1
|
Chi J, Lou K, Zhang J, Wu J, Cui Y. A new predictive factor VGF based on IHC experiments, gene pathways and molecular functional groups for tumor immune microenvironment and prognosis of adrenocortical carcinoma. Front Immunol 2025; 16:1542780. [PMID: 40313932 PMCID: PMC12043488 DOI: 10.3389/fimmu.2025.1542780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/18/2025] [Indexed: 05/03/2025] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with a poor prognosis, and its clinical management remains a significant challenge due to the high recurrence rates and limited treatment options. Despite advances in understanding the molecular mechanisms underlying ACC, no reliable biomarkers have been validated for routine clinical use. Methods We analyzed RNA sequencing data from The Cancer Genome Atlas (TCGA) database (n=79) and Genotype Tissue Expression (GTEx) database (n=128) to investigate the expression of VGF in ACC and normal adrenal tissues. Gene expression levels of VGF were quantified and correlated with clinicopathological features and survival outcomes. Statistical methods included Cox proportional hazards models and Kaplan-Meier analysis, while Gene Set Enrichment Analysis (GSEA) was utilized to identify relevant biological pathways associated with VGF expression. Clinical data from 7 ACC patients from YANTAI YUHUANGDING Hospital were also analyzed. The expression of VGF in ACC and normal adrenal gland tissue was further validated through IHC experiments. Results Our results demonstrate that VGF expression is elevated in ACC tissues compared to normal adrenal tissues and is significantly associated with advanced disease stages, lymph node involvement, metastasis and poor overall survival. VGF levels also correlate with immune cell infiltration, including Th2 cells, T helper cells, and Neutrophils. Importantly, our study establishes VGF as a potential prognostic biomarker for ACC and highlights its role in tumor progression and immune modulation. Additionally, GSEA analysis suggests that VGF is involved in cytokine receptor interaction and the P13K-Akt signaling pathway, possibly relating to tumor immunity. Conclusions VGF could serve as a valuable marker for patient stratification, monitoring disease progression, and predicting responses to immunotherapies. Future studies should focus on investigating circulating VGF levels as a non-invasive biomarker for ACC to improve clinical management and treatment outcomes.
Collapse
Affiliation(s)
- Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jiankun Zhang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Urology, Weifang People’s Hospital, Weifang, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Urology, Weifang People’s Hospital, Weifang, China
| |
Collapse
|
2
|
Manca E, Noli B, Corda G, El-Hassani M, Manai A, Sanna F, Argiolas A, Melis MR, Manconi B, Contini C, Cocco C. VGF modifications related to nigrostriatal dopaminergic neurodegeneration induced by the pesticide fipronil in adult male rats. Ann Anat 2024; 252:152194. [PMID: 38056781 DOI: 10.1016/j.aanat.2023.152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Dopamine is reduced in the brain of rats treated with fipronil, a broad-spectrum insecticide. VGF (no acronym) is a neurotrophin-inducible protein expressed as the 75 kDa form (precursor or pro-VGF) or its truncated peptides. VGF immunostaining has been revealed using an antibody against the C-terminal nonapeptide of the rat pro-VGF in the nerve terminals of the rat substantia nigra, where it was reduced after 6-hydroxydopamine treatment. It is unknown whether pro-VGF and/or its shortened peptides are present in these neurons. Therefore, the aim of this study was first to determine which types of VGF are expressed in the normal substantia nigra (and striatum) and then to determine VGF modulations and whether they occur in parallel with locomotor changes after fipronil injection. METHODS Rats were divided into two groups that received a unilateral intranigral infusion of either fipronil (25 µg) diluted in dimethyl sulfoxide (DMSO) or DMSO alone, and then were tested for locomotor activity. An untreated group of rats (n=4) was used for identification of the VGF fragments using high performance liquid chromatography-mass spectrometry and western blot, while changes in treated groups (fipronil vs DMSO, each n=6) were investigated by immunohistochemistry using an antibody against the rat pro-VGF C-terminal nonapeptide in parallel with the anti-tyrosine hydroxylase antibody. RESULTS In untreated rats, the VGF C-terminal antibody identified mostly a 75 kDa band in the substantia nigra and striatum, supporting the finding of high-resolution mass spectrometry, which revealed fragments covering the majority of the pro-VGF sequence. Furthermore, several shortened VGF C-terminal forms (varying from 10 to 55 kDa) were also found by western blot, while high-resolution mass spectrometry revealed a C-terminal peptide overlapping the immunogen used to create the VGF antibody in both substantia nigra and striatum. In the substantia nigra of fipronil-treated rats, immunostaining for tyrosine hydroxylase and VGF was reduced compared to DMSO-treated rat group, and this was related with significant changes in locomotor activity. CONCLUSION Fipronil has the ability to modulate the production of pro-VGF and/or its C-terminal truncated peptides in the nigrostriatal system indicating its intimate interaction with the dopaminergic neurotransmission and implying a potential function in modulating locomotor activity.
Collapse
Affiliation(s)
- Elias Manca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giulia Corda
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Majda El-Hassani
- Department of Internal Medicine III, University Hospital RWTH Aachen, Germany
| | - Antonio Manai
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonio Argiolas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Barbara Manconi
- Department of Life Sciences and Environment, University of Cagliari, Italy
| | - Cristina Contini
- Department of Life Sciences and Environment, University of Cagliari, Italy
| | - Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
3
|
Sahu BS, Razzoli M, McGonigle S, Pallais JP, Nguyen ME, Sadahiro M, Jiang C, Lin WJ, Kelley KA, Rodriguez P, Mansk R, Cero C, Caviola G, Palanza P, Rao L, Beetch M, Alejandro E, Sham YY, Frontini A, Salton SR, Bartolomucci A. Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis. Mol Metab 2023; 76:101781. [PMID: 37482186 PMCID: PMC10400922 DOI: 10.1016/j.molmet.2023.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVE Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. METHODS We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21→A). RESULTS We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue. CONCLUSIONS The ΔTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Masato Sadahiro
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cheng Jiang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei-Jye Lin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevin A Kelley
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel Mansk
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Giada Caviola
- Department of Medicine and Surgery, University of Parma, 43120, Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43120, Parma, Italy
| | - Loredana Rao
- Department of Life and Environmental Sciences, Universita' Politecnica delle Marche, Ancona, 60131, Italy
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emilyn Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Universita' Politecnica delle Marche, Ancona, 60131, Italy
| | - Stephen R Salton
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Tesfaye M, Wu J, Biedrzycki RJ, Grantz KL, Joseph P, Tekola-Ayele F. Prenatal social support in low-risk pregnancy shapes placental epigenome. BMC Med 2023; 21:12. [PMID: 36617561 PMCID: PMC9827682 DOI: 10.1186/s12916-022-02701-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Poor social support during pregnancy has been linked to inflammation and adverse pregnancy and childhood health outcomes. Placental epigenetic alterations may underlie these links but are still unknown in humans. METHODS In a cohort of low-risk pregnant women (n = 301) from diverse ethnic backgrounds, social support was measured using the ENRICHD Social Support Inventory (ESSI) during the first trimester. Placental samples collected at delivery were analyzed for DNA methylation and gene expression using Illumina 450K Beadchip Array and RNA-seq, respectively. We examined association between maternal prenatal social support and DNA methylation in placenta. Associated cytosine-(phosphate)-guanine sites (CpGs) were further assessed for correlation with nearby gene expression in placenta. RESULTS The mean age (SD) of the women was 27.7 (5.3) years. The median (interquartile range) of ESSI scores was 24 (22-25). Prenatal social support was significantly associated with methylation level at seven CpGs (PFDR < 0.05). The methylation levels at two of the seven CpGs correlated with placental expression of VGF and ILVBL (PFDR < 0.05), genes known to be involved in neurodevelopment and energy metabolism. The genes annotated with the top 100 CpGs were enriched for pathways related to fetal growth, coagulation system, energy metabolism, and neurodevelopment. Sex-stratified analysis identified additional significant associations at nine CpGs in male-bearing pregnancies and 35 CpGs in female-bearing pregnancies. CONCLUSIONS The findings suggest that prenatal social support is linked to placental DNA methylation changes in a low-stress setting, including fetal sex-dependent epigenetic changes. Given the relevance of some of these changes in fetal neurodevelopmental outcomes, the findings signal important methylation targets for future research on molecular mechanisms of effect of the broader social environment on pregnancy and fetal outcomes. TRIAL REGISTRATION NCT00912132 ( ClinicalTrials.gov ).
Collapse
Affiliation(s)
- Markos Tesfaye
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.,Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Jing Wu
- Glotech, Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Biedrzycki
- Glotech, Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Katherine L Grantz
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, MD, Bethesda, USA
| | - Paule Joseph
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, MD, Bethesda, USA.
| |
Collapse
|
5
|
He X, Yang L, Dong K, Zhang F, Liu Y, Ma B, Chen Y, Hai J, Zhu R, Cheng L. Biocompatible exosome-modified fibrin gel accelerates the recovery of spinal cord injury by VGF-mediated oligodendrogenesis. J Nanobiotechnology 2022; 20:360. [PMID: 35918769 PMCID: PMC9344707 DOI: 10.1186/s12951-022-01541-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 12/17/2022] Open
Abstract
Exosomes show potential for treating patients with spinal cord injury (SCI) in clinical practice, but the underlying repair mechanisms remain poorly understood, and biological scaffolds available for clinical transplantation of exosomes have yet to be explored. In the present study, we demonstrated the novel function of Gel-Exo (exosomes encapsulated in fibrin gel) in promoting behavioural and electrophysiological performance in mice with SCI, and the upregulated neural marker expression in the lesion site suggested enhanced neurogenesis by Gel-Exo. According to the RNA-seq results, Vgf (nerve growth factor inducible) was the key regulator through which Gel-Exo accelerated recovery from SCI. VGF is related to myelination and oligodendrocyte development according to previous reports. Furthermore, we found that VGF was abundant in exosomes, and Gel-Exo-treated mice with high VGF expression indeed showed increased oligodendrogenesis. VGF was also shown to promote oligodendrogenesis both in vitro and in vivo, and lentivirus-mediated VGF overexpression in the lesion site showed reparative effects equal to those of Gel-Exo treatment in vivo. These results suggest that Gel-Exo can thus be used as a biocompatible material for SCI repair, in which VGF-mediated oligodendrogenesis is the vital mechanism for functional recovery.
Collapse
Affiliation(s)
- Xiaolie He
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Li Yang
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Kun Dong
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Feng Zhang
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Yuchen Liu
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Bei Ma
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Youwei Chen
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Jian Hai
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Rongrong Zhu
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China.
| | - Liming Cheng
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
6
|
Wang Y, Qin X, Han Y, Li B. VGF: A prospective biomarker and therapeutic target for neuroendocrine and nervous system disorders. Biomed Pharmacother 2022; 151:113099. [PMID: 35594706 DOI: 10.1016/j.biopha.2022.113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Neuroendocrine regulatory polypeptide VGF (nerve growth factor inducible) was firstly found in the rapid induction of nerve growth factor on PC12 cells. It was selectively distributed in neurons and many neuroendocrine tissues. This paper reviewed the latest literatures on the gene structure, transcriptional regulation, protein processing, distribution and potential receptors of VGF. The neuroendocrine roles of VGF and its derived polypeptides in regulating energy, water electrolyte balance, circadian rhythm and reproductive activities were also summarized. Furthermore, based on the experimental evidence in vivo and in vitro, dysregulation of VGF in different neuroendocrine diseases and the possible mechanism mediated by VGF polypeptides were discussed. We next discussed the potential as the clinical diagnosis and therapy for VGF related diseases in the future.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoxue Qin
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
7
|
Sahu BS, Nguyen ME, Rodriguez P, Pallais JP, Ghosh V, Razzoli M, Sham YY, Salton SR, Bartolomucci A. The molecular identity of the TLQP-21 peptide receptor. Cell Mol Life Sci 2021; 78:7133-7144. [PMID: 34626205 PMCID: PMC8629782 DOI: 10.1007/s00018-021-03944-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
The TLQP-21 neuropeptide has been implicated in functions as diverse as lipolysis, neurodegeneration and metabolism, thus suggesting an important role in several human diseases. Three binding targets have been proposed for TLQP-21: C3aR1, gC1qR and HSPA8. The aim of this review is to critically evaluate the molecular identity of the TLQP-21 receptor and the proposed multi-receptor mechanism of action. Several studies confirm a critical role for C3aR1 in TLQP-21 biological activity and a largely conserved mode of binding, receptor activation and signaling with C3a, its first-identified endogenous ligand. Conversely, data supporting a role of gC1qR and HSPA8 in TLQP-21 activity remain limited, with no signal transduction pathways being described. Overall, C3aR1 is the only receptor for which a necessary and sufficient role in TLQP-21 activity has been confirmed thus far. This conclusion calls into question the validity of a multi-receptor mechanism of action for TLQP-21 and should inform future studies.
Collapse
Affiliation(s)
- Bhavani S Sahu
- National Brain Research Centre, NH-8, Manesar, Gurugram, Haryana, 122052, India
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Vinayak Ghosh
- National Brain Research Centre, NH-8, Manesar, Gurugram, Haryana, 122052, India
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - Stephen R Salton
- Departments of Neuroscience and Geriatrics and Palliative Medicine, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Quinn JP, Kandigian SE, Trombetta BA, Arnold SE, Carlyle BC. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun 2021; 3:fcab261. [PMID: 34778762 PMCID: PMC8578498 DOI: 10.1093/braincomms/fcab261] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently needed for these devastating and costly diseases, as are new biomarkers to improve disease diagnosis and mechanistic understanding. From a list of 537 genes involved in Alzheimer's disease pathogenesis, VGF was highlighted by the Accelerating Medicines Partnership in Alzheimer's disease as the potential therapeutic target of greatest interest. VGF levels are consistently decreased in brain tissue and CSF samples from patients with Alzheimer's disease compared to controls, and its levels correlate with disease severity and Alzheimer's disease pathology. In the brain, VGF exists as multiple functional VGF-derived peptides. Full-length human VGF1-615 undergoes proteolytic processing by prohormone convertases and other proteases in the regulated secretory pathway to produce at least 12 active VGF-derived peptides. In cell and animal models, these VGF-derived peptides have been linked to energy balance regulation, neurogenesis, synaptogenesis, learning and memory, and depression-related behaviours throughout development and adulthood. The C-terminal VGF-derived peptides, TLQP-62 (VGF554-615) and TLQP-21 (VGF554-574) have differential effects on Alzheimer's disease pathogenesis, neuronal and microglial activity, and learning and memory. TLQP-62 activates neuronal cell-surface receptors and regulates long-term hippocampal memory formation. TLQP-62 also prevents immune-mediated memory impairment, depression-like and anxiety-like behaviours in mice. TLQP-21 binds to microglial cell-surface receptors, triggering microglial chemotaxis and phagocytosis. These actions were reported to reduce amyloid-β plaques and decrease neuritic dystrophy in a transgenic mouse model of familial Alzheimer's disease. Expression differences of VGF-derived peptides have also been associated with frontotemporal lobar dementias, amyotrophic lateral sclerosis, Lewy body diseases, Huntington's disease, pain, schizophrenia, bipolar disorder, depression and antidepressant response. This review summarizes current knowledge and highlights questions for future investigation regarding the roles of VGF and its dysregulation in neurodegenerative and psychiatric disease. Finally, the potential of VGF and VGF-derived peptides as biomarkers and novel therapeutic targets for neurodegenerative and psychiatric diseases is highlighted.
Collapse
Affiliation(s)
- James P Quinn
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Savannah E Kandigian
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Aldiss P, Lewis JE, Lupini I, Bloor I, Chavoshinejad R, Boocock DJ, Miles AK, Ebling FJP, Budge H, Symonds ME. Exercise Training in Obese Rats Does Not Induce Browning at Thermoneutrality and Induces a Muscle-Like Signature in Brown Adipose Tissue. Front Endocrinol (Lausanne) 2020; 11:97. [PMID: 32265830 PMCID: PMC7099615 DOI: 10.3389/fendo.2020.00097] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/14/2020] [Indexed: 01/08/2023] Open
Abstract
Aim: Exercise training elicits diverse effects on brown (BAT) and white adipose tissue (WAT) physiology in rodents housed below their thermoneutral zone (i.e., 28-32°C). In these conditions, BAT is chronically hyperactive and, unlike human residence, closer to thermoneutrality. Therefore, we set out to determine the effects of exercise training in obese animals at 28°C (i.e., thermoneutrality) on BAT and WAT in its basal (i.e., inactive) state. Methods: Sprague-Dawley rats (n = 12) were housed at thermoneutrality from 3 weeks of age and fed a high-fat diet. At 12 weeks of age half these animals were randomized to 4-weeks of swim-training (1 h/day, 5 days per week). Following a metabolic assessment interscapular and perivascular BAT and inguinal (I)WAT were taken for analysis of thermogenic genes and the proteome. Results: Exercise attenuated weight gain but did not affect total fat mass or thermogenic gene expression. Proteomics revealed an impact of exercise training on 2-oxoglutarate metabolic process, mitochondrial respiratory chain complex IV, carbon metabolism, and oxidative phosphorylation. This was accompanied by an upregulation of multiple proteins involved in skeletal muscle physiology in BAT and an upregulation of muscle specific markers (i.e., Myod1, CkM, Mb, and MyoG). UCP1 mRNA was undetectable in IWAT with proteomics highlighting changes to DNA binding, the positive regulation of apoptosis, HIF-1 signaling and cytokine-cytokine receptor interaction. Conclusion: Exercise training reduced weight gain in obese animals at thermoneutrality and is accompanied by an oxidative signature in BAT which is accompanied by a muscle-like signature rather than induction of thermogenic genes. This may represent a new, UCP1-independent pathway through which BAT physiology is regulated by exercise training.
Collapse
Affiliation(s)
- Peter Aldiss
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jo E. Lewis
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Irene Lupini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ian Bloor
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ramyar Chavoshinejad
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - David J. Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Francis J. P. Ebling
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Helen Budge
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Michael E. Symonds
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Disease Centre and Biomedical Research Unit, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
10
|
Lu Z, Yue Y, Yuan C, Liu J, Chen Z, Niu C, Sun X, Zhu S, Zhao H, Guo T, Yang B. Genome-Wide Association Study of Body Weight Traits in Chinese Fine-Wool Sheep. Animals (Basel) 2020; 10:E170. [PMID: 31963922 PMCID: PMC7022301 DOI: 10.3390/ani10010170] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Body weight is an important economic trait for sheep and it is vital for their successful production and breeding. Therefore, identifying the genomic regions and biological pathways that contribute to understanding variability in body weight traits is significant for selection purposes. In this study, the genome-wide associations of birth, weaning, yearling, and adult weights of 460 fine-wool sheep were determined using resequencing technology. The results showed that 113 single nucleotide polymorphisms (SNPs) reached the genome-wide significance levels for the four body weight traits and 30 genes were annotated effectively, including AADACL3, VGF, NPC1, and SERPINA12. The genes annotated by these SNPs significantly enriched 78 gene ontology terms and 25 signaling pathways, and were found to mainly participate in skeletal muscle development and lipid metabolism. These genes can be used as candidate genes for body weight in sheep, and provide useful information for the production and genomic selection of Chinese fine-wool sheep.
Collapse
Affiliation(s)
- Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zhiqiang Chen
- Novogene Bioinformatics Institute, Beijing 100029, China;
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoping Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
11
|
El Gaamouch F, Audrain M, Lin WJ, Beckmann N, Jiang C, Hariharan S, Heeger PS, Schadt EE, Gandy S, Ehrlich ME, Salton SR. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener 2020; 15:4. [PMID: 31924226 PMCID: PMC6954537 DOI: 10.1186/s13024-020-0357-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiomic studies by several groups in the NIH Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) identified VGF as a major driver of Alzheimer's disease (AD), also finding that reduced VGF levels correlate with mean amyloid plaque density, Clinical Dementia Rating (CDR) and Braak scores. VGF-derived peptide TLQP-21 activates the complement C3a receptor-1 (C3aR1), predominantly expressed in the brain on microglia. However, it is unclear how mouse or human TLQP-21, which are not identical, modulate microglial function and/or AD progression. METHODS We performed phagocytic/migration assays and RNA sequencing on BV2 microglial cells and primary microglia isolated from wild-type or C3aR1-null mice following treatment with TLQP-21 or C3a super agonist (C3aSA). Effects of intracerebroventricular TLQP-21 delivery were evaluated in 5xFAD mice, a mouse amyloidosis model of AD. Finally, the human HMC3 microglial cell line was treated with human TLQP-21 to determine whether specific peptide functions are conserved from mouse to human. RESULTS We demonstrate that TLQP-21 increases motility and phagocytic capacity in murine BV2 microglial cells, and in primary wild-type but not in C3aR1-null murine microglia, which under basal conditions have impaired phagocytic function compared to wild-type. RNA sequencing of primary microglia revealed overlapping transcriptomic changes induced by treatment with TLQP-21 or C3a super agonist (C3aSA). There were no transcriptomic changes in C3aR1-null or wild-type microglia exposed to the mutant peptide TLQP-R21A, which does not activate C3aR1. Most of the C3aSA- and TLQP-21-induced differentially expressed genes were linked to cell migration and proliferation. Intracerebroventricular TLQP-21 administration for 28 days via implanted osmotic pump resulted in a reduction of amyloid plaques and associated dystrophic neurites and restored expression of subsets of Alzheimer-associated microglial genes. Finally, we found that human TLQP-21 activates human microglia in a fashion similar to activation of murine microglia by mouse TLQP-21. CONCLUSIONS These data provide molecular and functional evidence suggesting that mouse and human TLQP-21 modulate microglial function, with potential implications for the progression of AD-related neuropathology.
Collapse
Affiliation(s)
- Farida El Gaamouch
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
- Medical Research Center of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Cheng Jiang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Siddharth Hariharan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter S. Heeger
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Sema4, Stamford, CT 06902 USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
12
|
Photoperiodic changes in adiposity increase sensitivity of female Siberian hamsters to systemic VGF derived peptide TLQP-21. PLoS One 2019; 14:e0221517. [PMID: 31465472 PMCID: PMC6715173 DOI: 10.1371/journal.pone.0221517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023] Open
Abstract
TLQP-21, a peptide encoded by the highly conserved vgf gene, is expressed in neuroendocrine cells and has been the most prominent VGF-derived peptide studied in relation to control of energy balance. The recent discovery that TLQP-21 is the natural agonist for the complement 3a receptor 1 (C3aR1) has revived interest in this peptide as a potential drug target for obesity. We have investigated its function in Siberian hamsters (Phodopus sungorus), a rodent that displays natural seasonal changes in body weight and adiposity as an adaptation to survive winter. We have previously shown that intracerebroventricular administration of TLQP-21 reduced food intake and body weight in hamsters in their long-day fat state. The aim of our current study was to determine the systemic actions of TLQP-21 on food intake, energy expenditure and body weight, and to establish whether adiposity affected these responses. Peripheral infusion of TLQP-21 (1mg/kg/day for 7 days) in lean hamsters exposed to short photoperiods (SP) reduced cumulative food intake in the home cage (p<0.05), and intake when measured in metabolic cages (P<0.01). Energy expenditure was significantly increased (p<0.001) by TLQP-21 infusion, this was associated with a significant increase in uncoupling protein 1 mRNA in brown adipose tissue (BAT) (p<0.05), and body weight was significantly reduced (p<0.05). These effects of systemic TLQP-21 treatment were not observed in hamsters exposed to long photoperiod (LP) with a fat phenotype. C3aR1 mRNA and protein were abundantly expressed in the hypothalamus, brown and white adipose tissue in hamsters, but changes in expression cannot explain the differential response to TLQP-21 in lean and fat hamsters.
Collapse
|
13
|
Noda Y, Motoyama S, Nakamura S, Shimazawa M, Hara H. Neuropeptide VGF-Derived Peptide LQEQ-19 has Neuroprotective Effects in an In Vitro Model of Amyotrophic Lateral Sclerosis. Neurochem Res 2019; 44:897-904. [PMID: 30656593 DOI: 10.1007/s11064-019-02725-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease caused by the loss of upper and lower motor neurons resulting in muscle weakness and paralysis. Recently, VGF, a neuropeptide that is a precursor of bioactive polypeptides, was found to be decreased in ALS patients, and its inducer exerted protective effects in models of ALS. These findings suggested that VGF was involved in the pathology of ALS. Here, we investigated the neuroprotective effects of various VGF-derived peptides in an in vitro ALS model. We applied seven VGF-derived peptides (TLQP-21, AQEE-30, AQEE-11, LQEQ-19, QEEL-16, LENY-13, and HVLL-7) to the motor neuron-derived cell line, NSC-34, expressing SOD1G93A, which is one of the mutated proteins responsible for familial ALS. Nuclear staining revealed that AQEE-30 and LQEQ-19, which are derived from the C-terminal polypeptide of the VGF precursor protein, attenuated neuronal cell death. Furthermore, immunoblot analysis demonstrated that LQEQ-19 promoted the phosphorylation of Akt and extracellular signal-regulated kinase (ERK) 1/2, and inhibiting these mitogen-activated MAP kinases (MAPKs) with phosphoinositide 3-kinase or MEK/ERK inhibitors, eliminated the neuroprotective effects of LQEQ-19. In conclusion, these results suggest that VGF C-terminal peptides exert their neuroprotective effects via activation of MAPKs such as Akt and ERK1/2. Furthermore, these findings indicate that VGF-derived peptides have potential application in ALS therapy.
Collapse
Affiliation(s)
- Y Noda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - S Motoyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - S Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - M Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - H Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
14
|
Brancia C, Noli B, Boido M, Pilleri R, Boi A, Puddu R, Marrosu F, Vercelli A, Bongioanni P, Ferri GL, Cocco C. TLQP Peptides in Amyotrophic Lateral Sclerosis: Possible Blood Biomarkers with a Neuroprotective Role. Neuroscience 2018; 380:152-163. [PMID: 29588252 DOI: 10.1016/j.neuroscience.2018.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022]
Abstract
While the VGF-derived TLQP peptides have been shown to prevent neuronal apoptosis, and to act on synaptic strengthening, their involvement in Amyotrophic Lateral Sclerosis (ALS) remains unclarified. We studied human ALS patients' plasma (taken at early to late disease stages) and primary fibroblast cultures (patients vs controls), in parallel with SOD1-G93A transgenic mice (taken at pre-, early- and late symptomatic stages) and the mouse motor neuron cell line (NSC-34) treated with Sodium Arsenite (SA) to induce oxidative stress. TLQP peptides were measured by enzyme-linked immunosorbent assay, in parallel with gel chromatography characterization, while their localization was studied by immunohistochemistry. In controls, TLQP peptides, including forms compatible with TLQP-21 and 62, were revealed in plasma and spinal cord motor neurons, as well as in fibroblasts and NSC-34 cells. TLQP peptides were reduced in ALS patients' plasma starting in the early disease stage (14% of controls) and remaining so at the late stage (16% of controls). In mice, a comparable pattern of reduction was shown (vs wild type), in both plasma and spinal cord already in the pre-symptomatic phase (about 26% and 70%, respectively). Similarly, the levels of TLQP peptides were reduced in ALS fibroblasts (31% of controls) and in the NSC-34 treated with Sodium Arsenite (53% of decrease), however, the exogeneous TLQP-21 improved cell viability (SA-treated cells with TLQP-21, vs SA-treated cells only: about 83% vs. 75%). Hence, TLQP peptides, reduced upon oxidative stress, are suggested as blood biomarkers, while TLQP-21 exerts a neuroprotective activity.
Collapse
Affiliation(s)
- Carla Brancia
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy.
| | - Barbara Noli
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Dept. Neuroscience, University of Turin, Turin, Italy
| | - Roberta Pilleri
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Andrea Boi
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberta Puddu
- Dept. Neurology, Azienda Universitario Ospedaliera di Cagliari & University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Dept. Neurology, Azienda Universitario Ospedaliera di Cagliari & University of Cagliari, Cagliari, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Dept. Neuroscience, University of Turin, Turin, Italy
| | - Paolo Bongioanni
- Neurorehabilitation Unit, Dept. Neuroscience, University of Pisa, Pisa, Italy
| | - Gian-Luca Ferri
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Cristina Cocco
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
15
|
Lewis JE, Brameld JM, Hill P, Cocco C, Noli B, Ferri GL, Barrett P, Ebling FJP, Jethwa PH. Correction: Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain. PLoS One 2017; 12:e0182594. [PMID: 28753681 PMCID: PMC5533309 DOI: 10.1371/journal.pone.0182594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|