumal M, Boling W. Review of Atypical and Anaplastic Meningiomas: Classification, Molecular Biology, and Management. Front Oncol 2020; 10:565582. [PMID: 33330036 PMCID: PMC7714950 DOI: 10.3389/fonc.2020.565582] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Although the majority of meningiomas are slow-growing and benign, atypical and anaplastic meningiomas behave aggressively with a penchant for recurrence. Standard of care includes surgical resection followed by adjuvant radiation in anaplastic and partially resected atypical meningiomas; however, the role of adjuvant radiation for incompletely resected atypical meningiomas remains debated. Despite maximum treatment, atypical, and anaplastic meningiomas have a strong proclivity for recurrence. Accumulating mutations over time, recurrent tumors behave more aggressively and often become refractory or no longer amenable to further surgical resection or radiation. Chemotherapy and other medical therapies are available as salvage treatment once standard options are exhausted; however, efficacy of these agents remains limited. This review discusses the risk factors, classification, and molecular biology of meningiomas as well as the current management strategies, novel therapeutic approaches, and future directions for managing atypical and anaplastic meningiomas.
Collapse
Affiliation(s)
| | - Lei Huang
- Loma Linda University, Loma Linda, CA, United States
| | | | | | - Promod Pillai
- Loma Linda University, Loma Linda, CA, United States
| | | | | | - Warren Boling
- Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
3
|
Chen X, Wang L, Su X, Luo SY, Tang X, Huang Y. Identification of potential target genes and crucial pathways in small cell lung cancer based on bioinformatic strategy and human samples. PLoS One 2020; 15:e0242194. [PMID: 33186389 PMCID: PMC7665632 DOI: 10.1371/journal.pone.0242194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is a carcinoma of the lungs with strong invasion, poor prognosis and resistant to multiple chemotherapeutic drugs. It has posed severe challenges for the effective treatment of lung cancer. Therefore, searching for genes related to the development and prognosis of SCLC and uncovering their underlying molecular mechanisms are urgent problems to be resolved. This study is aimed at exploring the potential pathogenic and prognostic crucial genes and key pathways of SCLC via bioinformatic analysis of public datasets. Firstly, 117 SCLC samples and 51 normal lung samples were collected and analyzed from three gene expression datasets. Then, 102 up-regulated and 106 down-regulated differentially expressed genes (DEGs) were observed. And then, functional annotation and pathway enrichment analyzes of DEGs was performed utilizing the FunRich. The protein-protein interaction (PPI) network of the DEGs was constructed through the STRING website, visualized by Cytoscape. Finally, the expression levels of eight hub genes were confirmed in Oncomine database and human samples from SCLC patients. It showed that CDC20, BUB1, TOP2A, RRM2, CCNA2, UBE2C, MAD2L1, and BUB1B were upregulated in SCLC tissues compared to paired adjacent non-cancerous tissues. These suggested that eight hub genes might be viewed as new biomarkers for prognosis of SCLC or to guide individualized medication for the therapy of SCLC.
Collapse
Affiliation(s)
- Xiuwen Chen
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Li Wang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Sen-yuan Luo
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xianbin Tang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Yugang Huang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei, China
- * E-mail:
| |
Collapse
|
4
|
Shao Z, Liu L, Zheng Y, Tu S, Pan Y, Yan S, Wei Q, Shao A, Zhang J. Molecular Mechanism and Approach in Progression of Meningioma. Front Oncol 2020; 10:538845. [PMID: 33042832 PMCID: PMC7518150 DOI: 10.3389/fonc.2020.538845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Meningioma is the most common tumor of the central nervous system, most of which is benign. Even after complete resection, a high rate of recurrence of meningioma is observed. From in-depth study of its pathogenesis, it has been found that a number of chromosomal variations and abnormal molecular signals are closely related to the occurrence and development of malignancy in meningioma, which may provide the theoretical basis and potential direction for accurate and targeted treatment. We have reviewed advances in chromosomal variations and molecular mechanisms involved in the progression of meningioma, and have highlighted the association with malignant biological behavior including cell proliferation, angiogenesis, increased invasiveness, and inhibition of apoptosis. In addition, the chemotherapy of meningioma is summarized and discussed.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Deguchi S, Nakashima K, Nakasu Y, Mitsuya K, Hayashi N, Ito I, Endo M, Kitahara S, Nakasu S. A practical predictor of the growth potential of benign meningiomas: Hypointensity of surface layer in T2-weighted magnetic resonance imaging. Clin Imaging 2020; 62:10-16. [PMID: 32018148 DOI: 10.1016/j.clinimag.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/03/2019] [Accepted: 01/07/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accurate evaluation of proliferative potential is particularly important in the clinical management of individual patients with meningiomas. We introduce a new feature in the parenchyma of meningioma, namely, hypointensity of the surface layer (HSL), on T2-weighted MR images and compare it with a cellular proliferation index and growth speed. MATERIALS AND METHODS We retrospectively analyzed the records of consecutive patients with WHO grade I meningiomas in two institutes: an operated group with 124 meningiomas resected in one institute, and an observed group with 89 meningiomas monitored without surgery in the other. Proliferative potential was evaluated using the MIB-1 labeling index (MIB-1 LI) for the operated group and using the relative growth rate on serial MR images for the observed group. RESULTS In the operated group, 60 (48.4%) meningiomas exhibited HSL. HSL-positive meningiomas were significantly smaller in size and more often calcified than HSL-negative ones. Univariate analysis showed that HSL negativity, large size, no calcification, and surrounding brain edema were significantly associated with high MIB-1 LI (p < 0.05). Multivariate analysis demonstrated that only HSL was significantly related to MIB-1 LI (p = 0.001). HSL did not correlate with tumor recurrence after resection. In the observed group, 43 (48.3%) meningiomas exhibited HSL and they presented a significantly slow relative growth rate. CONCLUSIONS HSL is a simple and new radiological feature indicative of low proliferative potential and a low risk of enlargement of meningiomas. The presence or absence of HSL may serve as a key parameter for the selection of aggressive treatment or active observation.
Collapse
Affiliation(s)
- Shoichi Deguchi
- Divisions of Neurosurgery, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan.
| | - Kazuaki Nakashima
- Diagnostic Radiology, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Yoko Nakasu
- Divisions of Neurosurgery, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Koichi Mitsuya
- Divisions of Neurosurgery, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Nakamasa Hayashi
- Divisions of Neurosurgery, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Ichiro Ito
- Diagnostic Pathology, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Masahiro Endo
- Diagnostic Radiology, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Sawako Kitahara
- Divisions of Clinical Radiology, Kusatsu General Hospital, Kusatsu, Shiga, Japan
| | - Satoshi Nakasu
- Neurosurgery, Kusatsu General Hospital, Kusatsu, Shiga, Japan
| |
Collapse
|
6
|
Song J, Ma Q, Hu M, Qian D, Wang B, He N. The Inhibition of miR-144-3p on Cell Proliferation and Metastasis by Targeting TOP2A in HCMV-Positive Glioblastoma Cells. Molecules 2018; 23:molecules23123259. [PMID: 30544723 PMCID: PMC6320803 DOI: 10.3390/molecules23123259] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM), the most common type of primary tumor in the central nervous system, is a very aggressive brain tumor with poor prognosis and a high recurrence rate. Increasing evidence suggests that human cytomegalovirus (HCMV) infection is related to GBM and leads to GBM cell growth and metastasis. MicroRNAs are important regulators in the growth and metastasis of glioblastoma. This study aimed to demonstrate the role of miR-144-3p in HCMV-positive glioblastoma. We found that, after HCMV infection, the expression of miR-144-3p decreased, whereas the expression of TOP2A increased. Bioinformatics analyses indicated that miR-144-3p directly targets the TOP2A 3'-UTR (Untranslated Region). We discovered that the overexpression of miR-144-3p downregulated the overexpression of TOP2A and inhibited the proliferation, clone formation, and invasion of HCMV-positive glioma in vitro. Taken together, these results show that miR-144-3p inhibited growth and promoted apoptosis in glioma cells by targeting TOP2A.
Collapse
Affiliation(s)
- Jingyi Song
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Qingxia Ma
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Ming Hu
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Dongmeng Qian
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Bin Wang
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Ningning He
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| |
Collapse
|