1
|
Doran BR, Moffitt LR, Wilson AL, Stephens AN, Bilandzic M. Leader Cells: Invade and Evade-The Frontline of Cancer Progression. Int J Mol Sci 2024; 25:10554. [PMID: 39408880 PMCID: PMC11476628 DOI: 10.3390/ijms251910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality; however, a complete understanding of the molecular programs driving the metastatic cascade is lacking. Metastasis is dependent on collective invasion-a developmental process exploited by many epithelial cancers to establish secondary tumours and promote widespread disease. The key drivers of collective invasion are "Leader Cells", a functionally distinct subpopulation of cells that direct migration, cellular contractility, and lead trailing or follower cells. While a significant body of research has focused on leader cell biology in the traditional context of collective invasion, the influence of metastasis-promoting leader cells is an emerging area of study. This review provides insights into the expanded role of leader cells, detailing emerging evidence on the hybrid epithelial-mesenchymal transition (EMT) state and the phenotypical plasticity exhibited by leader cells. Additionally, we explore the role of leader cells in chemotherapeutic resistance and immune evasion, highlighting their potential as effective and diverse targets for novel cancer therapies.
Collapse
Affiliation(s)
- Brittany R. Doran
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
2
|
Kizhakkoottu S, Ramani P, Tilakaratne WM. Role of Stem Cells in the Pathogenesis and Malignant Transformation of Oral Submucous Fibrosis. Stem Cell Rev Rep 2024; 20:1512-1520. [PMID: 38837114 DOI: 10.1007/s12015-024-10744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Pathogenesis and malignant potential of Oral submucous fibrosis(OSMF) have always been a topic of interest among the researchers. Despite OSMF being a collagen metabolic disorder, the alterations occurring in the connective tissue stroma affects the atrophic surface epithelium in later stages and progresses to malignant phenotypes. The present review aims to summarize the role of stem cells in the pathogenesis and malignant transformation of oral submucous fibrosis. MATERIALS AND METHODS A literature search was carried out using data banks like Medline and Embase, google scholar and manual method with no time frame, pertinent to the role of mucosal stem cells in OSMF and its malignisation. The relevant literature was reviewed, critically appraised by all the authors and compiled in this narrative review. RESULTS Critical appraisal and evaluation of the data extracted from the selected articles were compiled in this review. The collated results highlighted the upregulation and downregulation of various stem cell markers during the progression and malignisation of OSMF were depicted in a descriptive and detail manner in the present review. CONCLUSION We highlight the potential of mucosal stem cells in the regulation and malignisation of OSMF. However, future large-scale clinical studies will be needed to support whether manipulation of this stem cells at molecular level will be sufficient for the treatment and preventing the malignant transformation of OSMF.
Collapse
Affiliation(s)
- Suvarna Kizhakkoottu
- Department of Oral Pathology and Microbiology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
| | | |
Collapse
|
3
|
Wang D, Pei P, Shea F, Spinney R, Chang A, Lahann J, Mallery SR. Growth modulatory effects of fenretinide encompass keratinocyte terminal differentiation: a favorable outcome for oral squamous cell carcinoma chemoprevention. Carcinogenesis 2024; 45:436-449. [PMID: 38470060 PMCID: PMC11519021 DOI: 10.1093/carcin/bgae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium. Terminal differentiation, which directs oral keratinocytes leave the proliferative pool to form protective cornified envelopes, preserves the protective epithelial barrier while concurrently eliminating growth-aberrant keratinocytes. This study employed human premalignant oral keratinocytes and an OSCC cell line to evaluate the differentiation-inducing capacity of the synthetic retinoid, fenretinide (4HPR). Full-thickness oral mucosal explants were evaluated for proof of concept differentiation studies. Results of this study characterize the ability of 4HPR to fulfill all requisite components for keratinocyte differentiation, i.e. nuclear import via binding to cellular RA binding protein-II (molecular modeling), binding to and subsequent activation of retinoic acid nuclear receptors (receptor activation assays), increased expression and translation of genes associated with keratinocyte differentiation [Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting] upregulation of a transglutaminase enzyme essential for cornified envelope formation (transglutaminase 3, functional assay) and augmentation of terminal differentiation in human oral epithelial explants (image-analyses quantified corneocyte desquamation). These data build upon the chemoprevention repertoire of 4HPR that includes function as a small molecule kinase inhibitor and inhibition of essential mechanisms necessary for basement membrane invasion. An upcoming clinical trial, which will assess whether a 4HPR-releasing mucoadhesive patch induces histologic, clinical and molecular regression in OIN lesions, will provide essential clinical insights.
Collapse
Affiliation(s)
- Daren Wang
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ping Pei
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Fortune Shea
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Albert Chang
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Material Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Macromolecular Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joerg Lahann
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Material Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Macromolecular Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Susan R Mallery
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
4
|
Steffen C, Schallenberg S, Dernbach G, Dielmann A, Dragomir MP, Schweiger-Eisbacher C, Klauschen F, Horst D, Tinhofer I, Heiland M, Keilholz U. Spatial heterogeneity of tumor cells and the tissue microenvironment in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:379-390. [PMID: 38281880 DOI: 10.1016/j.oooo.2023.12.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE This study describes the morphologic and phenotypic spatial heterogeneity of tumor cells and the tissue microenvironment (TME), focusing on immune infiltration in OSCCs. STUDY DESIGN Patients with OSCCs and planned surgical tumor resection were eligible for the study. Two biopsies each from the tumor center and the tumor rim were obtained. Immunohistochemical characterization of tumor and immune cells was performed using a panel of immunohistochemical markers. RESULTS Thirty-six biopsies were obtained from the 9 patients. All patients showed an individual marker expression profile with ITH. Within the same biopsy, the CPS and TPS scores showed relevant variations in PD-L1 expression. Comparisons between the tumor center and rim revealed significant differences in the up/downregulation of p53. Marker expression of patients with recurrences clustered similarly, with the higher expression of FoxP3, IDO, CD4, CD68, and CD163 at the tumor rim. CONCLUSION OSCCs were found to exhibit relevant ITH involving both tumor cells and TME, suggesting that biomarker analysis of multiple tumor regions may be helpful for clinical decision making and tumor characterization. The analysis of multiple spots within a biopsy is recommended for a reliable determination of PD-L1 expression and other biomarkers, impacting current clinical assessments.
Collapse
Affiliation(s)
- Claudius Steffen
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Gabriel Dernbach
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Anastasia Dielmann
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Institute of Pathology, Ludwig-Maximilians-University Munich, München, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingeborg Tinhofer
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
5
|
Kovacs D, Flori E, Bastonini E, Mosca S, Migliano E, Cota C, Zaccarini M, Briganti S, Cardinali G. Targeting Fatty Acid Amide Hydrolase Counteracts the Epithelial-to-Mesenchymal Transition in Keratinocyte-Derived Tumors. Int J Mol Sci 2023; 24:17379. [PMID: 38139209 PMCID: PMC10743516 DOI: 10.3390/ijms242417379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The endocannabinoid system regulates physiological processes, and the modulation of endogenous endocannabinoid (eCB) levels is an attractive tool to contrast the development of pathological skin conditions including cancers. Inhibiting FAAH (fatty acid amide hydrolase), the degradation enzyme of the endocannabinoid anandamide (AEA) leads to the increase in AEA levels, thus enhancing its biological effects. Here, we evaluated the anticancer property of the FAAH inhibitor URB597, investigating its potential to counteract epithelial-to-mesenchymal transition (EMT), a process crucially involved in tumor progression. The effects of the compound were determined in primary human keratinocytes, ex vivo skin explants, and the squamous carcinoma cell line A431. Our results demonstrate that URB597 is able to hinder the EMT process by downregulating mesenchymal markers and reducing migratory potential. These effects are associated with the dampening of the AKT/STAT3 signal pathways and reduced release of pro-inflammatory cytokines and tumorigenic lipid species. The ability of URB597 to contrast the EMT process provides insight into effective approaches that may also include the use of FAAH inhibitors for the treatment of skin cancers.
Collapse
Affiliation(s)
- Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Emanuela Bastonini
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| |
Collapse
|
6
|
Fan C, González-Prieto R, Kuipers TB, Vertegaal ACO, van Veelen PA, Mei H, Ten Dijke P. The lncRNA LETS1 promotes TGF-β-induced EMT and cancer cell migration by transcriptionally activating a TβR1-stabilizing mechanism. Sci Signal 2023; 16:eadf1947. [PMID: 37339182 DOI: 10.1126/scisignal.adf1947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-β signaling, activation of the TGF-β receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-β type I receptor (TβRI). We identified an unannotated nuclear long noncoding RNA (lncRNA) that we designated LETS1 (lncRNA enforcing TGF-β signaling 1) that was not only increased but also perpetuated by TGF-β signaling. Loss of LETS1 attenuated TGF-β-induced EMT and migration in breast and lung cancer cells in vitro and extravasation of the cells in a zebrafish xenograft model. LETS1 potentiated TGF-β-SMAD signaling by stabilizing cell surface TβRI, thereby forming a positive feedback loop. Specifically, LETS1 inhibited TβRI polyubiquitination by binding to nuclear factor of activated T cells (NFAT5) and inducing the expression of the gene encoding the orphan nuclear receptor 4A1 (NR4A1), a component of a destruction complex for SMAD7. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA that potentiates signaling through TGF-β receptor complexes.
Collapse
Affiliation(s)
- Chuannan Fan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Américo Vespucio 24, 41092 Seville, Spain
- Department of Cell Biology, University of Seville, Américo Vespucio 24, 41092 Seville, Spain
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| |
Collapse
|
7
|
Developmental function of Piezo1 in mouse submandibular gland morphogenesis. Histochem Cell Biol 2023:10.1007/s00418-023-02181-w. [PMID: 36814002 DOI: 10.1007/s00418-023-02181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Mechanically activated factors are important in organogenesis, especially in the formation of secretory organs, such as salivary glands. Piezo-type mechanosensitive ion channel component 1 (Piezo1), although previously studied as a physical modulator of the mechanotransduction, was firstly evaluated on its developmental function in this study. The detailed localization and expression pattern of Piezo1 during mouse submandibular gland (SMG) development were analyzed using immunohistochemistry and RT-qPCR, respectively. The specific expression pattern of Piezo1 was examined in acinar-forming epithelial cells at embryonic day 14 (E14) and E16, which are important developmental stages for acinar cell differentiation. To understand the precise function of Piezo1 in SMG development, siRNA against Piezo1 (siPiezo1) was employed as a loss-of-function approach, during in vitro organ cultivation of SMG at E14 for the designated period. Alterations in the histomorphology and expression patterns of related signaling molecules, including Bmp2, Fgf4, Fgf10, Gli1, Gli3, Ptch1, Shh, and Tgfβ-3, were examined in acinar-forming cells after 1 and 2 days of cultivation. Particularly, altered localization patterns of differentiation-related signaling molecules including Aquaporin5, E-cadherin, Vimentin, and cytokeratins would suggest that Piezo1 modulates the early differentiation of acinar cells in SMGs by modulating the Shh signaling pathway.
Collapse
|
8
|
Yang Z, Jia Y, Wang S, Zhang Y, Fan W, Wang X, He L, Shen X, Yang X, Zhang Y, Yang H. Retinoblastoma-Binding Protein 5 Regulates H3K4 Methylation Modification to Inhibit the Proliferation of Melanoma Cells by Inactivating the Wnt/ β-Catenin and Epithelial-Mesenchymal Transition Pathways. JOURNAL OF ONCOLOGY 2023; 2023:5093941. [PMID: 36866240 PMCID: PMC9974310 DOI: 10.1155/2023/5093941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Histone 3 lysine 4 methylation (H3K4me), especially histone 3 lysine 4 trimethylation (H3K4me3), is one of the most extensively studied patterns of histone modification and plays crucial roles in many biological processes. However, as a part of H3K4 methyltransferase that participates in H3K4 methylation and transcriptional regulation, retinoblastoma-binding protein 5 (RBBP5) has not been well studied in melanoma. The present study sought to explore RBBP5-mediated H3K4 histone modification and the potential mechanisms in melanoma. RBBP5 expression in melanoma and nevi specimens was detected by immunohistochemistry. Western blotting was performed for three pairs of melanoma cancer tissues and nevi tissues. In vitro and in vivo assays were used to investigate the function of RBBP5. The molecular mechanism was determined using RT-qPCR, western blotting, ChIP assays, and Co-IP assays. Our study showed that RBBP5 was significantly downregulated in melanoma tissue and cells compared with nevi tissues and normal epithelia cells (P < 0.05). Reducing RBBP5 in human melanoma cells leads to H3K4me3 downregulation and promotes cell proliferation, migration, and invasion. On the one hand, we verified that WSB2 was an upstream gene of RBBP5-mediated H3K4 modification, which could directly bind to RBBP5 and negatively regulate its expression. On the other hand, we also confirmed that p16 (a cancer suppressor gene) was a downstream target of H3K4me3, the promoter of which can directly bind to H3K4me3. Mechanistically, our data revealed that RBBP5 inactivated the Wnt/β-catenin and epithelial-mesenchymal transition (EMT) pathways (P < 0.05), leading to melanoma suppression. Histone methylation is rising as an important factor affecting tumorigenicity and tumor progression. Our findings verified the significance of RBBP5-mediated H3K4 modification in melanoma and the potential regulatory mechanisms of melanoma proliferation and growth, suggesting that RBBP5 is a potential therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Zhiqin Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 2Departments of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yue Jia
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Shaojia Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yongjun Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Wen Fan
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 3Departments of Reproduction, The Second Affiliated Hospital of Kunming Medical University, Kunming 650106, China
| | - Xin Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Liang He
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiaoyu Shen
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiangqun Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yi Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Hongying Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| |
Collapse
|
9
|
Long X, Wang D, Wu Z, Liao Z, Xu J. Circular RNA hsa_circ_0004689 (circSWT1) promotes NSCLC progression via the miR‐370‐3p/SNAIL axis by inducing cell epithelial‐mesenchymal transition (EMT). Cancer Med 2022; 12:8289-8305. [PMID: 36530171 PMCID: PMC10134258 DOI: 10.1002/cam4.5527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Previous studies have reported the role of circular RNAs (circRNAs) in the progression of non-small-cell lung cancer (NSCLC). SWT1-derived circRNAs were confirmed to affect the apoptosis of cardiomyocytes; however, the biological functions of SWT1-derived circRNAs in cancers are still unknown. Here, we investigated the potential role of SWT1-derived circRNAs in NSCLC. METHODS We used quantitative real-time polymerase chain reaction (qRT-PCR) to measure the expression of circSWT1 in NSCLC tissues and paired normal tissues. The potential functions of circSWT1 in tumor progression were assessed by CCK-8, colony formation, wound healing, and matrigel transwell assays in vitro and by xenograft tumor models in vivo. Next, epithelial-mesenchymal transition (EMT) was evaluated by western blotting, immunofluorescence, and immunohistochemistry (IHC). Moreover, circRIP, RNA pulldown assays, luciferase reporter gene assays, and FISH were conducted to illuminate the molecular mechanisms of circSWT1 via the miR-370-3p/SNAIL signal pathway. Then, we knocked out SNAIL in A549 and H1299 cells to identify the roles of circSWT1 in the progression and EMT of NSCLC through SNAIL. Finally, circSWT1 functions were confirmed in vivo using xenograft tumor models. RESULTS CircSWT1 expression was significantly upregulated in NSCLC tissues, and high expression of circSWT1 predicted poor prognosis in NSCLC via survival analysis. In addition, overexpression of circSWT1 promoted the invasion and migration of NSCLC cells. Subsequently, we found that overexpression of circSWT1 induced EMT and that knockdown of circSWT1 inhibited EMT in NSCLC cells. Mechanistically, circSWT1 relieved the inhibition of downstream SNAIL by sponging miR-370-3p. Moreover, we found that these effects could be reversed by knocking out SNAIL. Finally, we verified that circSWT1 promoted NSCLC progression and EMT in xenograft tumor models. CONCLUSION CircSWT1 promoted the invasion, migration, and EMT of NSCLC. CircSWT1 could serve as a potential biomarker and a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiang Long
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Ding‐Guo Wang
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhi‐Bo Wu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhong‐Min Liao
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Jian‐Jun Xu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| |
Collapse
|
10
|
Han SJ, Kwon S, Kim KS. Contribution of mechanical homeostasis to epithelial-mesenchymal transition. Cell Oncol (Dordr) 2022; 45:1119-1136. [PMID: 36149601 DOI: 10.1007/s13402-022-00720-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Metastasis refers to the spread of cancer cells from a primary tumor to other parts of the body via the lymphatic system and bloodstream. With tremendous effort over the past decades, remarkable progress has been made in understanding the molecular and cellular basis of metastatic processes. Metastasis occurs through five steps, including infiltration and migration, intravasation, survival, extravasation, and colonization. Various molecular and cellular factors involved in the metastatic process have been identified, such as epigenetic factors of the extracellular matrix (ECM), cell-cell interactions, soluble signaling, adhesion molecules, and mechanical stimuli. However, the underlying cause of cancer metastasis has not been elucidated. CONCLUSION In this review, we have focused on changes in the mechanical properties of cancer cells and their surrounding environment to understand the causes of cancer metastasis. Cancer cells have unique mechanical properties that distinguish them from healthy cells. ECM stiffness is involved in cancer cell growth, particularly in promoting the epithelial-mesenchymal transition (EMT). During tumorigenesis, the mechanical properties of cancer cells change in the direction opposite to their environment, resulting in a mechanical stress imbalance between the intracellular and extracellular domains. Disruption of mechanical homeostasis may be one of the causes of EMT that triggers the metastasis of cancer cells.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
11
|
Utility of Keratins as Biomarkers for Human Oral Precancer and Cancer. Life (Basel) 2022; 12:life12030343. [PMID: 35330094 PMCID: PMC8950203 DOI: 10.3390/life12030343] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Human oral cancer is the single largest group of malignancies in the Indian subcontinent and the sixth largest group of malignancies worldwide. Squamous cell carcinomas (SCC) are the most common epithelial malignancy of the oral cavity, constituting over 90% of oral cancers. About 90% of OSCCs arise from pre-existing, potentially malignant lesions. According to WHO, OSCC has a 5-year survival rate of 45–60%. Late diagnosis, recurrence, and regional or lymph nodal metastases could be the main causes of the high mortality rates. Biomarkers may help categorize and predict premalignant lesions as high risk of developing malignancy, local recurrence, and lymph nodal metastasis. However, at present, there is a dearth of such markers, and this is an area of ongoing research. Keratins (K) or cytokeratins are a group of intermediate filament proteins that show paired and differentiation dependent expression. Our laboratory and others have shown consistent alterations in the expression patterns of keratins in both oral precancerous lesions and tumors. The correlation of these changes with clinicopathological parameters has also been demonstrated. Furthermore, the functional significance of aberrant keratins 8/18 expression in the malignant transformation and progression of oral tumors has also been documented. This article reviews the literature that emphasizes the value of keratins as biomarkers for the prognostication of human oral precancers and cancers.
Collapse
|
12
|
Mogre S, Makani V, Pradhan S, Devre P, More S, Vaidya M, Dmello C. Biomarker Potential of Vimentin in Oral Cancers. Life (Basel) 2022; 12:150. [PMID: 35207438 PMCID: PMC8879320 DOI: 10.3390/life12020150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Oral carcinogenesis is a multistep process. As much as 5% to 85% of oral tumors can develop from potentially malignant disorders (PMD). Although the oral cavity is accessible for visual examination, the ability of current clinical or histological methods to predict the lesions that can progress to malignancy is limited. Thus, developing biological markers that will serve as an adjunct to histodiagnosis has become essential. Our previous studies comprehensively demonstrated that aberrant vimentin expression in oral premalignant lesions correlates to the degree of malignancy. Likewise, overwhelming research from various groups show a substantial contribution of vimentin in oral cancer progression. In this review, we have described studies on vimentin in oral cancers, to make a compelling case for vimentin as a prognostic biomarker.
Collapse
Affiliation(s)
- Saie Mogre
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Vidhi Makani
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Swapnita Pradhan
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Pallavi Devre
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Shyam More
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Milind Vaidya
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Crismita Dmello
- Department of Neurological Surgery, Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Romero JJ, De Rossi MC, Oses C, Echegaray CV, Verneri P, Francia M, Guberman A, Levi V. Nucleus-cytoskeleton communication impacts on OCT4-chromatin interactions in embryonic stem cells. BMC Biol 2022; 20:6. [PMID: 34996451 PMCID: PMC8742348 DOI: 10.1186/s12915-021-01207-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cytoskeleton is a key component of the system responsible for transmitting mechanical cues from the cellular environment to the nucleus, where they trigger downstream responses. This communication is particularly relevant in embryonic stem (ES) cells since forces can regulate cell fate and guide developmental processes. However, little is known regarding cytoskeleton organization in ES cells, and thus, relevant aspects of nuclear-cytoskeletal interactions remain elusive. RESULTS We explored the three-dimensional distribution of the cytoskeleton in live ES cells and show that these filaments affect the shape of the nucleus. Next, we evaluated if cytoskeletal components indirectly modulate the binding of the pluripotency transcription factor OCT4 to chromatin targets. We show that actin depolymerization triggers OCT4 binding to chromatin sites whereas vimentin disruption produces the opposite effect. In contrast to actin, vimentin contributes to the preservation of OCT4-chromatin interactions and, consequently, may have a pro-stemness role. CONCLUSIONS Our results suggest roles of components of the cytoskeleton in shaping the nucleus of ES cells, influencing the interactions of the transcription factor OCT4 with the chromatin and potentially affecting pluripotency and cell fate.
Collapse
Affiliation(s)
- Juan José Romero
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - María Cecilia De Rossi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Vázquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Hsu PY, Chen JL, Kuo SL, Wang WL, Jan FW, Yang SH, Yang CY. San-Zhong-Kui-Jian-Tang Exerts Antitumor Effects Associated With Decreased Cell Proliferation and Metastasis by Targeting ERK and the Epithelial-Mesenchymal Transition Pathway in Oral Cavity Squamous Cell Carcinoma. Integr Cancer Ther 2022; 21:15347354221134921. [PMID: 36404765 PMCID: PMC9679344 DOI: 10.1177/15347354221134921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is an aggressive cancer whose 5-year survival rate remains poor. San-Zhong-Kui-Jian-Tang (SZKJT), a Chinese herbal formula, has long been used in clinical practice as adjuvant therapy in cancers. However, its therapeutic effects and molecular mechanisms in OSCC remain unclear. METHODS We investigated the potential therapeutic effects and molecular mechanism of SZKJT in OSCC in tumor cell lines and in tumor xenograft mice and evaluated combined SZKJT and cisplatin treatment efficacy. In vitro-cultured OSCC cells were administered SZKJT at different doses or SZKJT plus cisplatin, and cell proliferation, colony formation assays, and cell cycle analysis were used to assess the effects on cancer cell proliferation and apoptosis. We also analyzed the effects of SZKJT on oral cancer cell line migration, the regulation of mitogen-activated protein kinase (MAPK) signaling, and epithelial-mesenchymal transition (EMT)-associated genes. The antitumor effects of SZKJT plus cisplatin were also tested in vivo using a tumor-bearing NOD/SCID mice model. RESULTS The results showed that SZKJT effectively inhibited OSCC cell proliferation, induced cell cycle S phase arrest, and induced cell apoptosis. SZKJT also inhibited cell migration by modulating the MAPK signaling and epithelial-mesenchymal transition (EMT) pathway. Further exploration suggested that SZKJT affects OSCC by modulating ERK pathway; downregulating vimentin, fibronectin, and Oct-4; and upregulating E-cadherin. In vivo, SZKJT significantly inhibited tumor growth, and SZKJT and cisplatin exerted synergistic antitumor effects in model animals. CONCLUSIONS SZKJT exerts antitumor effects in OSCC cells. Additionally, SZKJT and cisplatin exhibit synergy in OSCC treatment. These findings support the clinical usage of Chinese herbal formulas as adjuvant therapy with chemotherapy in cancer treatment.
Collapse
Affiliation(s)
- Pei-Yu Hsu
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiun-Liang Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Li Kuo
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Ling Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fei-Wen Jan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sien-Hung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Patel D, Dabhi AM, Dmello C, Seervi M, Sneha KM, Agrawal P, Sahani MH, Kanojia D. FKBP1A upregulation correlates with poor prognosis and increased metastatic potential of HNSCC. Cell Biol Int 2021; 46:443-453. [PMID: 34882900 DOI: 10.1002/cbin.11741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy globally. The etiology of HNSCC is multifactorial, including cellular stress induced by a tobacco smoking, tobacco chewing excess alcohol consumption, and human papillomavirus infection. The induction of stress includes autophagy as one of the response pathways in maintaining homeostatic equilibrium. We evaluated the expression of autophagy-related genes in HNSCC tissues from RNA sequencing datasets and identified 19 genes correlated with poor prognosis and 18 genes correlated with improved prognosis of HNSCC patients. Further analysis of independent gene expression datasets revealed that ATG12, HSP90AB1, and FKBP1A are overexpressed in HNSCC and correlate with poor prognosis, whereas the overexpression of ANXA1, FOS, and ULK3 correlates with improved prognosis. Using independent datasets, we also found that ATG12, HSP90AB1, and FKBP1A expression increased with an increase in the T-stage of HNSCC. Among all the datasets analyzed, FKBP1A was overexpressed in HNSCC and was strongly associated with lymph node metastasis in multiple in silico datasets. In conclusion, our analysis indicates dynamic alterations in autophagy genes during HNSCC and warrants further investigation, specifically on FKBP1A and its role in tumor progression and metastasis.
Collapse
Affiliation(s)
- Dhruti Patel
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Aarsh M Dabhi
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Crismita Dmello
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - K M Sneha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Pavan Agrawal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Mayurbhai H Sahani
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Deepak Kanojia
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
16
|
Usman S, Waseem NH, Nguyen TKN, Mohsin S, Jamal A, Teh MT, Waseem A. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers (Basel) 2021; 13:4985. [PMID: 34638469 PMCID: PMC8507690 DOI: 10.3390/cancers13194985] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible plethora of molecular events where epithelial cells gain the phenotype of mesenchymal cells to invade the surrounding tissues. EMT is a physiological event during embryogenesis (type I) but also happens during fibrosis (type II) and cancer metastasis (type III). It is a multifaceted phenomenon governed by the activation of genes associated with cell migration, extracellular matrix degradation, DNA repair, and angiogenesis. The cancer cells employ EMT to acquire the ability to migrate, resist therapeutic agents and escape immunity. One of the key biomarkers of EMT is vimentin, a type III intermediate filament that is normally expressed in mesenchymal cells but is upregulated during cancer metastasis. This review highlights the pivotal role of vimentin in the key events during EMT and explains its role as a downstream as well as an upstream regulator in this highly complex process. This review also highlights the areas that require further research in exploring the role of vimentin in EMT. As a cytoskeletal protein, vimentin filaments support mechanical integrity of the migratory machinery, generation of directional force, focal adhesion modulation and extracellular attachment. As a viscoelastic scaffold, it gives stress-bearing ability and flexible support to the cell and its organelles. However, during EMT it modulates genes for EMT inducers such as Snail, Slug, Twist and ZEB1/2, as well as the key epigenetic factors. In addition, it suppresses cellular differentiation and upregulates their pluripotent potential by inducing genes associated with self-renewability, thus increasing the stemness of cancer stem cells, facilitating the tumour spread and making them more resistant to treatments. Several missense and frameshift mutations reported in vimentin in human cancers may also contribute towards the metastatic spread. Therefore, we propose that vimentin should be a therapeutic target using molecular technologies that will curb cancer growth and spread with reduced mortality and morbidity.
Collapse
Affiliation(s)
- Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Naushin H. Waseem
- UCL Institute of Ophthalmology, 11-43 Bath Str., London EC1V 9EL, UK;
| | - Thuan Khanh Ngoc Nguyen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Ahmad Jamal
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| |
Collapse
|
17
|
Aggarwal V, Montoya CA, Donnenberg VS, Sant S. Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience 2021; 24:102113. [PMID: 33659878 PMCID: PMC7892926 DOI: 10.1016/j.isci.2021.102113] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), an evolutionary conserved phenomenon, has been extensively studied to address the unresolved variable treatment response across therapeutic regimes in cancer subtypes. EMT has long been envisaged to regulate tumor invasion, migration, and therapeutic resistance during tumorigenesis. However, recently it has been highlighted that EMT involves an intermediate partial EMT (pEMT) phenotype, defined by incomplete loss of epithelial markers and incomplete gain of mesenchymal markers. It has been further emphasized that pEMT transition involves a spectrum of intermediate hybrid states on either side of pEMT spectrum. Emerging evidence underlines bi-directional crosstalk between tumor cells and surrounding microenvironment in acquisition of pEMT phenotype. Although much work is still ongoing to gain mechanistic insights into regulation of pEMT phenotype, it is evident that pEMT plays a critical role in tumor aggressiveness, invasion, migration, and metastasis along with therapeutic resistance. In this review, we focus on important role of tumor-intrinsic factors and tumor microenvironment in driving pEMT and emphasize that engineered controlled microenvironments are instrumental to provide mechanistic insights into pEMT biology. We also discuss the significance of pEMT in regulating hallmarks of tumor progression i.e. cell cycle regulation, collective migration, and therapeutic resistance. Although constantly evolving, current progress and momentum in the pEMT field holds promise to unravel new therapeutic targets to halt tumor progression at early stages as well as tackle the complex therapeutic resistance observed across many cancer types. Partial EMT phenotype drives key hallmarks of tumor progression Role of tumor microenvironment in pEMT phenotype via cellular signaling pathways Engineering 3D in vitro models to study pEMT phenotype Opportunities and challenges in understanding pEMT phenotype
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Catalina Ardila Montoya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh, School of Medicine Pittsburgh, PA 15213, USA.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.,Department of Pharmaceutical Sciences, School of Pharmacy; Department of Bioengineering, Swanson School of Engineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC-Hillman Cancer Center, 700 Technology Drive, Room 4307, Pittsburgh, PA 15261, USA
| |
Collapse
|
18
|
Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation. Int J Oral Sci 2020; 12:23. [PMID: 32826859 PMCID: PMC7442837 DOI: 10.1038/s41368-020-00090-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.
Collapse
|
19
|
Jung M, Jang I, Kim K, Moon KC. CK14 Expression Identifies a Basal/Squamous-Like Type of Papillary Non-Muscle-Invasive Upper Tract Urothelial Carcinoma. Front Oncol 2020; 10:623. [PMID: 32391279 PMCID: PMC7193093 DOI: 10.3389/fonc.2020.00623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Object: CK14 expression is an important marker of basal/squamous-like (BASQ)-type muscle-invasive bladder carcinoma, and this molecularly defined subtype has a poor prognosis and a distinct response to chemotherapy. However, CK14 expression and its clinicopathological and molecular significance in papillary non-muscle-invasive upper tract urothelial carcinoma (NMIUTUC) remain unknown. Herein, we investigated the prognostic implications of immunohistochemical (IHC) staining for CK14 and the transcriptional characteristics associated with CK14 expression in papillary NMIUTUC. Materials and Methods: IHC staining for CK14 was conducted in 204 papillary NMIUTUC specimens. Positive CK14 IHC staining was defined as a positive signal in >0% of tumor cells. RNA sequencing data were analyzed from 8 papillary high-grade NMIUTUC specimens consisting of 4 CK14-positive and 4 CK14-negative tumors. Results: CK14 positivity was associated with a high TNM stage (p < 0.001) and a high World Health Organization grade (p = 0.003). Survival analysis showed that CK14 positivity was significantly associated with poor progression-free survival (p = 0.015; hazard ratio [HR] = 2.990; 95% confidence interval [CI] = 1.180-7.580) and was marginally associated with poor cancer-specific survival (p = 0.052; HR = 3.77; 95% CI = 0.900-15.780). Gene set enrichment analysis demonstrated that the CK14-positive tumors were associated with a basal subtype of breast cancer, squamous cell carcinoma development, p40, tumor necrosis factor α-nuclear factor-κB, and p53 pathways, and embryonic stem cells; these characteristics are reminiscent of the BASQ subtype. In addition, with a p < 0.05 and |fold change| ≥2 as the cutoffs, we identified 178 differentially expressed genes when comparing CK14-positive and CK14-negative tumors. Functional analysis of these genes revealed several networks and gene ontology terms related to the positive regulation of cellular proliferation in CK14-positive tumors. Consistent with these results, we demonstrated that the mean Ki-67 proliferative index was higher in CK14-positive tumors than it was in CK14-negative tumors (2.3 vs. 0.8%, respectively, p = 0.002). Conclusion: CK14-positive papillary NMIUTUC is an aggressive subtype with BASQ-like molecular characteristics and dynamic proliferative activity. We propose that CK14 IHC staining can be a useful biomarker of BASQ-type papillary NMIUTUC that can be applied in daily practice with the aim of precision oncology.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
| | - Insoon Jang
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea.,Medical Research Center, Kidney Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Macrophage-Derived Extracellular Vesicle Promotes Hair Growth. Cells 2020; 9:cells9040856. [PMID: 32244824 PMCID: PMC7226775 DOI: 10.3390/cells9040856] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Hair loss is a common medical problem affecting both males and females. Dermal papilla (DP) cells are the ultimate reservoir of cells with the potential of hair regeneration in hair loss patients. Here, we analyzed the role of macrophage-derived Wnts (3a and 7b) and macrophage extracellular vesicles (MAC-EVs) in promoting hair growth. We studied the proliferation, migration, and expression of growth factors of human-DP cells in the presence or absence of MAC-EVs. Additionally, we tested the effect of MAC-EV treatment on hair growth in a mouse model and human hair follicles. Data from western blot and flow cytometry showed that MAC-EVs were enriched with Wnt3a and Wnt7b, and more than 95% were associated with their membrane. The results suggest that Wnt proteins in MAC-EVs activate the Wnt/β-catenin signaling pathways, which leads to activation of transcription factors (Axin2 and Lef1). The MAC-EVs significantly enhanced the proliferation, migration, and levels of hair-inductive markers of DP cells. Additionally, MAC-EVs phosphorylated AKT and increased the levels of the survival protein Bcl-2. The DP cells treated with MAC-EVs showed increased expression of vascular endothelial growth factor (VEGF) and keratinocyte growth factor (KGF). Treatment of Balb/c mice with MAC-EVs promoted hair follicle (HF) growth in vivo and also increased hair shaft size in a short period in human HFs. Our findings suggest that MAC-EV treatment could be clinically used as a promising novel anagen inducer in the treatment of hair loss.
Collapse
|
21
|
Thankam FG, Chandra I, Diaz C, Dilisio MF, Fleegel J, Gross RM, Agrawal DK. Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocytes and adipose-derived mesenchymal stem cells. Mol Cell Biochem 2019; 465:75-87. [PMID: 31797254 DOI: 10.1007/s11010-019-03669-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Regenerative functions of exosomes rely on their contents which are influenced by pathological stimuli, including hypoxia, in rotator cuff tendon injuries (RCTI). The hypoxic environment triggers tenocytes and adjacent adipose-derived mesenchymal stem cells (ADMSCs) to release regenerative mediators to the ECM via the exosomes which elicit autocrine/paracrine responses to protect the tendon matrix from injury. We investigated the exosomal protein contents from tenocytes and subcutaneous ADMSCs from the shoulder of Yucatan microswine cultured under hypoxic conditions (2% O2). The exosomal proteins were detected using high-resolution mass spectrometry nano-LC-MS/MS Tribrid system and were compiled using 'Scaffold' software. Hypoxic exosomes from tenocytes and ADMSCs carried 199 and 65 proteins, respectively. The key proteins identified by mass spectrometry and associated with ECM homeostasis from hypoxic ADMSCs included MMP2, COL6A, CTSD and TN-C and those from hypoxic tenocytes were THSB1, NSEP1, ITIH4 and TN-C. These findings were confirmed at the mRNA and protein level in the hypoxic ADMSCs and tenocytes. These proteins are involved in multiple signaling pathways of ECM repair/regeneration. This warrants further investigations for their translational significance in the management of RCTI.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Isaiah Chandra
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Connor Diaz
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Matthew F Dilisio
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Jonathan Fleegel
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - R Michael Gross
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
22
|
Shigeishi H, Yokoyama S, Murodumi H, Sakuma M, Kato H, Higashikawa K, Takechi M, Ohta K, Sugiyama M. Effect of hydrogel stiffness on morphology and gene expression pattern of CD44 high oral squamous cell carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2826-2836. [PMID: 31934119 PMCID: PMC6949719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
The stiffness of extracellular matrix (ECM) has been associated with tumor growth, phenotypic plasticity, and invasion through modulation of the intracellular signaling pathway. However, the effect of ECM stiffness on oral cancer stem cells (CSCs) has not been fully elucidated. Therefore, we preliminarily investigated changes in phenotype and gene expression in CD44 positive-oral squamous cell carcinoma (OSCC) cells (i.e., CD44high OM-1 cells) that were cultured on laminin-coated hydrogel with various degrees of stiffness. Mesenchymal-like morphology was observed when cells were cultured on 4.0 kPa laminin-coated hydrogel; amoeboid-like morphology was observed when cells were cultured on 1.0 kPa and 0.5 kPa laminin-coated hydrogel. These results indicated that CD44high OM-1 cells underwent mesenchymal to amoeboid transition (MAT) when cultured on laminin-coated softer hydrogel. E-cadherin and ESA mRNA expression levels were significantly reduced in CD44high OM-1 cells cultured on 0.5 and 1.0 kPa laminin-coated hydrogel, compared with their levels in control cells cultured in laminin-coated dishes. Significant changes in CD44 mRNA expression were not found in CD44high OM-1 cells that were cultured on different stiff hydrogels, compared with expression in control cells. Microarray analysis revealed that expression of cofilin, an intracellular actin-modulating protein, was increased by 8.19-fold in amoeboid-like CD44high OM-1 cells, compared with mesenchymal-like CD44high OM-1 cells; this suggested that cofilin was associated with MAT in CD44high OSCC cells. Further studies are needed to clarify the relationship between cofilin and invasion ability in CD44high amoeboid-like OSCC cells.
Collapse
Affiliation(s)
- Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Sho Yokoyama
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroshi Murodumi
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Miyuki Sakuma
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroki Kato
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Koichiro Higashikawa
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masaaki Takechi
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masaru Sugiyama
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
23
|
Huang C, Song H, Lai L. The role and mechanism of microRNA‑18a‑5p in oral squamous cell carcinoma. Mol Med Rep 2019; 20:1637-1644. [PMID: 31257489 PMCID: PMC6625443 DOI: 10.3892/mmr.2019.10403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was mainly to explore the role and mechanism of microRNA-18a-5p (miR-18a-5p) in oral squamous cell carcinoma (OSCC). The expression of miR-18a-5p in OSCC cells and normal cells was firstly detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The cell viability, apoptosis, migration and invasion abilities of OSCC cells were determined by MTT, cell apoptosis, wound healing and Transwell assays respectively. Additionally, bioinformatics software analysis and luciferase reporter assays were performed to predict and confirm the candidate target of miR-18a-5p. Western blot analysis was used to assess protein expression. It was revealed that the expression of miR-18a-5p in OSCC cells was higher than that in normal cells. In vitro studies revealed that the cell viability, migration and invasion abilities of OSCC cells were promoted and cell apoptosis was inhibited by miR-18a-5p overexpression. In addition, Smad2 was identified as a target of miR-18a-5p. It was also revealed that miR-18a-5p overexpression significantly inhibited the expression of Smad2, Smad4 and E-cadherin, and the levels of Smad7, collagen I, transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), vimentin were enhanced. While miR-18a-5p downregulation presented the opposite effects. In conclusion, the results indicated that miR-18a-5p can regulate the biological process of OSCC by targeting Smad2 and miR-18a-5p/Smad2 may be potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Chenyao Huang
- Department of Oral and Maxillofacial Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Hongning Song
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, P.R. China
| | - Linfeng Lai
- Department of Oral and Maxillofacial Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
24
|
Dmello C, Srivastava SS, Tiwari R, Chaudhari PR, Sawant S, Vaidya MM. Multifaceted role of keratins in epithelial cell differentiation and transformation. J Biosci 2019; 44:33. [PMID: 31180046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Keratins, the epithelial-predominant members of the intermediate filament superfamily, are expressed in a pairwise, tissuespecific and differentiation-dependent manner. There are 28 type I and 26 type II keratins, which share a common structure comprising a central coiled coil α-helical rod domain flanked by two nonhelical head and tail domains. These domains harbor sites for major posttranslational modifications like phosphorylation and glycosylation, which govern keratin function and dynamics. Apart from providing structural support, keratins regulate various signaling machinery involved in cell growth, motility, apoptosis etc. However, tissue-specific functions of keratins in relation to cell proliferation and differentiation are still emerging. Altered keratin expression pattern during and after malignant transformation is reported to modulate different signaling pathways involved in tumor progression in a context-dependent fashion. The current review focuses on the literature related to the role of keratins in the regulation of cell proliferation, differentiation and transformation in different types of epithelia.
Collapse
Affiliation(s)
- Crismita Dmello
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | | | | | | | | | | |
Collapse
|
25
|
Dmello C, Srivastava SS, Tiwari R, Chaudhari PR, Sawant S, Vaidya MM. Multifaceted role of keratins in epithelial cell differentiation and transformation. J Biosci 2019. [DOI: 10.1007/s12038-019-9864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol 2018; 29:212-226. [PMID: 30594349 DOI: 10.1016/j.tcb.2018.12.001] [Citation(s) in RCA: 1811] [Impact Index Per Article: 258.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features. In cancer, EMT is associated with tumor initiation, invasion, metastasis, and resistance to therapy. Recently, it has been demonstrated that EMT is not a binary process, but occurs through distinct cellular states. Here, we review the recent studies that demonstrate the existence of these different EMT states in cancer and the mechanisms regulating their functions. We discuss the different functional characteristics, such as proliferation, propagation, plasticity, invasion, and metastasis associated with the distinct EMT states. We summarize the role of the transcriptional and epigenetic landscapes, gene regulatory network and their surrounding niche in controlling the transition through the different EMT states.
Collapse
Affiliation(s)
- Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium; WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
27
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
28
|
Sawant S, Dongre H, Ahire C, Sharma S, Jamghare S, Kansara Y, Rane P, Kanojia D, Patil A, Chaukar D, Gupta S, D'Cruz A, Vaidya M, Dongre P. Alterations in desmosomal adhesion at protein and ultrastructure levels during the sequential progressive grades of human oral tumorigenesis. Eur J Oral Sci 2018; 126:251-262. [PMID: 29905981 DOI: 10.1111/eos.12426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2018] [Indexed: 11/26/2022]
Abstract
With the aim of developing early diagnostic/prognostic markers for oral cancer, desmosomal adhesion in sequentially progressive grades of tissues from oral normal/disorders (normal, hyperplastic, dysplastic, non-metastatic/metastatic tumours, and metastatic nodes) was investigated at protein and ultrastructural levels using immunohistochemistry and transmission electron microscopy, respectively. The expression of desmosomal proteins was higher in hyperplastic tissues than in normal tissues but was significantly decreased in subsequent progressive stages of the disease. Altered expression of desmosomal proteins was significantly correlated with local recurrence and disease-free survival. Ultrastructural analysis in the corresponding tissues revealed cytoplasmic clustering of desmosomes in hyperplasia; in more advanced disease stages, a significantly lower number of desmosomes and widened intercellular spaces were observed. Altered protein expression resulting in structural changes was confirmed by knocking down desmoplakin expression in non-transformed cells, which failed to form normal desmosome structures and induced a cell-transformation phenotype. Our data suggest that alterations in desmosomal assembly initiate at an early hyperplastic grade and, with more advanced disease stages, the severity of the alterations gradually becomes higher. Alterations in desmosomal adhesion can be useful for early detection of high-risk premalignant lesions, as well as for identification of invasive characteristics of primary non-metastatic tumours. Early detection will help to control further progression of disease by timely intervention.
Collapse
Affiliation(s)
- Sharada Sawant
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Harsh Dongre
- Department of Clinical Medicine and Centre for Cancer Biomarkers, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Chetan Ahire
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Shilpi Sharma
- Oral Surgery, Head and Neck Unit, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sayli Jamghare
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Yashvi Kansara
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Pallavi Rane
- Epidemiology and Clinical Trials Unit, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Deepak Kanojia
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Asawari Patil
- Department of Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Devendra Chaukar
- Oral Surgery, Head and Neck Unit, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sudeep Gupta
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Hospital, Kharghar, Navi Mumbai, Maharashtra, India
| | - Anil D'Cruz
- Oral Surgery, Head and Neck Unit, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Milind Vaidya
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Prabhakar Dongre
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
29
|
Tiwari R, Sahu I, Soni BL, Sathe GJ, Thapa P, Patel P, Sinha S, Vadivel CK, Patel S, Jamghare SN, Oak S, Thorat R, Gowda H, Vaidya MM. Depletion of keratin 8/18 modulates oncogenic potential by governing multiple signaling pathways. FEBS J 2018; 285:1251-1276. [DOI: 10.1111/febs.14401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Richa Tiwari
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
- Department of Biology Technion – Israel Institute of Technology Haifa Israel
| | - Bihari Lal Soni
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | | | - Pankaj Thapa
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | - Pavan Patel
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Shruti Sinha
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | | | - Shweta Patel
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Sayli Nitin Jamghare
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Swapnil Oak
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | - Rahul Thorat
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
| | | | - Milind M. Vaidya
- Advanced Centre for Treatment, Research and Education in Cancer Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
30
|
Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep 2017; 7:15560. [PMID: 29138430 PMCID: PMC5686117 DOI: 10.1038/s41598-017-15505-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
Hair loss is a common medical problem. In this study, we investigated the proliferation, migration, and growth factor expression of human dermal papilla (DP) cells in the presence or absence of treatment with mesenchymal stem cell extracellular vesicles (MSC-EVs). In addition, we tested the efficacy of MSC-EV treatment on hair growth in an animal model. MSC-EV treatment increased DP cell proliferation and migration, and elevated the levels of Bcl-2, phosphorylated Akt and ERK. In addition; DP cells treated with MSC-EVs displayed increased expression and secretion of VEGF and IGF-1. Intradermal injection of MSC-EVs into C57BL/6 mice promoted the conversion from telogen to anagen and increased expression of wnt3a, wnt5a and versican was demonstrated. The first time our results suggest that MSC-EVs have a potential to activate DP cells, prolonged survival, induce growth factor activation in vitro, and promotes hair growth in vivo.
Collapse
|
31
|
Chaudhari PR, Charles SE, D'Souza ZC, Vaidya MM. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells. Exp Cell Res 2017; 360:125-137. [PMID: 28867478 DOI: 10.1016/j.yexcr.2017.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/29/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells.
Collapse
Affiliation(s)
- Pratik Rajeev Chaudhari
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Silvania Emlit Charles
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Zinia Charlotte D'Souza
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Milind Murlidhar Vaidya
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
32
|
Wang W, Yi M, Zhang R, Li J, Chen S, Cai J, Zeng Z, Li X, Xiong W, Wang L, Li G, Xiang B. Vimentin is a crucial target for anti-metastasis therapy of nasopharyngeal carcinoma. Mol Cell Biochem 2017; 438:47-57. [PMID: 28744809 DOI: 10.1007/s11010-017-3112-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/01/2017] [Indexed: 12/23/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique subtype of head and neck cancer, with tendency to spread to regional lymph nodes and distant organs at early stage. Vimentin, a major cytoskeletal protein constituent of the intermediate filament, plays a critical role in the epithelial-mesenchymal transition. Overexpression of vimentin is considered to be a critical prerequisite for metastasis in numerous human cancers. Therefore, targeting vimentin for cancer therapy has gained a lot of interest. In the present study, we detected vimentin expression in NPC tissues and found that overexpression of vimentin is associated with poor prognosis of NPC patients. Silencing of vimentin in NPC CNE2 cells by RNAi suppresses cells migration and invasion in vitro. However, blocking vimentin did not affect cell proliferation of CNE2 cells. In addition, the in vivo metastatic potential of CNE2 cells transfected with Vimentin shRNA was suppressed in a nude mouse model of pulmonary metastasis. Silencing of Vimentin in CNE2 cells leads to a decrease of microvessel density and VEGF, CD31, MMP2, and MMP9 expressions in pulmonary metastatic tumors. Importantly, we found that it is easier for the tumor cells from the high vimentin-expressing pulmonary metastatic tumors to reinvade the microvessel and to form stable tumor plaques attached to the endothelial cells, which resemble the resource of circulating tumor cells and are very hard to eliminate. However, depletion of vimentin inhibits the formation of vascular tumor plaques. Our findings suggest that RNAi-based vimentin silencing may be a potential and promising anti-metastatic therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Wei Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Renya Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Junjun Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shengnan Chen
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jing Cai
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China. .,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
33
|
Xu Z, Bian H, Zhang F, Mi R, Wang Q, Lu Y, Zheng Q, Gu J. URI promotes the migration and invasion of human cervical cancer cells potentially via upregulation of vimentin expression. Am J Transl Res 2017; 9:3037-3047. [PMID: 28670391 PMCID: PMC5489903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
URI is known to act as an oncoprotein in several tumors. Our previous studies have shown that URI is associated with the migration process in cervical and gastric cancer cells, but the mechanisms remain to be determined. Given the fact that URI positively regulates vimentin expression, we therefore investigated how URI regulated vimentin expression affects the migration and invasion of cells from two human cervical cancer cell lines HeLa and C33A, which differentially express URI. We have shown that knock-down of URI in HeLa cells using URI siRNA caused decreased vimentin mRNA and protein levels along with attenuated cell motility. Meanwhile, overexpression of URI by transfection of PCMV6-URI in C33A cells resulted in increased vimentin expression and enhanced cell migration and invasion. We have also used TGF-β to induce vimentin expression, which enhanced the cell migration and invasion abilities affected by URI, while inhibition of vimentin by siRNA attenuated URI's effect on cell migration and invasion. In addition, we have performed luciferase reporter and ChIP assays, and the results support that URI indirectly enhances the activity of vimentin promoter. Taken together, our results suggest that URI plays essential roles in the migration and invasion of human cervical cancer cells, possibly via targeting vimentin expression.
Collapse
Affiliation(s)
- Zhonghai Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Huiqin Bian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Fei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Rui Mi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Qian Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Yaojuan Lu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Qiping Zheng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Junxia Gu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematology and Hematological Laboratory Science, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| |
Collapse
|