1
|
Heath A, McNerney MW, Yesavage J. Whole Genome Variable Number Tandem Repeat Analysis in Alzheimer Disease. Neurol Genet 2025; 11:e200241. [PMID: 39980902 PMCID: PMC11839231 DOI: 10.1212/nxg.0000000000200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/10/2024] [Indexed: 02/22/2025]
Abstract
Background and Objectives Investigation into different allelic variants may yield new associative genes to predict late-onset Alzheimer disease (LOAD). Variable number tandem repeats (VNTRs) are important polymorphic components of the genome; however, they have been previously overlooked because of their complex genotyping. New software can now determine differing lengths of VNTRs; however, this has not been tested in a large case-control population. Methods We used VNTRseek to genotype over 200,000 tandem repeats in 9,501 cases and controls from the Alzheimer's Disease Sequencing Project. We first identified limiting factors of this analysis and then examined the association of VNTRs with AD diagnosis in a subset of non-Hispanic White participants. Results We found that VNTRs were highly associated with areas of the genome with a high number of previously identified variants. From our case-control analysis, we identified 9 VNTRs with a repeat allele length associated with LOAD including VNTRs on DSC3, NR2E3, CCNY, PKP4, GRAP, and MAP6. Discussion We were able to show the feasibility of this new type of analysis in large-scale whole-genome sequencing data and identify promising VNTRs that are associated with LOAD.
Collapse
Affiliation(s)
- Alesha Heath
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA
- Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA
| | - M Windy McNerney
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA
- Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA
| | - Jerome Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA
- Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA
| |
Collapse
|
2
|
Wojtas MN, Diaz-González M, Stavtseva N, Shoam Y, Verma P, Buberman A, Izhak I, Geva A, Basch R, Ouro A, Perez-Benitez L, Levy U, Borcel E, Nuñez Á, Venero C, Rotem-Dai N, Veksler-Lublinsky I, Knafo S. Interplay between hippocampal TACR3 and systemic testosterone in regulating anxiety-associated synaptic plasticity. Mol Psychiatry 2024; 29:686-703. [PMID: 38135756 PMCID: PMC11153148 DOI: 10.1038/s41380-023-02361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Tachykinin receptor 3 (TACR3) is a member of the tachykinin receptor family and falls within the rhodopsin subfamily. As a G protein-coupled receptor, it responds to neurokinin B (NKB), its high-affinity ligand. Dysfunctional TACR3 has been associated with pubertal failure and anxiety, yet the mechanisms underlying this remain unclear. Hence, we have investigated the relationship between TACR3 expression, anxiety, sex hormones, and synaptic plasticity in a rat model, which indicated that severe anxiety is linked to dampened TACR3 expression in the ventral hippocampus. TACR3 expression in female rats fluctuates during the estrous cycle, reflecting sensitivity to sex hormones. Indeed, in males, sexual development is associated with a substantial increase in hippocampal TACR3 expression, coinciding with elevated serum testosterone and a significant reduction in anxiety. TACR3 is predominantly expressed in the cell membrane, including the presynaptic compartment, and its modulation significantly influences synaptic activity. Inhibition of TACR3 activity provokes hyperactivation of CaMKII and enhanced AMPA receptor phosphorylation, associated with an increase in spine density. Using a multielectrode array, stronger cross-correlation of firing was evident among neurons following TACR3 inhibition, indicating enhanced connectivity. Deficient TACR3 activity in rats led to lower serum testosterone levels, as well as increased spine density and impaired long-term potentiation (LTP) in the dentate gyrus. Remarkably, aberrant expression of functional TACR3 in spines results in spine shrinkage and pruning, while expression of defective TACR3 increases spine density, size, and the magnitude of cross-correlation. The firing pattern in response to LTP induction was inadequate in neurons expressing defective TACR3, which could be rectified by treatment with testosterone. In conclusion, our study provides valuable insights into the intricate interplay between TACR3, sex hormones, anxiety, and synaptic plasticity. These findings highlight potential targets for therapeutic interventions to alleviate anxiety in individuals with TACR3 dysfunction and the implications of TACR3 in anxiety-related neural changes provide an avenue for future research in the field.
Collapse
Affiliation(s)
- Magdalena Natalia Wojtas
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Instituto Biofisika (UPV/EHU, CSIC), Departamento Biología Celular e Histología Facultad de Medicina y Enfermería, University of the Basque Country, Leioa, Spain
| | - Marta Diaz-González
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadezhda Stavtseva
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuval Shoam
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Poonam Verma
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Assaf Buberman
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Inbar Izhak
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Aria Geva
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Basch
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alberto Ouro
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Perez-Benitez
- Instituto Biofisika (UPV/EHU, CSIC), Departamento Biología Celular e Histología Facultad de Medicina y Enfermería, University of the Basque Country, Leioa, Spain
| | - Uri Levy
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Erika Borcel
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Ángel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Cesar Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Noa Rotem-Dai
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shira Knafo
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Instituto Biofisika (UPV/EHU, CSIC), Departamento Biología Celular e Histología Facultad de Medicina y Enfermería, University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|
3
|
Opacka A, Żuryń A, Krajewski A, Mikołajczyk K. The role of cyclin Y in normal and pathological cells. Cell Cycle 2023; 22:859-869. [PMID: 36576166 PMCID: PMC10054165 DOI: 10.1080/15384101.2022.2162668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
The family protein of cyclins, as well as cyclin-dependent kinases (CDKs) cooperating with them, are broadly researched, as a matter of their dysfunction may lead to tumor transformation. Cyclins are defined as key regulators that have a controlling function of the mammalian nuclear cell divides. Cyclin Y (CCNY) is a recently characterized member of the cyclin family and was first identified from the human testis cDNA library. It is an actin-binding protein acting through decreased actin dynamics at a steady state and during glycine-induced long-term potentiation (LTP) and involves the inhibition of cofilin activation. What is more, CCNY is a positive regulatory subunit of the CDK14/PFTK1 complexes affected by the activation of the Wnt signaling pathway in the G2/M phase by recruiting CDK14/PFTK1 to the plasma membrane and promoting phosphorylation of LRP6. The expression of CCNY has been significantly mentioned within the cell migration and invasion activity both in vivo and in vitro. The aim of this review is evaluation of the expression of CCNY in the physiology processes and compare the expression of this protein in cancer cells, taking into account the impact of the level of expression on tumor progression.
Collapse
Affiliation(s)
- Aleksandra Opacka
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Agnieszka Żuryń
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Klaudia Mikołajczyk
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
4
|
Kyselova A, Siragusa M, Anthes J, Solari FA, Loroch S, Zahedi RP, Walter U, Fleming I, Randriamboavonjy V. Cyclin Y is expressed in Platelets and Modulates Integrin Outside-in Signaling. Int J Mol Sci 2020; 21:ijms21218239. [PMID: 33153214 PMCID: PMC7662234 DOI: 10.3390/ijms21218239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes is associated with platelet hyper-reactivity and enhanced risk of thrombosis development. Here we compared protein expression in platelets from healthy donors and diabetic patients to identify differentially expressed proteins and their possible function in platelet activation. Mass spectrometry analyses identified cyclin Y (CCNY) in platelets and its reduced expression in platelets from diabetic patients, a phenomenon that could be attributed to the increased activity of calpains. To determine the role of CCNY in platelets, mice globally lacking the protein were studied. CCNY-/- mice demonstrated lower numbers of circulating platelets but platelet responsiveness to thrombin and a thromboxane A2 analogue were comparable with that of wild-type mice, as was agonist-induced α and dense granule secretion. CCNY-deficient platelets demonstrated enhanced adhesion to fibronectin and collagen as well as an attenuated spreading and clot retraction, indicating an alteration in "outside in" integrin signalling. This phenotype was accompanied by a significant reduction in the agonist-induced tyrosine phosphorylation of β3 integrin. Taken together we have shown that CCNY is present in anucleated platelets where it is involved in the regulation of integrin-mediated outside in signalling associated with thrombin stimulation.
Collapse
Affiliation(s)
- Anastasia Kyselova
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
| | - Mauro Siragusa
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
| | - Julian Anthes
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
| | - Fiorella Andrea Solari
- Leibniz–Institute for Analytical Sciences (ISAS)- e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany;
| | - Stefan Loroch
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Leibniz–Institute for Analytical Sciences (ISAS)- e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany;
| | - René P. Zahedi
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Leibniz–Institute for Analytical Sciences (ISAS)- e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany;
| | - Ulrich Walter
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Correspondence: ; Tel.: +49-69-6301-6973; Fax: +49-69-6301-86880
| |
Collapse
|
5
|
Chen L, Wang X, Cheng H, Zhang W, Liu Y, Zeng W, Yu L, Huang C, Liu G. Cyclin Y binds and activates CDK4 to promote the G1/S phase transition in hepatocellular carcinoma cells via Rb signaling. Biochem Biophys Res Commun 2020; 533:1162-1169. [PMID: 33039146 DOI: 10.1016/j.bbrc.2020.09.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/09/2023]
Abstract
Inactivation of Rb is a major event in the development of hepatocellular carcinoma (HCC). The activity of CDK4, determined by T172 phosphorylation, correlates with the onset of RB phosphorylation and G1/S cell cycle transition. However, the regulation of CDK4 activation and of the Rb pathway in HCC remain unclear. Here, we report that cyclin Y, a novel member of the cyclin family, is a potential regulator of the Rb pathway. We demonstrate that the Cyclin Y protein was overexpressed in human HCC tissues and that it was associated with poor patient prognosis. Cyclin Y could regulate the G1/S phase transition in human HCC cell lines. We found that CDK4 can bind to Cyclin Y in vitro. Furthermore, the accumulation of Cyclin Y could activate CDK4 through T172 phosphorylation of CDK4, inactivate Rb with increasing Rb phosphorylation, and enable the expression of E2F target genes such as CDK2 and Cyclin A. Thus, our findings suggest that Cyclin Y plays a role in the G1/S phase transition of HCC cells via Cyclin Y/CDK4/Rb signaling and that Cyclin Y could be used as a potential prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiang Wang
- The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hanghang Cheng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weidi Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yufeng Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Long Yu
- The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Cheng Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guoyuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Ccny knockout mice display an enhanced susceptibility to kainic acid-induced epilepsy. Pharmacol Res 2020; 160:105100. [DOI: 10.1016/j.phrs.2020.105100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 01/30/2023]
|
7
|
Hwang H, Hur YN, Sohn H, Seo J, Hong JH, Cho E, Choi Y, Lee S, Song S, Lee AR, Kim S, Jo DG, Rhim H, Park M. Cyclin Y, a novel actin-binding protein, regulates spine plasticity through the cofilin-actin pathway. Prog Neurobiol 2020; 198:101915. [PMID: 32966834 DOI: 10.1016/j.pneurobio.2020.101915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
While positive regulators of hippocampal long-term potentiation (LTP) have extensively been investigated, relatively little is known about the inhibitory regulators of LTP. We previously reported that Cyclin Y (CCNY), a member of cyclin family generally known to function in proliferating cells, is a novel postsynaptic protein that serves as a negative regulator of functional LTP. However, whether CCNY plays a role in structural LTP, which is mechanistically linked to functional LTP, and which mechanisms are involved in the CCNY-mediated suppression of LTP at the molecular level remain elusive. Here, we report that CCNY negatively regulates the plasticity-induced changes in spine morphology through the control of actin dynamics. We observed that CCNY directly binds to filamentous actin and interferes with LTP-induced actin polymerization as well as depolymerization by blocking the activation of cofilin, an actin-depolymerizing factor, thus resulting in less plastic spines and the impairment of structural LTP. These data suggest that CCNY acts as an inhibitory regulator for both structural and functional LTP by modulating actin dynamics through the cofilin-actin pathway. Collectively, our findings provide a mechanistic insight into the inhibitory modulation of hippocampal LTP by CCNY, highlighting a novel function of a cyclin family protein in non-proliferating neuronal cells.
Collapse
Affiliation(s)
- Hongik Hwang
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young-Na Hur
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Heesung Sohn
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 04763, South Korea
| | - Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jung-Hwa Hong
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Eunsil Cho
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yuri Choi
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Saebom Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Seongeun Song
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - A-Ram Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Suyeon Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Neuroscience, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Neuroscience, Korea University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
8
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
9
|
Li C, Zou H, Xiong Z, Xiong Y, Miyagishima DF, Wanggou S, Li X. Construction and Validation of a 13-Gene Signature for Prognosis Prediction in Medulloblastoma. Front Genet 2020; 11:429. [PMID: 32508873 PMCID: PMC7249855 DOI: 10.3389/fgene.2020.00429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 01/28/2023] Open
Abstract
Background: Recent studies have identified several molecular subgroups of medulloblastoma associated with distinct clinical outcomes; however, no robust gene signature has been established for prognosis prediction. Our objective was to construct a robust gene signature-based model to predict the prognosis of patients with medulloblastoma. Methods: Expression data of medulloblastomas were acquired from the Gene Expression Omnibus (GSE85217, n = 763; GSE37418, n = 76). To identify genes associated with overall survival (OS), we performed univariate survival analysis and least absolute shrinkage and selection operator (LASSO) Cox regression. A risk score model was constructed based on selected genes and was validated using multiple datasets. Differentially expressed genes (DEGs) between the risk groups were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and protein–protein interaction (PPI) analyses were performed. Network modules and hub genes were identified using Cytoscape. Furthermore, tumor microenvironment (TME) was evaluated using ESTIMATE algorithm. Tumor-infiltrating immune cells (TIICs) were inferred using CIBERSORTx. Results: A 13-gene model was constructed and validated. Patients classified as high-risk group had significantly worse OS than those as low-risk group (Training set: p < 0.0001; Validation set 1: p < 0.0001; Validation set 2: p = 0.00052). The area under the curve (AUC) of the receiver operating characteristic (ROC) analysis indicated a good performance in predicting 1-, 3-, and 5-year OS in all datasets. Multivariate analysis integrating clinical factors demonstrated that the risk score was an independent predictor for the OS (validation set 1: p = 0.001, validation set 2: p = 0.004). We then identified 265 DEGs between risk groups and PPI analysis predicted modules that were highly related to central nervous system and embryonic development. The risk score was significantly correlated with programmed death-ligand 1 (PD-L1) expression (p < 0.001), as well as immune score (p = 0.035), stromal score (p = 0.010), and tumor purity (p = 0.010) in Group 4 medulloblastomas. Correlations between the 13-gene signature and the TIICs in Sonic hedgehog and Group 4 medulloblastomas were revealed. Conclusion: Our study constructed and validated a robust 13-gene signature model estimating the prognosis of medulloblastoma patients. We also revealed genes and pathways that may be related to the development and prognosis of medulloblastoma, which might provide candidate targets for future investigation.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Han Zou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Danielle F Miyagishima
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States.,Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins: the extended family portrait. Cell Mol Life Sci 2020; 77:231-242. [PMID: 31420702 PMCID: PMC6971155 DOI: 10.1007/s00018-019-03262-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Regulation of cell division is orchestrated by cyclins, which bind and activate their catalytic workmates, the cyclin-dependent kinases (CDKs). Cyclins have been traditionally defined by an oscillating (cyclic) pattern of expression and by the presence of a characteristic "cyclin box" that determines binding to the CDKs. Noteworthy, the Human Genome Sequence Project unveiled the existence of several other proteins containing the "cyclin box" domain. These potential "cyclins" have been named new, orphan or atypical, creating a conundrum in cyclins nomenclature. Moreover, although many years have passed after their discovery, the scarcity of information regarding these possible members of the family has hampered the establishment of criteria for systematization. Here, we discuss the criteria that define cyclins and we propose a classification and nomenclature update based on structural features, interactors, and phylogenetic information. The application of these criteria allows to systematically define, for the first time, the subfamily of atypical cyclins and enables the use of a common nomenclature for this extended family.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| |
Collapse
|
11
|
Lee AR, Kim JH, Cho E, Kim M, Park M. Dorsal and Ventral Hippocampus Differentiate in Functional Pathways and Differentially Associate with Neurological Disease-Related Genes during Postnatal Development. Front Mol Neurosci 2017; 10:331. [PMID: 29085281 PMCID: PMC5650623 DOI: 10.3389/fnmol.2017.00331] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/30/2017] [Indexed: 01/08/2023] Open
Abstract
The dorsal and ventral regions of the hippocampus are important in cognitive and emotional processing, respectively. Various approaches have revealed the differential molecular and structural characteristics, and functional roles of the hippocampus. Recent RNA sequencing (RNA-seq) technology has enriched our understanding of the hippocampus by elucidating more detailed information on gene expression patterns. However, no RNA-seq–based study on gene profiles in the developing hippocampus has been reported. Using RNA-seq–based bioinformatic analysis in conjunction with quantitative real-time polymerase chain reaction analysis and a comparison of in situ hybridization data obtained from the Allen Brain Atlas, we provide a thorough analysis of differentially expressed genes in the dorsal and ventral hippocampus at specific developmental ages representing the postnatally maturing hippocampus. Genes associated with particular functional pathways and marker genes for particular neurological diseases were found to be distinctively segregated within either the dorsal or ventral hippocampus at specific or at all developmental ages examined. We also report novel molecular markers enriched in the dorsal or ventral hippocampus. Taken together, this study provides insights into the molecular mechanisms underlying physiological functions linked to the dorsal or ventral hippocampus. The information provided in the study also contributes to a better understanding of brain functions and serves as a resource for future studies on the pathophysiology of dorsal and ventral hippocampal functions.
Collapse
Affiliation(s)
- A-Ram Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Eunsil Cho
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|