1
|
Prates I, Hutchinson MN, Singhal S, Moritz C, Rabosky DL. Notes from the taxonomic disaster zone: Evolutionary drivers of intractable species boundaries in an Australian lizard clade (Scincidae: Ctenotus). Mol Ecol 2024; 33:e17074. [PMID: 37461158 DOI: 10.1111/mec.17074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 10/18/2024]
Abstract
Genomic-scale datasets, sophisticated analytical techniques, and conceptual advances have disproportionately failed to resolve species boundaries in some groups relative to others. To understand the processes that underlie taxonomic intractability, we dissect the speciation history of an Australian lizard clade that arguably represents a "worst-case" scenario for species delimitation within vertebrates: the Ctenotus inornatus species group, a clade beset with decoupled genetic and phenotypic breaks, uncertain geographic ranges, and parallelism in purportedly diagnostic morphological characters. We sampled hundreds of localities to generate a genomic perspective on population divergence, structure, and admixture. Our results revealed rampant paraphyly of nominate taxa in the group, with lineages that are either morphologically cryptic or polytypic. Isolation-by-distance patterns reflect spatially continuous differentiation among certain pairs of putative species, yet genetic and geographic distances are decoupled in other pairs. Comparisons of mitochondrial and nuclear gene trees, tests of nuclear introgression, and historical demographic modelling identified gene flow between divergent candidate species. Levels of admixture are decoupled from phylogenetic relatedness; gene flow is often higher between sympatric species than between parapatric populations of the same species. Such idiosyncratic patterns of introgression contribute to species boundaries that are fuzzy while also varying in fuzziness. Our results suggest that "taxonomic disaster zones" like the C. inornatus species group result from spatial variation in the porosity of species boundaries and the resulting patterns of genetic and phenotypic variation. This study raises questions about the origin and persistence of hybridizing species and highlights the unique insights provided by taxa that have long eluded straightforward taxonomic categorization.
Collapse
Affiliation(s)
- Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sonal Singhal
- Department of Biology, California State University - Dominguez Hills, Carson, California, USA
| | - Craig Moritz
- Division of Ecology and Evolution and Centre for Biodiversity Analysis, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Lien AM, Banki O, Barik SK, Buckeridge JS, Christidis L, Cigliano MM, Conix S, Costello MJ, Hobern D, Kirk PM, Kroh A, Montgomery N, Nikolaeva S, Orrell TM, Pyle RL, Raz L, Thiele K, Thomson SA, van Dijk PP, Wambiji N, Whalen A, Zachos FE, Zhang ZQ, Garnett ST. Widespread support for a global species list with a formal governance system. Proc Natl Acad Sci U S A 2023; 120:e2306899120. [PMID: 37903262 PMCID: PMC10636331 DOI: 10.1073/pnas.2306899120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Taxonomic data are a scientific common. Unlike nomenclature, which has strong governance institutions, there are currently no generally accepted governance institutions for the compilation of taxonomic data into an accepted global list. This gap results in challenges for conservation, ecological research, policymaking, international trade, and other areas of scientific and societal importance. Consensus on a global list and its management requires effective governance and standards, including agreed mechanisms for choosing among competing taxonomies and partial lists. However, governance frameworks are currently lacking, and a call for governance in 2017 generated critical responses. Any governance system to which compliance is voluntary requires a high level of legitimacy and credibility among those by and for whom it is created. Legitimacy and credibility, in turn, require adequate and credible consultation. Here, we report on the results of a global survey of taxonomists, scientists from other disciplines, and users of taxonomy designed to assess views and test ideas for a new system of taxonomic list governance. We found a surprisingly high degree of agreement on the need for a global list of accepted species and their names, and consistent views on what such a list should provide to users and how it should be governed. The survey suggests that consensus on a mechanism to create, manage, and govern a single widely accepted list of all the world's species is achievable. This finding was unexpected given past controversies about the merits of list governance.
Collapse
Affiliation(s)
- Aaron M. Lien
- School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ85721
| | - Olaf Banki
- Species 2000, Naturalis, Leiden2300 RA, Netherlands
| | - Saroj K. Barik
- Department of Botany, North-Eastern Hill University, Shillong793022, India
| | - John S. Buckeridge
- Earth and Oceanic Systems Group, RMIT University, Melbourne, VIC3001, Australia
| | - Les Christidis
- Southern Cross University, Coffs Harbour, NSW2450, Australia
| | - María Marta Cigliano
- Museo de La Plata, Centro de Estudios Parasitológicos y de Vectores - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, La PlataB1900FWA, Argentina
| | - Stijn Conix
- Institut Supérieur de Philosophie, Université Catholique de Louvain, Ottignies-Louvain-La-Neuve1348, Belgium
| | - Mark John Costello
- Faculty of Biosciences and Aquaculture, Nord Universitet, Bodø8049, Norway
| | - Donald Hobern
- Atlas of Living Australia, Commonwealth Scientific and Industrial Research Organization Black Mountain, Canberra, ACT2601, Australia
| | - Paul M. Kirk
- Royal Botanic Gardens Kew, Richmond, LondonTW9 3AB, United Kingdom
| | - Andreas Kroh
- Natural History Museum Vienna, Vienna1010, Austria
| | - Narelle Montgomery
- Department of Climate Change, Energy, the Environment and Water, CanberraACT2600, Australia
- Sessional Committee, Scientific Council, Convention in the Convention on the Conservation of Migratory Species of Wild Animals, Bonn53113, Germany
| | - Svetlana Nikolaeva
- Department of Earth Sciences, The Natural History Museum, LondonSW7 5BD, United Kingdom
- Laboratory of Molluscs, Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow117647, Russia
- Research Laboratory of Stratigraphy of Oil-and-Gas Bearing Reservoirs, Kazan Federal University, Kazan420008, Russia
| | - Thomas M. Orrell
- Informatics and Data Science Center, Smithsonian Institution, National Museum of Natural History, Washington, DC20013
| | | | - Lauren Raz
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá111321, Colombia
| | - Kevin Thiele
- Research School of Biology, Australian National University, CanberraACT2600, Australia
| | - Scott A. Thomson
- Centro de Estudos dos Quelônios da Amazônia, Manaus69055-010, Brazil
- Research Institute for the Environment and Livelihoods, Charles Darwin University, DarwinNT0909, Australia
| | | | - Nina Wambiji
- Kenya Marine and Fisheries Research Institute, Mombasa80100, Kenya
| | - Anthony Whalen
- National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation, CanberraACT2601, Australia
| | - Frank E. Zachos
- Natural History Museum Vienna, Vienna1010, Austria
- Department of Evolutionary Biology, University of Vienna, Vienna1030, Austria
- Department of Genetics, University of the Free State, Bloemfontein9301, South Africa
| | - Zhi-Qiang Zhang
- New Zealand Arthropod Collection, Manaaki Whenua–Landcare Research, St Johns, Auckland1072, New Zealand
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, The University of Auckland1010, Auckland, New Zealand
| | - Stephen T. Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, DarwinNT0909, Australia
| |
Collapse
|
3
|
Wells T, Carruthers T, Muñoz-Rodríguez P, Sumadijaya A, Wood JRI, Scotland RW. Species as a Heuristic: Reconciling Theory and Practice. Syst Biol 2022; 71:1233-1243. [PMID: 34672346 PMCID: PMC9366457 DOI: 10.1093/sysbio/syab087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 11/21/2022] Open
Abstract
Species are crucial to most branches of biological research, yet remain controversial in terms of definition, delimitation, and reality. The difficulty of resolving the "species problem" stems from the tension between their theoretical concept as groups of evolving and highly variable organisms and the practical need for a stable and comparable unit of biology. Here, we suggest that treating species as a heuristic can be consistent with a theoretical definition of what species are and with the practical means by which they are identified and delimited. Specifically, we suggest that theoretically species are heuristic since they comprise clusters of closely related individuals responding in a similar manner to comparable sets of evolutionary and ecological forces, whilst they are practically heuristic because they are identifiable by the congruence of contingent properties indicative of those forces. This reconciliation of the theoretical basis of species with their practical applications in biological research allows for a loose but relatively consistent definition of species based on the strategic analysis and integration of genotypic, phenotypic, and ecotypic data. [Cohesion; heuristic; homeostasis; lineage; species problem.].
Collapse
Affiliation(s)
- Tom Wells
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Tom Carruthers
- The Herbarium & ToL, Royal Botanic Garden, Kew, Richmond, UK
| | | | - Alex Sumadijaya
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Research Center for Biology National Research and Innovation Agency, Cibinong Science Center, Indonesia
| | - John R I Wood
- Department of Plant Sciences, University of Oxford, Oxford, UK
- The Herbarium & ToL, Royal Botanic Garden, Kew, Richmond, UK
| | | |
Collapse
|
4
|
Gill transcriptome of the yellow peacock bass (Cichla ocellaris monoculus) exposed to contrasting physicochemical conditions. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Gregorio Martínez J, David Rangel-Medrano J, Johanna Yepes-Acevedo A, Restrepo-Escobar N, Judith Márquez E. Species limits and introgression in Pimelodus from the Magdalena-Cauca River basin. Mol Phylogenet Evol 2022; 173:107517. [DOI: 10.1016/j.ympev.2022.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
|
6
|
Guinand B, Oral M, Tougard C. Brown trout phylogenetics: A persistent mirage towards (too) many species. JOURNAL OF FISH BIOLOGY 2021; 99:298-307. [PMID: 33483952 DOI: 10.1111/jfb.14686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Bruno Guinand
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Münevver Oral
- Faculty of Fisheries and Aquatic Science, Recep Tayyip Erdogan University, Rize, Turkey
| | | |
Collapse
|
7
|
Fontenelle JP, Lovejoy NR, Kolmann MA, Marques FPL. Molecular phylogeny for the Neotropical freshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals limitations of traditional taxonomy. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
The subfamily Potamotrygoninae, the only extant clade of elasmobranchs exclusive to freshwater environments, encompasses four genera and 38 species distributed across almost every major South American river basin. Despite their importance in the ornamental fish trade, the taxonomy and evolutionary relationships within potamotrygonines have not yet been resolved. Here, we present a comprehensive molecular phylogeny for the Neotropical freshwater stingrays, based on extensive species and population sampling (35 species and > 350 individuals from drainages across South America). Our phylogeny corroborates the monophyly of the genera Paratrygon and Heliotrygon and the monophyly of the Potamotrygon + Plesiotrygon clade. Within the Potamotrygon + Plesiotrygon clade, we identify a core Potamotrygon clade characterized by short branches, low nodal support and incongruence with current species-level taxonomy. In the core Potamotrygon clade, specimens of widespread species, such as Potamotrygon motoro and Potamotrygon orbignyi, do not form monophyletic lineages; instead, specimens from these species are often closely related to those of other species from the same river basins. These patterns could be caused by inaccurate taxonomy, hybridization, incomplete lineage sorting and rapid diversification. We discuss the conservation of Neotropical freshwater stingrays from a phylogenetic perspective and suggest ways to prioritize potamotrygonid conservation efforts with respect to endemism and evolutionary distinctiveness.
Collapse
Affiliation(s)
- João Pedro Fontenelle
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Matthew A Kolmann
- Museum of Paleontology, Biological Sciences Building, University of Michigan, Ann Arbor, MI, USA
| | - Fernando P L Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Cidade Universitária, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Padial JM, De la Riva I. A paradigm shift in our view of species drives current trends in biological classification. Biol Rev Camb Philos Soc 2020; 96:731-751. [PMID: 33368983 DOI: 10.1111/brv.12676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Discontent about changes in species classifications has grown in recent years. Many of these changes are seen as arbitrary, stemming from unjustified conceptual and methodological grounds, or leading to species that are less distinct than those recognised in the past. We argue that current trends in species classification are the result of a paradigm shift toward which systematics and population genetics have converged and that regards species as the phylogenetic lineages that form the branches of the Tree of Life. Species delimitation now consists of determining which populations belong to which individual phylogenetic lineage. This requires inferences on the process of lineage splitting and divergence, a process to which we have only partial access through incidental evidence and assumptions that are themselves subject to refutation. This approach is not free of problems, as horizontal gene transfer, introgression, hybridisation, incorrect assumptions, sampling and methodological biases can mislead inferences of phylogenetic lineages. Increasing precision is demanded through the identification of both sister relationships and processes blurring or mimicking phylogeny, which has triggered, on the one hand, the development of methods that explicitly address such processes and, on the other hand, an increase in geographical and character data sampling necessary to infer/test such processes. Although our resolving power has increased, our knowledge of sister relationships - what we designate as species resolution - remains poor for many taxa and areas, which biases species limits and perceptions about how divergent species are or ought to be. We attribute to this conceptual shift the demise of trinominal nomenclature we are witnessing with the rise of subspecies to species or their rejection altogether; subspecies are raised to species if they are found to correspond to phylogenetic lineages, while they are rejected as fabricated taxa if they reflect arbitrary partitions of continuous or non-hereditary variation. Conservation strategies, if based on taxa, should emphasise species and reduce the use of subspecies to avoid preserving arbitrary partitions of continuous variation; local variation is best preserved by focusing on biological processes generating ecosystem resilience and diversity rather than by formally naming diagnosable units of any kind. Since many binomials still designate complexes of species rather than individual species, many species have been discovered but not named, geographical sampling is sparse, gene lineages have been mistaken for species, plenty of species limits remain untested, and many groups and areas lack adequate species resolution, we cannot avoid frequent changes to classifications as we address these problems. Changes will not only affect neglected taxa or areas, but also popular ones and regions where taxonomic research remained dormant for decades and old classifications were taken for granted.
Collapse
Affiliation(s)
- José M Padial
- Department of Herpetology, American Museum of Natural History, Central Park West & 79th St., New York, NY, 10024, U.S.A.,Department of Biology, Bronx Community College, City University of New York, 2155 University Avenue, Bronx, NY, 10453, U.S.A
| | - Ignacio De la Riva
- Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, Madrid, 28006, Spain
| |
Collapse
|
9
|
Roberto IJ, Bittencourt PS, Muniz FL, Hernández-Rangel SM, Nóbrega YC, Ávila RW, Souza BC, Alvarez G, Miranda-Chumacero G, Campos Z, Farias IP, Hrbek T. Unexpected but unsurprising lineage diversity within the most widespread Neotropical crocodilian genus Caiman (Crocodylia, Alligatoridae). SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1769222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Igor J. Roberto
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Post-Graduate Program in Zoology, Institute of Biological Sciences, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pedro S. Bittencourt
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Fabio L. Muniz
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Sandra M. Hernández-Rangel
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | | | - Robson W. Ávila
- Department of Biology, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Bruno C. Souza
- Chico Mendes Institute for Biodiversity Conservation (ICMBio), Boa Vista, RR, Brazil
| | - Gustavo Alvarez
- Wildlife Conservation Society (WCS), Bolivia Program, La Paz, Bolivia
| | | | - Zilca Campos
- Wildlife Laboratory, Brazilian Agricultural Research Corporation (EMBRAPA) Pantanal, Corumbá, MS, Brazil
| | - Izeni P. Farias
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Tomas Hrbek
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
10
|
Argolo LA, López-Fernández H, Batalha-Filho H, Affonso PRADM. Unraveling the systematics and evolution of the 'Geophagus' brasiliensis (Cichliformes: Cichlidae) species complex. Mol Phylogenet Evol 2020; 150:106855. [PMID: 32442518 DOI: 10.1016/j.ympev.2020.106855] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/01/2020] [Accepted: 05/13/2020] [Indexed: 11/15/2022]
Abstract
The 'Geophagus' brasiliensis complex is one of the most abundant groups of cichlids from eastern coastal basins in South America. Traditionally, this fish group has been recognized as incertae sedis because of phylogenetic uncertainties and unclear taxonomy. In addition, the remarkable morphological, chromosomal, and DNA variation reported over recent years in several populations of these cichlids has increased the debate about their species richness and their distributional range. Here, we tested the presence of independent evolutionary lineages within the 'G.' brasiliensis complex, addressing their taxonomic status and evolutionary relationships, including a comparative analysis of genetic and morphological patterns, based on an extensive dataset, comprising 172 sampling sites along most of their known range using a mitochondrial marker, RADseq data and geometric morphometrics. The number of putative species in the present study varied from 9 to 11 depending on the molecular species delimitation methods used. Our results revealed at least two putative new taxa ('Geophagus' sp. Doce and 'Geophagus' sp. Upper Contas). Morphometric analyses, particularly those based on Canonical Variate Analysis (CVA), revealed significant morphological differentiation between species within the main clades. On the other hand, analyses of morphological phylogenetic signal and phylomorphospace provided no evidence of adaptive differentiation among these species. Thus, diversification in the 'G.' brasiliensis complex seems to have been influenced by hydrogeological events that promoted allopatry, such as the presence of paleodrainages and distributional reconfiguration through river captures. We propose major changes in the known distribution of some species within the complex and conservatively suggest the recognition of 10 species within the 'Geophagus' brasiliensis complex, with the potential for further dividing 'G.' rufomarginatus after additional taxonomic evaluation.
Collapse
Affiliation(s)
- Leandro Araujo Argolo
- Instituto de Biologia, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1079, United States
| | - Henrique Batalha-Filho
- Instituto de Biologia, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, 40170-115, Brazil
| | | |
Collapse
|
11
|
Pérez-Miranda F, Mejia O, López B, Říčan O. Molecular clocks, biogeography and species diversity in Herichthys with evaluation of the role of Punta del Morro as a vicariant brake along the Mexican Transition Zone in the context of local and global time frame of cichlid diversification. PeerJ 2020; 8:e8818. [PMID: 32391194 PMCID: PMC7195834 DOI: 10.7717/peerj.8818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/28/2020] [Indexed: 11/20/2022] Open
Abstract
Using molecular dated phylogenies and biogeographic reconstructions, the species diversity, biogeography and time frame of evolution of the genus Herichthys were evaluated. In particular, we test the role of Punta del Morro (PdM) as a vicariant brake along the Mexican Transition Zone in the context of local and global time frame of cichlid diversification using several sets of calibrations. Species diversity in Herichthys is complex and the here employed dating methods suggest young age and rapid divergence for many species while species delimitation methods did not resolve these young species including both sympatric species pairs. Based on our molecular clock dating analyses, Herichthys has colonized its present distribution area significantly prior to the suggested vicariance by PdM (10-17.1 Ma vs. 5 to 7.5 Ma). The PdM constraint is in conflict with all other paleogeographic and fossil constraints including novel ones introduced in this study that are, however, congruent among each other. Our study demonstrates that any cichlid datings significantly older or younger than the bounds presented by our analyses and discussion have to be taken as highly questionable from the point of view of Middle American paleogeography and cichlid biogeography unless we allow the option that cichlid biogeography is completely independent from ecological and geological constraints.
Collapse
Affiliation(s)
- Fabian Pérez-Miranda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Omar Mejia
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Benjamín López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Oldřich Říčan
- Departament of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
12
|
Sabaj MH, López-Fernández H, Willis SC, Hemraj DD, Taphorn DC, Winemiller KO. Cichla cataractae (Cichliformes: Cichlidae), new species of peacock bass from the Essequibo Basin, Guyana and Venezuela. PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA 2020. [DOI: 10.1635/053.167.0106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark H. Sabaj
- The Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA, 19103
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1105 North University Ave. Ann Arbor, MI, 48109
| | - Stuart C. Willis
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA, 94118
| | - Devya D. Hemraj
- Centre for the Study of Biological Diversity, Department of Biology, Faculty of Natural Sciences, University of Guyana, Turkeyen Campus, Greater Georgetown, Guyana
| | | | - Kirk O. Winemiller
- Department of Ecology and Conservation Biology and Program of Ecology and Evolutionary Biology, Texas A&M University, 2258 TAMU, College Station, TX, 77843 k–
| |
Collapse
|
13
|
Quadros J, Ferreira AMV, Viana PF, Marajó L, Oliveira E, Ferreira E, Feldberg E. Comparative cytogenetic of six species of Amazonian Peacock bass ( Cichla, Cichlinae): intrachromosomal variations and genetic introgression among sympatric species. COMPARATIVE CYTOGENETICS 2020; 14:437-451. [PMID: 33014295 PMCID: PMC7515931 DOI: 10.3897/compcytogen.v14i3.55279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 05/09/2023]
Abstract
Cytogenetic data for the genus Cichla Bloch et Schneider, 1801 are still very limited, with only four karyotype descriptions to date. The sum of the available cytogenetic information for Cichla species, points to a maintenance of the diploid number of 48 acrocentric chromosomes, considered a typical ancestral feature in cichlids. In the current study, we performed molecular and classical cytogenetic analyses of the karyotype organization of six species of Cichla, the earliest-diverging genus of Neotropical cichlids. We cytogenetically analysed Cichla kelberi Kullander et Ferreira, 2006, Cichla monoculus Agassiz, 1831, Cichla piquiti Kullander et Ferreira, 2006, Cichla temensis Humboldt, 1821, Cichla vazzoleri Kullander et Ferreira, 2006 and Cichla pinima Kullander et Ferreira, 2006, including three individuals that showed mixed morphological characteristics, likely from different species, suggesting they were hybrid individuals. All individuals analysed showed 2n = 48 acrocentric chromosomes, with centromeric heterochromatic blocks on all chromosomes and a terminal heterochromatic region on the q arm of the 2nd pair. Mapping 18S rDNA gave hybridization signals, correlated with the nucleolus organizer regions, on the 2nd pair for all analyzed individuals. However, we found distinct patterns for 5S rDNA: interstitially at the proximal position on 6th pair of four species (C. kelberi, C. pinima, C. piquiti and C. vazzoleri), and on the distal of the 4th pair in two (C. monoculus and C. temensis). Accordingly, we present here new data for the genus and discuss the evolutionary trends in the karyotype of this group of fish. In addition, we provide data that supports the occurrence of hybrid individuals in the Uatumã River region, mainly based on 5S rDNA mapping.
Collapse
Affiliation(s)
- Janice Quadros
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Alex M. V. Ferreira
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Leandro Marajó
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Ezequiel Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Efrem Ferreira
- Laboratório de Ecologia de peixes, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, 69067-375, Manaus, AM, Brazil
| |
Collapse
|
14
|
Hashimoto S, Py-Daniel LHR, Batista JS. A molecular assessment of species diversity in Tympanopleura and Ageneiosus catfishes (Auchenipteridae: Siluriformes). JOURNAL OF FISH BIOLOGY 2020; 96:14-22. [PMID: 31631341 DOI: 10.1111/jfb.14173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
In order to test the congruence of genetic data to the morphologically defined Neotropical catfish genera Tympanopleura and Ageneiosus and explore species diversity, we generated 17 DNA barcodes from five of six species of Tympanopleura and 12 of 13 species of Ageneiosus. To discriminate limits between species, an automatic barcode gap discovery (ABGD), a generalised mixed yule-coalescent model (GYMC) and fixed distance thresholds Kimura two-parameter (K2P; 3%) were used to discriminate putative species limits from the DNA barcodes. The ABGD, GMYC and K2P methods agreed by each generating 13 clusters: six in Tympanopleura (five nominal plus one undescribed species) and seven in Ageneiosus. These clusters corresponded broadly to the described species, except in the case of the Ageneiosus ucayalensis group (A. akamai, A. dentatus, A. intrusus, A. ucayalensis, A. uranophthalmus and A. vittatus). Haplotype sharing and low divergences may have prevented molecular methods from distinguishing these species. We hypothesise that this is the result of a recent radiation of a sympatric species group distributed throughout the Amazon Basin. One putative new species of Tympanopleura was also supported by the molecular data. These results taken together highlight the utility of molecular methods such as DNA barcoding in understanding patterns of diversification across large geographic areas and in recognising overlooked diversity.
Collapse
Affiliation(s)
- Shizuka Hashimoto
- Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, Amazonas, Brazil
- Instituto Nacional de Pesquisas da Amazônia, Coleção de Peixes, Programa de Coleções Científicas, Manaus, Amazonas, Brazil
| | - Lúcia H Rapp Py-Daniel
- Instituto Nacional de Pesquisas da Amazônia, Coleção de Peixes, Programa de Coleções Científicas, Manaus, Amazonas, Brazil
| | - Jacqueline S Batista
- Instituto Nacional de Pesquisas da Amazônia, Laboratório Temático de Biologia Molecular, Manaus, Amazonas, Brazil
| |
Collapse
|
15
|
Zachos FE, Christidis L, Garnett ST. Mammalian species and the twofold nature of taxonomy: a comment on Taylor et al. 2019. MAMMALIA 2019. [DOI: 10.1515/mammalia-2019-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In a recently published paper, Taylor and colleagues discussed different approaches and interpretations of mammalian taxonomy and their bearing on more general issues such as conservation and evolutionary biology. We fully endorse the fundamental importance of taxonomy and its being grounded on scientific principles. However, we also deplore a lack of awareness in the literature of the fact that taxonomy is a twofold enterprise that encompasses not only (i) the scientific description and quantitative analysis of biodiversity but also (ii) an executive decision as to how the results of (i) are translated into names. This has serious ramifications for the conservation of our planet’s dwindling biodiversity and when taxonomic names are used as raw data for ecological and evolutionary analyses.
Collapse
Affiliation(s)
- Frank E. Zachos
- Natural History Museum Vienna , Mammal Collection , Burgring 7 , 1010 Vienna , Austria
- Department of Genetics , University of the Free State , PO Box 339 , Bloemfontein , South Africa
- Department of Integrative Zoology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Les Christidis
- School of Environment, Science and Engineering , Southern Cross University , Coffs Harbour , NSW 2450 , Australia
| | - Stephen T. Garnett
- Research Institute for the Environment and Livelihoods , Charles Darwin University , Darwin , NT 0909 , Australia
| |
Collapse
|
16
|
Farias IP, Willis S, Leão A, Verba JT, Crossa M, Foresti F, Porto-Foresti F, Sampaio I, Hrbek T. The largest fish in the world's biggest river: Genetic connectivity and conservation of Arapaima gigas in the Amazon and Araguaia-Tocantins drainages. PLoS One 2019; 14:e0220882. [PMID: 31419237 PMCID: PMC6697350 DOI: 10.1371/journal.pone.0220882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/25/2019] [Indexed: 12/02/2022] Open
Abstract
Arapaima, pirarucu or paiche (Arapaima gigas) is one of the largest freshwater fish in the world, and has a long history of commercial exploitation in the Amazon region. To estimate levels of genetic variability and historical and recent connectivity in Arapaima, we examined variation in eleven microsatellite DNA markers in individuals from 22 localities in Brazil, Colombia, and Peru. The results of analysis of molecular variance, Bayesian clustering and discriminant analysis of principal components showed that Arapaima in our samples represents two major populations, one in the Amazonas and one in the Araguaia-Tocantins River basins. The Amazonas population is further structured by isolation-by-distance with the hydrologically largely unconnected Amapá locality representing the eastern-most extreme of this continuum; gene flow predominates at distances of less than 1500 km with localities separated by over 2000 km dominated by genetic drift and effectively forming different populations. We saw no evidence of multiple species of Arapaima in the Amazonas basin, and analysis of pairwise genetic divergence (FST) with Mantel tests and correlograms indicated that this largest population exhibits a large-scale pattern of isolation-by-distance, with which results from MIGRATE-N agreed. The degree and significance of genetic divergence indicates that most sampled localities represent demographically independent sub-populations, although we did identify several recent migration events between both proximal and more distant localities. The levels of genetic diversity were heterogeneous across sites, including low genetic diversity, effective population sizes, and evidence of genetic bottlenecks in several places. On average the levels of gene diversity and rarefied allelic richness were higher for localities along the Amazonas mainstem than in the tributaries, despite these being the areas of highest fishing pressure, while the lowest values were found in tributary headwaters, where landscape modification is a significant threat. We recommend that managers consider the regional and local threats to these populations and tailor strategies accordingly, strategies which should ensure the ability of young A. gigas to disperse through floodplain corridors to maintain genetic diversity among otherwise sedentary adult sub-populations.
Collapse
Affiliation(s)
- Izeni Pires Farias
- Laboratório de Evolução e Genética Animal/LEGAL, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- * E-mail: (IPF); (TH)
| | - Stuart Willis
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA, United States of America
| | - Adam Leão
- Laboratório de Evolução e Genética Animal/LEGAL, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
| | - Júlia Tovar Verba
- Laboratório de Evolução e Genética Animal/LEGAL, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Fausto Foresti
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Fabio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Campus de Bauru, Bauru, Brazil
| | - Iracilda Sampaio
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Campus Universitário de Bragança, Pará, Brazil
| | - Tomas Hrbek
- Laboratório de Evolução e Genética Animal/LEGAL, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- * E-mail: (IPF); (TH)
| |
Collapse
|
17
|
Zhang D, Zou H, Hua CJ, Li WX, Mahboob S, Al-Ghanim KA, Al-Misned F, Jakovlić I, Wang GT. Mitochondrial Architecture Rearrangements Produce Asymmetrical Nonadaptive Mutational Pressures That Subvert the Phylogenetic Reconstruction in Isopoda. Genome Biol Evol 2019; 11:1797-1812. [PMID: 31192351 PMCID: PMC6601869 DOI: 10.1093/gbe/evz121] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2019] [Indexed: 01/04/2023] Open
Abstract
The phylogeny of Isopoda, a speciose order of crustaceans, remains unresolved, with different data sets (morphological, nuclear, mitochondrial) often producing starkly incongruent phylogenetic hypotheses. We hypothesized that extreme diversity in their life histories might be causing compositional heterogeneity/heterotachy in their mitochondrial genomes, and compromising the phylogenetic reconstruction. We tested the effects of different data sets (mitochondrial, nuclear, nucleotides, amino acids, concatenated genes, individual genes, gene orders), phylogenetic algorithms (assuming data homogeneity, heterogeneity, and heterotachy), and partitioning; and found that almost all of them produced unique topologies. As we also found that mitogenomes of Asellota and two Cymothoida families (Cymothoidae and Corallanidae) possess inversed base (GC) skew patterns in comparison to other isopods, we concluded that inverted skews cause long-branch attraction phylogenetic artifacts between these taxa. These asymmetrical skews are most likely driven by multiple independent inversions of origin of replication (i.e., nonadaptive mutational pressures). Although the PhyloBayes CAT-GTR algorithm managed to attenuate some of these artifacts (and outperform partitioning), mitochondrial data have limited applicability for reconstructing the phylogeny of Isopoda. Regardless of this, our analyses allowed us to propose solutions to some unresolved phylogenetic debates, and support Asellota are the most likely candidate for the basal isopod branch. As our findings show that architectural rearrangements might produce major compositional biases even on relatively short evolutionary timescales, the implications are that proving the suitability of data via composition skew analyses should be a prerequisite for every study that aims to use mitochondrial data for phylogenetic reconstruction, even among closely related taxa.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Cong-Jie Hua
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | | | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
18
|
Bittencourt PS, Campos Z, Muniz FDL, Marioni B, Souza BC, Da Silveira R, de Thoisy B, Hrbek T, Farias IP. Evidence of cryptic lineages within a small South American crocodilian: the Schneider's dwarf caiman Paleosuchus trigonatus (Alligatoridae: Caimaninae). PeerJ 2019; 7:e6580. [PMID: 30931177 PMCID: PMC6433001 DOI: 10.7717/peerj.6580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 02/01/2019] [Indexed: 11/25/2022] Open
Abstract
Schneider’s dwarf caiman Paleosuchus trigonatus is one of the smallest living crocodilians. Due to its broad distribution, cryptic behavior, and small home range, the species is well suited for the study of phylogeographic patterns on a continental scale. Additionally, this species is under threat due to habitat loss, trade and harvest, but is considered at low conservation risk by the IUCN. In the present study we test the hypothesis that P. trigonatus is comprised of geographically structured lineages. Phylogenetic reconstructions of the mitochondrial cytochrome b gene and single locus species discovery methods revealed the existence of two well-supported lineages within P. trigonatus—an Amazonian and Guianan lineage. Fossil calibrated divergence of these lineages was estimated to have occurred in the Late Miocene (7.5 Ma). The hypothesis that the Atlantic coast drainages might have been colonized from the southeast or central Amazon is supported by demographic metrics and relatively low genetic diversity of the Coastal and upper Branco populations when compared to the Amazon basin populations. The Amazon basin lineage is structured along an east-west gradient, with a sharp transition in haplotype frequencies to the east and west of the Negro and Madeira rivers. These lineages are already under anthropogenic threat and, therefore, are conservation dependent. Recognition of these lineages will foster discussion of conservation future of P. trigonatus and these lineages.
Collapse
Affiliation(s)
- Pedro Senna Bittencourt
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas, Manaus, Amazonas, Brazil.,Graduate Program in Genetics, Conservation, and Evolutionary Biology, National Institute of Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Zilca Campos
- Wildlife Laboratory, Brazilian Agricultural Research Corporation (EMBRAPA) Pantanal, Corumbá, Mato Grosso do Sul, Brazil
| | - Fábio de Lima Muniz
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas, Manaus, Amazonas, Brazil.,Graduate Program in Genetics, Conservation, and Evolutionary Biology, National Institute of Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Boris Marioni
- Graduate Program in Freshwater Biology and Inland Fisheries, National Institute of Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - Bruno Campos Souza
- Chico Mendes Institute for Biodiversity Conservation (ICMBio), Boa Vista, Roraima, Brazil
| | - Ronis Da Silveira
- Laboratory of Zoology Applied to Conservation, Federal University of Amazonas (UFAM), Manaus, Amazonas, Brazil
| | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana.,Association Kwata, Cayenne, French Guiana
| | - Tomas Hrbek
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Izeni Pires Farias
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
19
|
|
20
|
Johnson NA, Smith CH, Pfeiffer JM, Randklev CR, Williams JD, Austin JD. Integrative taxonomy resolves taxonomic uncertainty for freshwater mussels being considered for protection under the U.S. Endangered Species Act. Sci Rep 2018; 8:15892. [PMID: 30367102 PMCID: PMC6203750 DOI: 10.1038/s41598-018-33806-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/07/2018] [Indexed: 11/30/2022] Open
Abstract
Objectively delimiting species boundaries remains an important challenge in systematics and becomes urgent when unresolved taxonomy complicates conservation and recovery efforts. We examined species boundaries in the imperiled freshwater mussel genus Cyclonaias (Bivalvia: Unionidae) using morphometrics, molecular phylogenetics, and multispecies coalescent models to help guide pending conservation assessments and legislative decisions. Congruence across multiple lines of evidence indicated that current taxonomy overestimates diversity in the C. pustulosa species complex. The only genetically and morphologically diagnosable species in the C. pustulosa species complex were C. pustulosa and C. succissa and we consider C. aurea, C. houstonensis, C. mortoni, and C. refulgens to be synonyms of C. pustulosa. In contrast, all three species in the C. nodulata complex (C. necki, C. nodulata, and C. petrina) were genetically, geographically, and morphologically diagnosable. Our findings have important conservation and management implications, as three nominal species (C. aurea, C. houstonensis, and C. petrina) are being considered for protection under the Endangered Species Act.
Collapse
Affiliation(s)
- Nathan A Johnson
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA.
| | - Chase H Smith
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA.,Baylor University, Biology Department, Waco, TX, 76798, USA
| | - John M Pfeiffer
- University of Florida, Florida Museum, Gainesville, FL, 32611, USA
| | - Charles R Randklev
- Texas A&M Natural Resources Institute and AgriLife Research Center, Dallas, TX, 75252, USA
| | - James D Williams
- University of Florida, Florida Museum, Gainesville, FL, 32611, USA
| | - James D Austin
- Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, 32601, USA
| |
Collapse
|
21
|
Hrbek T, Meliciano NV, Zuanon J, Farias IP. Remarkable Geographic Structuring of Rheophilic Fishes of the Lower Araguaia River. Front Genet 2018; 9:295. [PMID: 30154824 PMCID: PMC6102472 DOI: 10.3389/fgene.2018.00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/13/2018] [Indexed: 11/13/2022] Open
Abstract
Rapids and waterfalls, and their associated fauna and flora are in peril. With the construction of each new hydroelectric dam, more rapids and waterfalls are destroyed, leading to the disappearance of associated fauna and flora. Areas of rapids harbor distinct, highly endemic rheophilic fauna and flora adapted to an extreme environment. Rheophilic habitats also have disjunct distribution both within and across rivers. Rheophilic habitats thus represent islands of suitable habitat separated by stretches of unsuitable habitat. In this study, we investigated to what extent, if any, species of cichlid and anostomid fishes associated with rheophilic habitats were structured among the rapids of Araguaia River in the Brazilian Amazon. We tested both for population structuring as well as non-random distribution of lineages among rapids. Eight of the nine species had multiple lineages, five of these nine species were structured, and three of the eight species with multiple lineages showed non-random distribution of lineages among rapids. These results demonstrate that in addition to high levels of endemicism of rheophilic fishes, different rapids even within the same river are occupied by different lineages. Rheophilic species and communities occupying different rapids are, therefore, not interchangeable, and this realization must be taken into account when proposing mitigatory/compensatory measures in hydroelectric projects, and in conservation planning.
Collapse
Affiliation(s)
- Tomas Hrbek
- Laboratório de Evolução e Genética Animal, Departmento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Natasha V. Meliciano
- Laboratório de Evolução e Genética Animal, Departmento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
- Instituto de Saúde e Biotecnologia, Universidade Federal do Amazonas, Coari, Brazil
| | - Jansen Zuanon
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Izeni P. Farias
- Laboratório de Evolução e Genética Animal, Departmento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| |
Collapse
|