1
|
del Rosario-Gilabert D, Valenzuela-Miralles A, Esquiva G. Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells. Biophys Rev 2024; 16:783-812. [PMID: 39830129 PMCID: PMC11735818 DOI: 10.1007/s12551-024-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes. These components connect with the cytoskeletal fibre network, enabling the transmission of mechanical stimuli towards the nucleus. The nucleus, in turn, linked to the cytoskeleton via the linkers of the nucleoskeleton and cytoskeleton complex, acts as a mechanosensitive centre, not only responding to changes in cytoskeletal stiffness and nuclear tension but also regulating gene expression through the transcriptional co-activator YAP/TAZ and interactions between chromatin and the nuclear envelope. This intricate chain of mechanisms highlights the potential of sonobiology in various fields, including dentistry, regenerative medicine, tissue engineering and cancer research. However, progress in these fields requires the establishment of standardized measurement methodologies and biocompatible experimental setups to ensure the reproducibility of results.
Collapse
Affiliation(s)
- D. del Rosario-Gilabert
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Spain
- Department of Computer Technology, University of Alicante, San Vicente del Raspeig, Spain
- Institute for Advanced Neuroscience of Barcelona (INAB), Barcelona, Spain
| | - A. Valenzuela-Miralles
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
| | - G. Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
2
|
Zhang X, Sun J, Zhu X, Yang Z, Zhu Z, Zhou M, Li C, Yu H, Gan X. Low-magnitude high-frequency vibration ameliorates high glucose-induced endothelial injury by restoring mitochondrial function via AMPK/mTOR pathway. J Histotechnol 2024:1-11. [PMID: 39564647 DOI: 10.1080/01478885.2024.2429855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
High glucose-induced dysfunction of endothelial cells is a critical and initiating factor in the genesis of diabetic vascular complications. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical intervention. It has been reported that it exhibits protective effects on high glucose-induced osteoblast dysfunction, but little was known on diabetic vascular complications. In this work, we aim to clarify the role of LMHFV on high glucose-induced endothelial dysfunction and hypothesized that the protective effects functioned through adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. We cultured primary murine aortic endothelial cells (MAECs) in normal or HG medium, respectively, before exposing to LMHFV. The tube formation, paracellular permeability assay, and aortic ring sprouting assay showed that the high glucose injured-function of MAECs was improved after LMHFV treatment. The intracellular ROS generation analysis, mitochondrial complex I activities measurement, ATP measurement and mitochondrial membrane potential (MMP), and mitochondrial ROS generation analysis of MAECs indicated that mitochondrial function was restored by LMHFV loading in a high glucose environment. Mechanically, western blot assays showed that AMPK phosphorylation was promoted and mTOR was inhibited in LMHFV-induced endothelial function restoration. After the administration of the AMPK inhibitor, Compound C, these protective effects resulting from LMHFV are reversed. These findings suggest that LMHFV plays a significant role in protecting endothelial cells' function and mitochondrial function in high glucose-induced injured MAECs via AMPK/mTOR signalling.
Collapse
Affiliation(s)
- Xidan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiting Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenghao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhuoli Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
4
|
Frequency-specific sensitivity of 3T3-L1 preadipocytes to low-intensity vibratory stimulus during adipogenesis. In Vitro Cell Dev Biol Anim 2022; 58:452-461. [PMID: 35713773 DOI: 10.1007/s11626-022-00696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022]
Abstract
Adipocyte accumulation in the bone marrow is a severe complication leading to bone defects and reduced regenerative capacity. Application of external mechanical signals to bone marrow cellular niche is a non-invasive and non-pharmaceutical methodology to improve osteogenesis and suppress adipogenesis. However, in the literature, the specific parameters related to the nature of low-intensity vibratory (LIV) signals appear to be arbitrarily selected for amplitude, bouts, and applied frequency. In this study, we performed a LIV frequency sweep ranging from 30 to 120 Hz with increments of 15 Hz applied onto preadipocytes during adipogenesis for 10 d. We addressed the effect of LIV with different frequencies on single-cell density, adipogenic gene expression, lipid morphology, and triglycerides content. Results showed that LIV signals with 75-Hz frequency had the most significant suppressive effect during adipogenesis. Our results support the premise that mechanical-based interventions for suppressing adipogenesis may benefit from optimizing input parameters.
Collapse
|
5
|
Deng S, Zeng Y, Xiang J, Lin S, Shen J. Icariin protects bone marrow mesenchymal stem cells in aplastic anemia by targeting MAPK pathway. Mol Biol Rep 2022; 49:8317-8324. [PMID: 35708859 DOI: 10.1007/s11033-022-07645-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Icariin, the main pharmacological active flavonoid extracted from Epimedi herba, can regulate cellular processes in diverse diseases. The aim of this study was to explore the effects and mechanisms of icariin on proliferation and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) in aplastic anemia (AA). METHODS AND RESULTS Bone marrow mesenchymal stem cells were isolated from posterior tibias and femurs of AA rats that were induced by benzene and cyclophosphamide and gavaged with icariin. The isolated BMSCs were characterized morphologically and immunologically by positive markers (CD29 and CD90) and negative markers (CD34 and CD45). CCK-8 assay was performed to examine the BMSCs proliferation. Cell apoptosis and cell cycle were detected by flow cytometry. Oil red O staining was carried out to evaluate the adipogenesis of BMSCs. The mRNA expression of PPARγ, C/EBP-α, and FABP4 was measured by qRT-PCR. The protein levels of p-p38/p38, p-JNK/JNK, p-ERK/ERK, PPARγ, C/EBP-α, and FABP4 were detected using Western blotting. Icariin promoted the proliferation of BMSCs from AA rats in a dose-dependent manner. The protein levels of p-p38/p38, p-JNK/JNK, and p-ERK/ERK were downregulated in BMSCs from AA rats after icariin treatment. Icariin inhibited the apoptosis and arrested cell cycle at G/S phase of BMSCs from AA rats. The adipogenesis of BMSCs from AA rats was also suppressed after icariin treatment. However, the effects of icariin on BMSCs were weakened by p38 agonist addition. CONCLUSIONS Icariin promoted the proliferation and inhibited the apoptosis and adipogenesis of BMSCs in AA by suppressing MAPK pathway.
Collapse
Affiliation(s)
- Shu Deng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, China
| | - Yuqing Zeng
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Jingjing Xiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, China
| | - Shengyun Lin
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Choi H, Lee Y, Shin S, Nam J, Park WS, Park B, Kim B. Induction of hair growth in hair follicle cells and organ cultures upon treatment with 30 kHz frequency inaudible sound via cell proliferation and antiapoptotic effects. Biomed Rep 2022; 16:16. [PMID: 35223000 PMCID: PMC8814672 DOI: 10.3892/br.2022.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/27/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hyangtae Choi
- Future Tech Laboratory, Basic Research and Innovation Division, Amorepacific R&D Center, Yongin‑si, Gyeonggi‑do 17074, Republic of Korea
| | - Yonghee Lee
- Bioscience Laboratory, Basic Research and Innovation Division, Amorepacific R&D Center, Yongin‑si, Gyeonggi‑do 17074, Republic of Korea
| | - Seung Shin
- Bioscience Laboratory, Basic Research and Innovation Division, Amorepacific R&D Center, Yongin‑si, Gyeonggi‑do 17074, Republic of Korea
| | - Jin Nam
- Future Tech Laboratory, Basic Research and Innovation Division, Amorepacific R&D Center, Yongin‑si, Gyeonggi‑do 17074, Republic of Korea
| | - Won-Seok Park
- Future Tech Laboratory, Basic Research and Innovation Division, Amorepacific R&D Center, Yongin‑si, Gyeonggi‑do 17074, Republic of Korea
| | - Byung Park
- Department of Dermatology, Dankook Medical College, Cheonan‑si, Chungcheongnam‑do 31116, Republic of Korea
| | - Beom Kim
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
7
|
Chow SKH, Cui C, Cheng KYK, Chim YN, Wang J, Wong CHW, Ng KW, Wong RMY, Cheung WH. Acute Inflammatory Response in Osteoporotic Fracture Healing Augmented with Mechanical Stimulation is Regulated In Vivo through the p38-MAPK Pathway. Int J Mol Sci 2021; 22:ijms22168720. [PMID: 34445423 PMCID: PMC8395718 DOI: 10.3390/ijms22168720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023] Open
Abstract
Low-magnitude high-frequency vibration (LMHFV) has previously been reported to modulate the acute inflammatory response of ovariectomy-induced osteoporotic fracture healing. However, the underlying mechanisms are not clear. In the present study, we investigated the effect of LMHFV on the inflammatory response and the role of the p38 MAPK mechanical signaling pathway in macrophages during the healing process. A closed femoral fracture SD rat model was used. In vivo results showed that LMHFV enhanced activation of the p38 MAPK pathway at the fracture site. The acute inflammatory response, expression of inflammatory cytokines, and callus formation were suppressed in vivo by p38 MAPK inhibition. However, LMHFV did not show direct in vitro enhancement effects on the polarization of RAW264.7 macrophage from the M1 to M2 phenotype, but instead promoted macrophage enlargement and transformation to dendritic monocytes. The present study demonstrated that p38 MAPK modulated the enhancement effects of mechanical stimulation in vivo only. LMHFV may not have exerted its enhancement effects directly on macrophage, but the exact mechanism may have taken a different pathway that requires further investigation in the various subsets of immune cells.
Collapse
Affiliation(s)
- Simon Kwoon Ho Chow
- Correspondence: (S.K.H.C.); (W.H.C.); Tel.: +852-3505-1559 (S.K.H.C.); +852-3505-2715 (W.H.C.)
| | | | | | | | | | | | | | | | - Wing Hoi Cheung
- Correspondence: (S.K.H.C.); (W.H.C.); Tel.: +852-3505-1559 (S.K.H.C.); +852-3505-2715 (W.H.C.)
| |
Collapse
|
8
|
Yokoi H, Take Y, Uchida R, Magome T, Shimomura K, Mae T, Okamoto T, Hanai T, Chong Y, Sato S, Hikida M, Nakata K. Vibration acceleration promotes endochondral formation during fracture healing through cellular chondrogenic differentiation. PLoS One 2020; 15:e0229127. [PMID: 32134943 PMCID: PMC7058294 DOI: 10.1371/journal.pone.0229127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Vibration acceleration through whole body vibration has been reported to promote fracture healing. However, the mechanism responsible for this effect remains unclear. Purpose of this study was to determine whether vibration acceleration directly affects cells around the fracture site and promotes endochondral ossification. Four-week-old female Wistar Hannover rats were divided into two groups (vibration [V group] and control [C group]). The eighth ribs on both sides were cut vertically using scissors. From postoperative day 3 to 11, vibration acceleration using Power Plate® (30 Hz, low amplitude [30-Low], 10 min/day) was applied in the V group. Mature calluses appeared earlier in the V group than in the C group by histological analysis. The GAG content in the fracture callus on day 6 was significantly higher in the V group than in the C group. The mRNA expressions of SOX-9, aggrecan, and Col-II in the fracture callus on day 6 and Col-X on day 9 were significantly higher in the V group than in the C group. For in vitro analysis, four different conditions of vibration acceleration (30 or 50 Hz with low or high amplitude [30-Low, 30-High, 50-Low, and 50-High], 10 min/day) were applied to a prechondrogenic cell (ATDC5) and an undifferentiated cell (C3H10T1/2). There was no significant difference in cell proliferation between the control and any of the four vibration conditions for both cell lines. For both cell lines, alcian blue staining was greater under 30-Low and 50-Low conditions than under control as well as 30-High and 50-High conditions on days 7 and 14. Vibration acceleration under 30-L condition upregulated chondrogenic gene expressions of SOX-9, aggrecan, Col-II, and Col-X. Low-amplitude vibration acceleration can promote endochondral ossification in the fracture healing in vivo and chondrogenic differentiation in vitro.
Collapse
Affiliation(s)
- Hiroyuki Yokoi
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuhiro Take
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryohei Uchida
- Department of Sports Medicine, Yukioka Hospital, Osaka, Japan
| | - Takuya Magome
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazunori Shimomura
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuo Mae
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoko Okamoto
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuhiro Hanai
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yang Chong
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Seira Sato
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Minami Hikida
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ken Nakata
- Medicine for Sports and Performing Arts, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
9
|
Halonen HT, Hyttinen JA, Ihalainen TO. Mechanical impact stimulation platform tailored for high-resolution light microscopy. HEALTH AND TECHNOLOGY 2020. [DOI: 10.1007/s12553-019-00382-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractHigh frequency (HF) mechanical vibration has been used in vitro to study the cellular response to mechanical stimulation and induce stem cell differentiation. However, detailed understanding of the effect of the mechanical cues on cellular physiology is lacking. To meet this limitation, we have designed a system, which enables monitoring of living cells by high-resolution light microscopy during mechanical stimulation by HF vibration or mechanical impacts. The system consists of a commercial speaker, and a 3D printed sample vehicle and frame. The speaker moves the sample in the horizontal plane, allowing simultaneous microscopy. The HF vibration (30–200 Hz) performances of two vehicles made of polymer and aluminum were characterized with accelerometer. The mechanical impacts were characterized by measuring the acceleration of the aluminum vehicle and by time lapse imaging. The lighter polymer vehicle produced higher HF vibration magnitudes at 30–50 Hz frequencies than the aluminum vehicle. However, the aluminum vehicle performed better at higher frequencies (60–70 Hz, 90–100 Hz, 150 Hz). Compatibility of the system in live cell experiments was investigated with epithelial cells (MDCKII, expressing Emerald-Occludin) and HF (0.56Gpeak,30 Hz and 60 Hz) vibration. Our findings indicated that our system is compatible with high-resolution live cell microscopy. Furthermore, the epithelial cells were remarkable stable under mechanical vibration stimulation. To conclude, we have designed an inexpensive tool for the studies of cellular biophysics, which combines versatile in vivo like mechanical stimuli with live cell imaging, showing a great potential for several cellular applications.
Collapse
|
10
|
Benova A, Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne) 2020; 11:294. [PMID: 32477271 PMCID: PMC7235195 DOI: 10.3389/fendo.2020.00294] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is characterized by low-grade inflammation, which is accompanied by increased accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal muscle, liver and pancreas, thereby impairing their primary metabolic functions in the regulation of glucose homeostasis. Obesity has also shown to have a detrimental effect on bone homeostasis by altering bone marrow and hematopoietic stem cell differentiation and thus impairing bone integrity and immune cell properties. The origin of immune cells arises in the bone marrow, which has been shown to be affected with the obesogenic condition via increased cellularity and shifting differentiation and function of hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors and increased bone marrow adiposity. These obesity-induced changes in the bone marrow microenvironment lead to dramatic bone marrow remodeling and compromising immune cell functions, which in turn affect systemic inflammatory conditions and regulation of whole-body metabolism. However, there is limited information on the inflammatory secretory factors creating the bone marrow microenvironment and how these factors changed during metabolic complications. This review summarizes recent findings on inflammatory and cellular changes in the bone marrow in relation to obesity and further discuss whether dietary intervention or physical activity may have beneficial effects on the bone marrow microenvironment and whole-body metabolism.
Collapse
|
11
|
Baskan O, Karadas O, Mese G, Ozcivici E. Applicability of Low-intensity Vibrations as a Regulatory Factor on Stem and Progenitor Cell Populations. Curr Stem Cell Res Ther 2019; 15:391-399. [PMID: 31830894 DOI: 10.2174/1574888x14666191212155647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Persistent and transient mechanical loads can act as biological signals on all levels of an organism. It is therefore not surprising that most cell types can sense and respond to mechanical loads, similar to their interaction with biochemical and electrical signals. The presence or absence of mechanical forces can be an important determinant of form, function and health of many tissue types. Along with naturally occurring mechanical loads, it is possible to manipulate and apply external physical loads on tissues in biomedical sciences, either for prevention or treatment of catabolism related to many factors, including aging, paralysis, sedentary lifestyles and spaceflight. Mechanical loads consist of many components in their applied signal form such as magnitude, frequency, duration and intervals. Even though high magnitude mechanical loads with low frequencies (e.g. running or weight lifting) induce anabolism in musculoskeletal tissues, their applicability as anabolic agents is limited because of the required compliance and physical health of the target population. On the other hand, it is possible to use low magnitude and high frequency (e.g. in a vibratory form) mechanical loads for anabolism as well. Cells, including stem cells of the musculoskeletal tissue, are sensitive to high frequency, lowintensity mechanical signals. This sensitivity can be utilized not only for the targeted treatment of tissues, but also for stem cell expansion, differentiation and biomaterial interaction in tissue engineering applications. In this review, we reported recent advances in the application of low-intensity vibrations on stem and progenitor cell populations. Modulation of cellular behavior with low-intensity vibrations as an alternative or complementary factor to biochemical and scaffold induced signals may represent an increase of capabilities in studies related to tissue engineering.
Collapse
Affiliation(s)
- Oznur Baskan
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozge Karadas
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
12
|
Impact of oscillatory-cycloid vibration interventions on body composition, waist and hip circumference, and blood lipid profile in women aged over 65 years with hypercholesterolaemia. MENOPAUSE REVIEW 2018; 17:161-167. [PMID: 30766463 PMCID: PMC6372848 DOI: 10.5114/pm.2018.81739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023]
Abstract
Introduction Vibration therapy interventions are an attractive alternative for people with contraindications to physical activity or manifesting kinesiophobia; they constitute an equivalent to physical activity. Material and methods A group of female volunteers with hypercholesterolemia (LDL over 3 mmol/l) aged over 65 years were randomized into 2 subgroups: the study group (taking part in interventions on mattresses generating oscillatory-cycloid vibrations) and the control group (receiving interventions on placebo mattresses). All the subjects underwent two 30-minute interventions 5 times a week for the period of 21 days, in the prone position. Before the intervention and after completing the series of sessions, body composition and waist and hip circumferences were assessed. Venous blood for biochemical studies was collected before the intervention, one day after its completion, and one week after completing the series of vibration sessions. On the basis of the lipid profile results, atherogenicity indices were calculated. Results After 21 days, a statistically significant decrease in the level of total cholesterol and LDL cholesterol was observed in subjects who received oscillatory-cycloid vibration therapy. No statistically significant changes were noted in the concentrations of HDL cholesterol or triglycerides. The 21-day therapeutic intervention also resulted in lowering the AIP in the study group, as well as a decrease of hip circumference. Conclusions Oscillatory-cycloid vibration applied regularly for a longer time can beneficially impact on lowering the level of total cholesterol and LDL cholesterol in people with hypercholesterolemia, although it does not influence body composition in women aged 65 years or more.
Collapse
|
13
|
Vibration loading promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells via p38 MAPK signaling pathway. J Biomech 2018; 71:67-75. [PMID: 29503016 DOI: 10.1016/j.jbiomech.2018.01.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/19/2017] [Accepted: 01/28/2018] [Indexed: 12/27/2022]
Abstract
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis.
Collapse
|
14
|
Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment. Int J Mol Sci 2018; 19:ijms19020360. [PMID: 29370110 PMCID: PMC5855582 DOI: 10.3390/ijms19020360] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a progressive skeletal disease characterized by decreased bone mass and degraded bone microstructure, which leads to increased bone fragility and risks of bone fracture. Osteoporosis is generally age related and has become a major disease of the world. Uncovering the molecular mechanisms underlying osteoporosis and developing effective prevention and therapy methods has great significance for human health. Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into osteoblasts, adipocytes, or chondrocytes, and have become the favorite source of cell-based therapy. Evidence shows that during osteoporosis, a shift of the cell differentiation of MSCs to adipocytes rather than osteoblasts partly contributes to osteoporosis. Thus, uncovering the molecular mechanisms of the osteoblast or adipocyte differentiation of MSCs will provide more understanding of MSCs and perhaps new methods of osteoporosis treatment. The MSCs have been applied to both preclinical and clinical studies in osteoporosis treatment. Here, we review the recent advances in understanding the molecular mechanisms regulating osteoblast differentiation and adipocyte differentiation of MSCs and highlight the therapeutic application studies of MSCs in osteoporosis treatment. This will provide researchers with new insights into the development and treatment of osteoporosis.
Collapse
|
15
|
Correction: Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal. PLoS One 2017; 12:e0189547. [PMID: 29216316 PMCID: PMC5720710 DOI: 10.1371/journal.pone.0189547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|