1
|
Cao S, Yang X, Xia L, Zhang X, Sun H, Deng Y, Shu Y, Zhang A, Chen H, Li W. Coat Proteins of the Novel Victoriviruses FaVV1 and FaVV2 Suppress Sexual Reproduction and Virulence in the Pathogen of Fusarium Head Blight. Viruses 2024; 16:1424. [PMID: 39339900 PMCID: PMC11437513 DOI: 10.3390/v16091424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Fusarium head blight (FHB), a disease inflicted by Fusarium graminearum and F. asiaticum, poses a growing threat to wheat in China, particularly in the face of climate change and evolving agricultural practices. This study unveiled the discovery of the victorivirus FgVV2 from the F. asiaticum strain F16176 and comprehensively characterized the function of the two victoriviruses FaVV1 and FaVV2 in virulence. Through comparative analysis with a virus-free strain, we established that these mycoviruses markedly repress the sexual reproduction and pathogenicity of their fungal hosts. Furthermore, we synthesized the coat protein (CP) genes CP1 from FaVV1 and CP2 from FaVV2, which were fused with the green fluorescent protein (GFP) gene and successfully expressed in Fusarium strains in wild-type isolates of F. asiaticum and F. graminearum. Similar to virus-infected strains, the transformed strains expressing CPs showed a significant decrease in perithecia formation and pathogenicity. Notably, CP2 exhibited a stronger inhibitory effect than CP1, yet the suppression of sexual reproduction in F. graminearum was less pronounced than that in F. asiaticum. Additionally, the pathogenicity of the F. asiaticum and F. graminearum strains expressing CP1 or CP2 was substantially diminished against wheat heads. The GFP-tagged CP1 and CP2 revealed distinct cellular localization patterns, suggesting various mechanisms of interaction with the host. The findings of this study provide a significant research foundation for the study of the interaction mechanisms between FaVV1 and FaVV2 with their hosts, as well as for the exploration and utilization of fungal viral resources.
Collapse
Affiliation(s)
- Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
| | - Xiaoyue Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
| | - Lele Xia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210001, China
| | - Xing Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
| | - Yan Shu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
| | - Aixiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
- Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.C.); (X.Y.); (L.X.); (X.Z.); (H.S.); (Y.D.); (Y.S.); (A.Z.); (H.C.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210001, China
| |
Collapse
|
2
|
Li W, Cao S, Sun H, Yang X, Xu L, Zhang X, Deng Y, Pavlov IN, Litovka YA, Chen H. Genome Analyses Reveal the Secondary Metabolites that Potentially Influence the Geographical Distribution of Fusarium pseudograminearum Populations. PLANT DISEASE 2024; 108:1812-1819. [PMID: 38277654 DOI: 10.1094/pdis-09-23-1743-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, significantly impacts wheat yield and quality in China's Huanghuai region. The rapid F. pseudograminearum epidemic and FCR outbreak within a decade remain unexplained. In this study, two high-quality, chromosome-level genomes of F. pseudograminearum strains producing 3-acetyl-deoxynivalenol (3AcDON) and 15-acetyl-deoxynivalenol (15AcDON) toxins were assembled. Additionally, 38 related strains were resequenced. Genomic differences such as single nucleotide polymorphisms (SNPs), insertions/deletions (indels), and structural variations (SVs) among F. pseudograminearum strains were analyzed. The whole-genome SNP locus-based population classification mirrored the toxin chemotype (3AcDON and 15AcDON)-based classification, indicating the presence of genes associated with the trichothecene toxin gene cluster. Further analysis of differential SNP, indel, and SV loci between the 3AcDON and 15AcDON populations revealed a predominant connection to secondary metabolite synthesis genes. Notably, the majority of the secondary metabolite biosynthesis gene cluster loci were located in SNP-dense genomic regions, suggesting high mutability and a possible contribution to F. pseudograminearum population structure and environmental adaptability. This study provides insightful perspectives on the distribution and evolution of F. pseudograminearum and for forecasting the spread of wheat FCR, thereby aiding in the development of preventive measures and control strategies.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xiaoyue Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Lei Xu
- Nanjing Genepioneer Biotechnologies Co., Ltd., Nanjing 210046, Jiangsu, China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Igor N Pavlov
- Laboratory of Reforestation, Mycology and Plant Pathology, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk 660036, Russia
- Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk 660049, Russia
| | - Yulia A Litovka
- Laboratory of Reforestation, Mycology and Plant Pathology, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk 660036, Russia
- Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk 660049, Russia
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
3
|
Zhang J, Zhang J, Wang J, Zhang M, Li C, Wang W, Suo Y, Song F. Population Genetic Analyses and Trichothecene Genotype Profiling of Fusarium pseudograminearum Causing Wheat Crown Rot in Henan, China. J Fungi (Basel) 2024; 10:240. [PMID: 38667911 PMCID: PMC11051422 DOI: 10.3390/jof10040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
In China, Fusarium pseudograminearum has emerged as a major pathogen causing Fusarium crown rot (FCR) and caused significant losses. Studies on the pathogen's properties, especially its mating type and trichothecene chemotypes, are critical with respect to disease epidemiology and food/feed safety. There are currently few available reports on these issues. This study investigated the species composition, mating type idiomorphs, and trichothecene genotypes of Fusarium spp. causing FCR in Henan, China. A significant shift in F. pseudograminearum-induced FCR was found in the present study. Of the 144 purified strains, 143 were F. pseudograminearum, whereas only 1 Fusarium graminearum was identified. Moreover, a significant trichothecene-producing capability of F. pseudograminearum strains from Henan was observed in this work. Among the 143 F. pseudograminearum strains identified, F. pseudograminearum with a 15ADON genotype was found to be predominant (133 isolates), accounting for 92.36% of all strains, followed by F. pseudograminearum with a 3ADON genotype, whereas only one NIV genotype strain was detected. Overall, a relatively well-balanced 1:1 ratio of the F. pseudograminearum population was found in Henan. To the best of our knowledge, this is the first study that has examined the Fusarium populations responsible for FCR across the Henan wheat-growing region.
Collapse
Affiliation(s)
- Jianzhou Zhang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.Z.); (C.L.)
| | - Jiahui Zhang
- Plant Science College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China;
| | - Jianhua Wang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.Z.); (W.W.); (Y.S.)
| | - Mengyuan Zhang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.Z.); (W.W.); (Y.S.)
| | - Chunying Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.Z.); (C.L.)
| | - Wenyu Wang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.Z.); (W.W.); (Y.S.)
| | - Yujuan Suo
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.Z.); (W.W.); (Y.S.)
| | - Fengping Song
- Plant Science College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China;
| |
Collapse
|
4
|
Laraba I, Ward TJ, Cuperlovic-Culf M, Azimi H, Xi P, McCormick SP, Hay WT, Hao G, Vaughan MM. Insights into the Aggressiveness of the Emerging North American Population 3 (NA3) of Fusarium graminearum. PLANT DISEASE 2023; 107:2687-2700. [PMID: 36774561 DOI: 10.1094/pdis-11-22-2698-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the United States and Canada, Fusarium graminearum (Fg) is the predominant etiological agent of Fusarium head blight (FHB), an economically devastating fungal disease of wheat and other small grains. Besides yield losses, FHB leads to grain contamination with trichothecene mycotoxins that are harmful to plant, human, and livestock health. Three genetic North American populations of Fg, differing in their predominant trichothecene chemotype (i.e., NA1/15ADON, NA2/3ADON, and NA3/NX-2), have been identified. To improve our understanding of the newly discovered population NA3 and how population-level diversity influences FHB outcomes, we inoculated heads of the moderately resistant wheat cultivar Alsen with 15 representative strains from each population and evaluated disease progression, mycotoxin accumulation, and mycotoxin production per unit Fg biomass. Additionally, we evaluated population-specific differences in induced host defense responses. The NA3 population was significantly less aggressive than the NA1 and NA2 populations but posed a similar mycotoxigenic potential. Multiomics analyses revealed patterns in mycotoxin production per unit Fg biomass, expression of Fg aggressiveness-associated genes, and host defense responses that did not always correlate with the NA3-specific severity difference. Our comparative disease assay of NA3/NX-2 and admixed NA1/NX-2 strains indicated that the reduced NA3 aggressiveness is not due solely to the NX-2 chemotype. Notably, the NA1 and NA2 populations did not show a significant advantage over NA3 in perithecia production, a fitness-related trait. Together, our data highlight that the disease outcomes were not due to mycotoxin production or host defense alone, indicating that other virulence factors and/or host defense mechanisms are likely involved.
Collapse
Affiliation(s)
- Imane Laraba
- Oak Ridge Institute for Science and Education fellow, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Todd J Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | | | - Hilda Azimi
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, K1A 0R6, Canada
| | - Pengcheng Xi
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, K1A 0R6, Canada
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - William T Hay
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| |
Collapse
|
5
|
Dong F, Chen X, Lei X, Wu D, Zhang Y, Lee YW, Mokoena MP, Olaniran AO, Li Y, Shen G, Liu X, Xu JH, Shi JR. Effect of Crop Rotation on Fusarium Mycotoxins and Fusarium Species in Cereals in Sichuan Province (China). PLANT DISEASE 2023; 107:1060-1066. [PMID: 36122196 DOI: 10.1094/pdis-01-22-0024-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study was performed to evaluate the effect of crop rotation on Fusarium mycotoxins and species in cereals in Sichuan Province. A total of 311 cereal samples were randomly collected and analyzed from 2018 to 2019 in Sichuan Province. The results of mycotoxin analysis showed that the major trichothecene mycotoxins in Sichuan Province were nivalenol (NIV) and deoxynivalenol (DON), and the mean concentration of total trichothecenes (including NIV, fusarenone X [4ANIV], DON, 3-acetyldeoxynivalenol [3ADON], and 15-acetyldeoxynivalenol [15ADON]) in wheat was significantly higher than that in maize and rice. The concentration of total trichothecenes in the succeeding crops was significantly higher than that in the previous crops. In addition, wheat grown after maize had reduced incidence and concentration of trichothecene mycotoxins compared with that grown after rice, and ratooning rice grown after rice had increased incidence and concentration of trichothecene mycotoxins. Our data indicated that Fusarium asiaticum with the NIV chemotype was predominant in wheat and rice samples, while the number of the NIV chemotypes of F. asiaticum and Fusarium meridionale and the 15ADON chemotype of Fusarium graminearum in maize were almost the same. Although the composition of Fusarium species was affected by crop rotations, there were no differences when comparing the same crop rotation except for the maize-wheat rotation. Moreover, the same species and chemotype of Fusarium strains originated from different crops in various rotations, but there were no significant differences in pathogenicity in wheat and rice. These results contribute to the knowledge of the effect of crop rotation on Fusarium mycotoxins and species affecting cereals in Sichuan Province, which may lead to improved strategies for control of Fusarium mycotoxins and fungal disease in China.
Collapse
Affiliation(s)
- Fei Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Xiangxiang Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xinyu Lei
- Institute of Quality Standard and Testing Technology for Agro-products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, P.R. China
| | - Deliang Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Yifan Zhang
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy and Animal Husbandry Sciences, Lhasa 850032, P.R. China
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Mduduzi P Mokoena
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Ademola O Olaniran
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Ying Li
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy and Animal Husbandry Sciences, Lhasa 850032, P.R. China
| | - Guanghui Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Hong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Rong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
6
|
Góral T, Przetakiewicz J, Ochodzki P, Wiewióra B, Wiśniewska H. Quantification of DNA of Fusarium culmorum and Trichothecene Genotypes 3ADON and NIV in the Grain of Winter Wheat. Pathogens 2022; 11:pathogens11121449. [PMID: 36558783 PMCID: PMC9788549 DOI: 10.3390/pathogens11121449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Fusarium head blight (FHB) is a wheat disease caused by fungi of the genus Fusarium. The aim of the study was to find relationships between the weather conditions in the experimental years and the locations and the amount of F. culmorum DNA and trichothecene genotypes, as well as the proportions between them. A three-year field experiment (2017, 2018 and 2019) was established in two locations (Poznań, Radzików). The DNA of F. culmorum was detected in all grain samples in an average amount of 20,124 pg per 1 μg of wheat DNA. The average amount of DNA from the 3ADON genotype was 4879 pg/μg and the amount of DNA from the NIV genotype was 3330 pg/μg. Weather conditions strongly affected the amount of DNA of F. culmorum and trichothecene genotypes detected in the grain. In the three experimental years, a high variability was observed in the coefficients of correlation between DNA concentrations and the FHB index, FDK, ergosterol and the corresponding toxins. There were significant correlations between disease incidence, fungal biomass (quantified as the total amount of fungal DNA or DNA trichothecene genotypes) and toxins (DON, 3AcDON and NIV) concentrations. The 3ADON trichothecene genotype dominated over the NIV genotype (ratio 1.5); however, this varied greatly depending on environmental conditions.
Collapse
Affiliation(s)
- Tomasz Góral
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland
- Correspondence: ; Tel.: +48-22-733-4636
| | - Jarosław Przetakiewicz
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Piotr Ochodzki
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Barbara Wiewióra
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Halina Wiśniewska
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska Str., 60-479 Poznań, Poland
| |
Collapse
|
7
|
Sweany RR, Breunig M, Opoku J, Clay K, Spatafora JW, Drott MT, Baldwin TT, Fountain JC. Why Do Plant-Pathogenic Fungi Produce Mycotoxins? Potential Roles for Mycotoxins in the Plant Ecosystem. PHYTOPATHOLOGY 2022; 112:2044-2051. [PMID: 35502928 DOI: 10.1094/phyto-02-22-0053-sym] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For many plant-pathogenic or endophytic fungi, production of mycotoxins, which are toxic to humans, may present a fitness gain. However, associations between mycotoxin production and plant pathogenicity or virulence is inconsistent and difficult due to the complexity of these host-pathogen interactions and the influences of environmental and insect factors. Aflatoxin receives a lot of attention due to its potent toxicity and carcinogenicity but the connection between aflatoxin production and pathogenicity is complicated by the pathogenic ability and prevalence of nonaflatoxigenic isolates in crops. Other toxins directly aid fungi in planta, trichothecenes are important virulence factors, and ergot alkaloids limit herbivory and fungal consumption due to insect toxicity. We review a panel discussion at the American Phytopathological Society's Plant Health 2021 conference, which gathered diverse experts representing different research sectors, career stages, ethnicities, and genders to discuss the diverse roles of mycotoxins in the lifestyles of filamentous fungi of the families Clavicipitaceae, Trichocomaceae (Eurotiales), and Nectriaceae (Hypocreales).
Collapse
Affiliation(s)
- Rebecca R Sweany
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Food and Feed Safety Research Unit, Southern Regional Research Center, New Orleans, LA 70124
| | - Mikaela Breunig
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 78824
| | - Joseph Opoku
- USDA-ARS Pest Management and Biological Control Research Unit, U.S. Arid-Land Agricultural Research Center, Tucson, AZ 85701
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333
| | - Milton T Drott
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Thomas T Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Jake C Fountain
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS State, MS 39762
| |
Collapse
|
8
|
Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions. Toxins (Basel) 2022; 14:toxins14080541. [PMID: 36006203 PMCID: PMC9414964 DOI: 10.3390/toxins14080541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Fusarium graminearum is an important pathogen that causes Fusarium head blight (FHB) in several cereal crops worldwide. The potential of this pathogen to contaminate cereals with trichothecene mycotoxins presents a health risk for both humans and animals. This study aimed to evaluate the potential of different trichothecene genotypes of F. graminearum isolated from an alternative host plant to produce mycotoxins under different spring wheat grain incubation conditions. Fourteen F. graminearum strains were isolated from seven alternative host plants and identified as 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) genotypes. These strains were cultivated on spring wheat grains at 25 °C and 29 °C for 5 weeks. The mycotoxins produced were analysed with a high-performance liquid chromatograph (HPLC) coupled to a Thermo Scientific TSQ Quantiva MS/MS detector. The obtained results showed that the F. graminearum strains from alternative host plants could produce nivalenol (NIV), deoxynivalenol (DON), fusarenon-X (FUS-X), 3-ADON, deoxynivalenol-3-ß-d-glucoside (D3G), 15-ADON, and zearalenone (ZEA). F. graminearum strains produced DON and ZEA under both temperatures, with the mean concentrations varying from 363 to 112,379 µg kg−1 and from 1452 to 44,816 µg kg−1, respectively. Our results indicated the possible role of dicotyledonous plants, including weeds, as a reservoir of inoculum sources of F. graminearum-induced Fusarium head blight, associated with the risk of mycotoxin contamination in spring wheat.
Collapse
|
9
|
Schiwek S, Alhussein M, Rodemann C, Budragchaa T, Beule L, von Tiedemann A, Karlovsky P. Fusarium culmorum Produces NX-2 Toxin Simultaneously with Deoxynivalenol and 3-Acetyl-Deoxynivalenol or Nivalenol. Toxins (Basel) 2022; 14:456. [PMID: 35878194 PMCID: PMC9324393 DOI: 10.3390/toxins14070456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Fusarium culmorum is a major pathogen of grain crops. Infected plants accumulate deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), or nivalenol (NIV), which are mycotoxins of the trichothecene B group. These toxins are also produced by F. graminearum species complex. New trichothecenes structurally similar to trichothecenes B but lacking the carbonyl group on C-8, designated NX toxins, were recently discovered in atypical isolates of F. graminearum from North America. Only these isolates and a few strains of a yet to be characterized Fusarium species from South Africa are known to produce NX-2 and other NX toxins. Here, we report that among 20 F. culmorum strains isolated from maize, wheat, and oat in Europe and Asia over a period of 70 years, 18 strains produced NX-2 simultaneously with 3-ADON and DON or NIV. Rice cultures of strains producing 3-ADON accumulated NX-2 in amounts corresponding to 2−8% of 3-ADON (1.2−36 mg/kg). A strain producing NIV accumulated NX-2 and NIV at comparable amounts (13.6 and 10.3 mg/kg, respectively). In F. graminearum, producers of NX-2 possess a special variant of cytochrome P450 monooxygenase encoded by TRI1 that is unable to oxidize C-8. In F. culmorum, producers and nonproducers of NX-2 possess identical TRI1; the reason for the production of NX-2 is unknown. Our results indicate that the production of NX-2 simultaneously with trichothecenes B is a common feature of F. culmorum.
Collapse
Affiliation(s)
- Simon Schiwek
- Institute for Plant Protection in Field Crops and Grassland, Julius Kuehn-Institute, D-38104 Braunschweig, Germany
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, D-37077 Goettingen, Germany;
| | - Charlotte Rodemann
- Plant Phytopathology and Crop Protection, University of Goettingen, D-37077 Goettingen, Germany; (C.R.); (A.v.T.)
| | - Tuvshinjargal Budragchaa
- Department of Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, D-06120 Halle, Germany;
| | - Lukas Beule
- Plant Analysis and Stored Product Protection, Institute for Ecological Chemistry, Julius Kuehn-Institute, D-14195 Berlin, Germany;
| | - Andreas von Tiedemann
- Plant Phytopathology and Crop Protection, University of Goettingen, D-37077 Goettingen, Germany; (C.R.); (A.v.T.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, D-37077 Goettingen, Germany;
| |
Collapse
|
10
|
Machado FJ, de Barros AV, McMaster N, Schmale DG, Vaillancourt LJ, Del Ponte EM. Aggressiveness and Mycotoxin Production by Fusarium meridionale Compared with F. graminearum on Maize Ears and Stalks in the Field. PHYTOPATHOLOGY 2022; 112:271-277. [PMID: 34142851 DOI: 10.1094/phyto-04-21-0149-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium meridionale and F. graminearum both cause Gibberella ear rot (GER) and Gibberella stalk rot (GSR) of maize in Brazil, but the former is much more common. Recent work with two isolates of each from maize suggested this dominance could be caused by greater aggressiveness and competitiveness of F. meridionale on maize. We evaluated pathogenicity and toxigenicity of 16 isolates of F. graminearum and 24 isolates of F. meridionale recovered from both wheat and maize. Strains were individually inoculated into ears of four maize hybrids in field trials. GER severity varied significantly between isolates within each species. Although ranges overlapped, the average GER severity induced by F. meridionale (25.2%) was two times as high overall as that induced by F. graminearum (12.8%) for isolates obtained from maize but was similar for those isolated from wheat (19.9 and 21.4%, respectively). In contrast, severity of GSR was slightly higher for F. graminearum (22.2%) than for F. meridionale (19.8%), with no effect of the host of origin. Deoxynivalenol and its acetylated form 15ADON were the main mycotoxins produced by F. graminearum (7/16 strains), and nivalenol toxin was produced by F. meridionale (17/24 strains). Six isolates of F. graminearum and three of F. meridionale also produced zearalenone. Results confirmed that F. meridionale from maize is, on average, more aggressive on maize but also suggested greater complexity related to diversity among the isolates within each species and their interactions with different hybrids. Further studies involving other components of the disease cycle are needed to more fully explain observed patterns of host dominance.
Collapse
Affiliation(s)
- Franklin J Machado
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Department of Plant Pathology, University of Kentucky, Lexington, KY, U.S.A
| | - Aline V de Barros
- Department of Plant Pathology, University of Kentucky, Lexington, KY, U.S.A
- Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Nicole McMaster
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, U.S.A
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, U.S.A
| | | | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
11
|
Xu F, Liu W, Song Y, Zhou Y, Xu X, Yang G, Wang J, Zhang J, Liu L. The Distribution of Fusarium graminearum and Fusarium asiaticum Causing Fusarium Head Blight of Wheat in Relation to Climate and Cropping System. PLANT DISEASE 2021; 105:2830-2835. [PMID: 33881919 DOI: 10.1094/pdis-01-21-0013-re] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the main wheat production area of China (the Huang Huai Plain [HHP]), both Fusarium graminearum and Fusarium asiaticum, the causal agents of Fusarium head blight (FHB), are present. We investigated whether the relative prevalence of F. graminearum and F. asiaticum is related to cropping systems and/or climate factors. A total of 1,844 Fusarium isolates were obtained from 103 fields of two cropping systems: maize-wheat and rice-wheat rotations. To maximize the differences in climatic conditions, isolates were sampled from the north and south HHP regions. Based on the phylogenetic analysis of EF-1α and Tri101 sequences, 1,207 of the 1,844 isolates belonged to F. graminearum, and the remaining 637 isolates belonged to F. asiaticum. The former was predominant in the northern region: 1,022 of the 1,078 Fusarium isolates in the north were F. graminearum. The latter was predominant in the southern region: 581 of the 766 Fusarium isolates belonged to F. asiaticum. Using an analysis based on generalized linear modeling, the relative prevalence of the two species was associated more with climatic conditions than with the cropping system. F. graminearum was associated with drier conditions and cooler conditions during the winter but also with warmer conditions in the infection and grain-colonization period as well as with maize-wheat rotation. The opposite was true for F. asiaticum. Except for the 15-acetyldeoxynvalenol genotype, the trichothecene chemotype composition of F. asiaticum differed between the two cropping systems. The 3-acetyldeoxynivalenol genotype was more prevalent in the maize-wheat rotation, whereas the nivalenol genotype was more prevalent in the rice-wheat rotation. The results also suggested that environmental conditions in the overwintering period appeared to be more important than those in the infection, grain-colonization, and preanthesis sporulation periods in affecting the relative prevalence of F. graminearum and F. asiaticum. More research is needed to study the effect of overwintering conditions on subsequent epidemic in the following spring.
Collapse
Affiliation(s)
- Fei Xu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of North China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, Henan 450002, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuli Song
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of North China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, Henan 450002, China
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangming Xu
- National Institute of Agricultural Botany East Malling Research, East Malling, Kent ME19 6BJ, United Kingdom
| | - Gongqiang Yang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of North China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, Henan 450002, China
| | - Junmei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of North China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, Henan 450002, China
| | - Jiaojiao Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Lulu Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of North China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, Henan 450002, China
| |
Collapse
|
12
|
Pastuszak J, Szczerba A, Dziurka M, Hornyák M, Kopeć P, Szklarczyk M, Płażek A. Physiological and Biochemical Response to Fusarium culmorum Infection in Three Durum Wheat Genotypes at Seedling and Full Anthesis Stage. Int J Mol Sci 2021; 22:ijms22147433. [PMID: 34299055 PMCID: PMC8303160 DOI: 10.3390/ijms22147433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023] Open
Abstract
Fusarium culmorum is a worldwide, soil-borne plant pathogen. It causes diseases of cereals, reduces their yield, and fills the grain with toxins. The main direction of modern breeding is to select wheat genotypes the most resistant to Fusarium diseases. This study uses seedlings and plants at the anthesis stage to analyze total soluble carbohydrates, total and cell-wall bound phenolics, chlorophyll content, antioxidant activity, hydrogen peroxide content, mycotoxin accumulation, visual symptoms of the disease, and Fusarium head blight index (FHBi). These results determine the resistance of three durum wheat accessions. We identify physiological or biochemical markers of durum wheat resistance to F. culmorum. Our results confirm correlations between FHBi and mycotoxin accumulation in the grain, which results in grain yield decrease. The degree of spike infection (FHBi) may indicate accumulation mainly of deoxynivalenol and nivalenol in the grain. High catalase activity in the infected leaves could be considered a biochemical marker of durum sensitivity to this fungus. These findings allowed us to formulate a strategy for rapid evaluation of the disease severity and the selection of plants with higher level, or resistance to F. culmorum infection.
Collapse
Affiliation(s)
- Jakub Pastuszak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (A.S.); (M.H.); (A.P.)
- Correspondence:
| | - Anna Szczerba
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (A.S.); (M.H.); (A.P.)
| | - Michał Dziurka
- Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Marta Hornyák
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (A.S.); (M.H.); (A.P.)
- Polish Academy of Sciences, W. Szafer Institute of Botany, Lubicz 46, 31-512 Kraków, Poland
| | - Przemysław Kopeć
- Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Marek Szklarczyk
- Faculty of Biotechnology and Horticulture, University of Agriculture, 29 Listopada 54, 31-425 Kraków, Poland;
| | - Agnieszka Płażek
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (A.S.); (M.H.); (A.P.)
| |
Collapse
|
13
|
Zhang X, Cao S, Li W, Sun H, Deng Y, Zhang A, Chen H. Functional Characterization of Calcineurin-Responsive Transcription Factors Fg01341 and Fg01350 in Fusarium graminearum. Front Microbiol 2020; 11:597998. [PMID: 33324378 PMCID: PMC7726117 DOI: 10.3389/fmicb.2020.597998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
Ca2 +/calmodulin-dependent phosphatase calcineurin is one of the important regulators of intracellular calcium homeostasis and has been investigated extensively in Saccharomyces cerevisiae. However, only a few reports have explored the function of the Crz1 homolog in filamentous fungi, especially in Fusarium graminearum. In this study, we identified Fg01341 as a potential ortholog of yeast Crz1. Fg01341 could interact with calcineurin and initiate nuclear transport in a calcineurin-dependent manner. The ΔFg01341 mutant exhibited normal hyphal growth on basic medium and conidia formation, but sexual reproduction was partially blocked. Pathogenicity assays showed that the virulence of the ΔFg01341 mutant in flowering wheat heads and corn silks dramatically decreased and was thus consistent with the reduction in deoxynivalenol production. Unexpectedly, the sensitivity to osmotic stress of the deletion mutant and that of the wild-type strain did not present any differences. The deletion mutant showed higher sensitivity to tebuconazole than the wild-type strain. Results also showed that the transcription factor Fg01350 might be the calcineurin target and was independent of Crz1. Furthermore, ΔFg01350 showed defects in hyphal growth, sexual production, virulence, and deoxynivalenol production. Collectively, the results indicate that these two proteins functionally redundant and that the calcineurin-Crz1-independent pathway is particularly important in F. graminearum.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The Management of Scientific Research, Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Aixiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
14
|
Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1541-1568. [PMID: 31900498 DOI: 10.1007/s00122-019-03525-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB), or scab, for its devastating nature to wheat production and food security, has stimulated worldwide attention. Multidisciplinary efforts have been made to fight against FHB for a long time, but the great progress has been achieved only in the genomics era of the past 20 years, particularly in the areas of resistance gene/QTL discovery, resistance mechanism elucidation and molecular breeding for better resistance. This review includes the following nine main sections, (1) FHB incidence, epidemic and impact, (2) causal Fusarium species, distribution and virulence, (3) types of host resistance to FHB, (4) germplasm exploitation for FHB resistance, (5) genetic control of FHB resistance, (6) fine mapping of Fhb1, Fhb2, Fhb4 and Fhb5, (7) cloning of Fhb1, (8) omics-based gene discovery and resistance mechanism study and (9) breeding for better FHB resistance. The advancements that have been made are outstanding and exciting; however, judged by the complicated nature of resistance to hemi-biotrophic pathogens like Fusarium species and lack of immune germplasm, it is still a long way to go to overcome FHB.
Collapse
Affiliation(s)
- Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Quan Xie
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiyang Zhou
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongxin Kong
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Na Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yang Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Sun HY, Cui JH, Tian BH, Cao SL, Zhang XX, Chen HG. Resistance risk assessment for Fusarium graminearum to pydiflumetofen, a new succinate dehydrogenase inhibitor. PEST MANAGEMENT SCIENCE 2020; 76:1549-1559. [PMID: 31696614 DOI: 10.1002/ps.5675] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pydiflumetofen is a new generation succinate dehydrogenase inhibitor currently undergoing the process of registration in China for the control of Fusarium head blight in wheat. A resistance risk assessment of Fusarium graminearum to pydiflumetofen was undertaken in this study. RESULTS A total of 75 pydiflumetofen-resistant mutants were generated through spontaneous selection and displayed high resistance with an average resistance factor (RF) value of 78. Four mutants were generated through UV mutagenesis and displayed very high resistance with an RF value >1000. The sequence analysis results for Sdh genes and fitness studies revealed the existence of four types of mutations. In particular, 32 spontaneous selection mutants (SP mutants) had an arginine (R) to histidine (H) transition at position 86 in FGSdhC, resulting in seriously reduced fitness. Seven SP mutants had an R to cysteine (C) transition at position 86 in FGSdhC, resulting in reduced fitness. Thirty-six SP mutants had an alanine (A) to valine (V) transition at position 83 in FGSdhC and had no fitness penalties. The efficacy of pydiflumetofen towards a mutant carrying A83V in FGSdhC in vivo was significantly decreased at 42.7%. Four UV mutants had no mutations on all Sdh genes and no fitness penalties. Cross-resistance among boscalid, fluopyram and pydiflumetofen was observed. CONCLUSION Sdhc mutations were found and other target site resistance may be present in laboratory PR mutants of F. graminearum. An overall moderate risk of resistance development in F. graminearum was recommended for pydiflumetofen. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai-Yan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jia-He Cui
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bao-Hua Tian
- Crop protection development, Syngenta (China) Investment Co., Ltd, Shanghai, China
| | - Shu-Lin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiang-Xiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huai-Gu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Huang C, Gangola MP, Ganeshan S, Hucl P, Kutcher HR, Chibbar RN. Spike culture derived wheat (Triticum aestivum L.) variants exhibit improved resistance to multiple chemotypes of Fusarium graminearum. PLoS One 2019; 14:e0226695. [PMID: 31856194 PMCID: PMC6922434 DOI: 10.1371/journal.pone.0226695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/24/2019] [Indexed: 11/20/2022] Open
Abstract
Fusarium head blight (FHB) in wheat (Triticum aestivum L.), predominantly caused by Fusarium graminearum, has been categorized into three chemotypes depending on the major mycotoxin produced. The three mycotoxins, namely, 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol (NIV) also determine their aggressiveness and response to fungicides. Furthermore, prevalence of these chemotypes changes over time and dynamic changes in chemotypes population in the field have been observed. The objective of this study was to identify spike culture derived variants (SCDV) exhibiting resistance to multiple chemotypes of F. graminearum. First, the optimal volume of inoculum for point inoculation of the spikelets was determined using the susceptible AC Nanda wheat genotype. Fifteen μL of 105 macroconidia/mL was deemed optimal based on FHB disease severity assessment with four chemotypes. Following optimal inoculum volume determination, five chemotypes (Carman-NIV, Carman-705-2-3-ADON, M9-07-1-3-ADON, M1-07-2-15-ADON and China-Fg809-15-ADON) were used to point inoculate AC Nanda spikelets to confirm the mycotoxin produced and FHB severity during infection. Upon confirmation of the mycotoxins produced by the chemotypes, 55 SCDV were utilized to evaluate FHB severity and mycotoxin concentrations. Of the 55 SCDV, five (213.4, 244.1, 245.6, 250.2 and 252.3) resistant lines were identified with resistance to multiple chemotypes and are currently being utilized in a breeding program to develop wheat varieties with improved FHB resistance.
Collapse
Affiliation(s)
- Chen Huang
- Department of Plant Sciences, College of Agriculture and Bioresources, Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Manu P. Gangola
- Department of Plant Sciences, College of Agriculture and Bioresources, Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Seedhabadee Ganeshan
- Department of Plant Sciences, College of Agriculture and Bioresources, Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pierre Hucl
- Crop Development Centre, College of Agriculture and Bioresources, Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - H. Randy Kutcher
- Crop Development Centre, College of Agriculture and Bioresources, Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ravindra N. Chibbar
- Department of Plant Sciences, College of Agriculture and Bioresources, Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
17
|
Jang JY, Baek SG, Choi JH, Kim S, Kim J, Kim DW, Yun SH, Lee T. Characterization of Nivalenol-Producing Fusarium asiaticum That Causes Cereal Head Blight in Korea. THE PLANT PATHOLOGY JOURNAL 2019; 35:543-552. [PMID: 31832035 PMCID: PMC6901258 DOI: 10.5423/ppj.oa.06.2019.0168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Fusarium asiaticum of the F. graminearum species complex causes head blight in small-grain cereals. The nivalenol (NIV) chemotypes of F. asiaticum is more common than the deoxynivalenol (DON) chemotypes of F. asiaticum or F. graminearum in Korea. To understand the prevalence of F. asiaticum-NIV in Korean cereals, we characterized the biological traits of 80 cereal isolates of F. asiaticum producing NIV or 3-acetyl-deoxynivalenol (3-ADON), and 54 F. graminearum with 3-ADON or 15-acetyl-deoxynivalenol (15-ADON). There was no significant difference in mycelial growth between the chemotypes, but F. asiaticum isolates grew approximately 30% faster than F. graminearum isolates on potato dextrose agar. Sexual and asexual reproduction capacities differed markedly between the two species. Both chemotypes of F. graminearum (3-ADON and 15-ADON) produced significantly higher numbers of perithecia and conidia than F. asiaticum-NIV. The highest level of mycotoxins (sum of trichothecenes and zearalenone) was produced by F. graminearum-3-ADON on rice medium, followed by F. graminearum-15-ADON, F. asiaticum-3-ADON, and F. asiaticum-NIV. Zearalenone levels were correlated with DON levels in some chemotypes, but not with NIV levels. Disease assessment on barley, maize, rice, and wheat revealed that both F. asiaticum and F. graminearum isolates were virulent toward all crops tested. However, there is a tendency that virulence levels of F. asiaticum-NIV isolates on rice were higher than those of F. graminearum isolates. Taken together, the phenotypic traits found among the Korean F. asiaticum-NIV isolates suggest an association with their host adaptation to certain environments in Korea.
Collapse
Affiliation(s)
- Ja Yeong Jang
- Microbial Safety Team, National Institute of Agricultural Sciences, Wanju 55365,
Korea
| | - Seul Gi Baek
- Microbial Safety Team, National Institute of Agricultural Sciences, Wanju 55365,
Korea
| | - Jung-Hye Choi
- Microbial Safety Team, National Institute of Agricultural Sciences, Wanju 55365,
Korea
| | - Sosoo Kim
- Microbial Safety Team, National Institute of Agricultural Sciences, Wanju 55365,
Korea
| | - Jeomsoon Kim
- Microbial Safety Team, National Institute of Agricultural Sciences, Wanju 55365,
Korea
| | - Da-Woon Kim
- Department of Medical Biotechnology, Soonchunhyanag University, Asan 31538,
Korea
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyanag University, Asan 31538,
Korea
| | - Theresa Lee
- Microbial Safety Team, National Institute of Agricultural Sciences, Wanju 55365,
Korea
| |
Collapse
|
18
|
Qiu J, Xu J, Shi J. Fusarium Toxins in Chinese Wheat since the 1980s. Toxins (Basel) 2019; 11:toxins11050248. [PMID: 31052282 PMCID: PMC6562770 DOI: 10.3390/toxins11050248] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 01/08/2023] Open
Abstract
Wheat Fusarium head blight (FHB), caused by Fusarium species, is a widespread and destructive fungal disease. In addition to the substantial yield and revenue losses, diseased grains are often contaminated with Fusarium mycotoxins, making them unsuitable for human consumption or use as animal feed. As a vital food and feed ingredient in China, the quality and safety of wheat and its products have gained growing attention from consumers, producers, scientists, and policymakers. This review supplies detailed data about the occurrence of Fusarium toxins and related intoxications from the 1980s to the present. Despite the serious situation of toxin contamination in wheat, the concentration of toxins in flour is usually lower than that in raw materials, and food-poisoning incidents have been considerably reduced. Much work has been conducted on every phase of toxin production and wheat circulation by scientific researchers. Regulations for maximum contamination limits have been established in recent years and play a substantial role in ensuring the stability of the national economy and people's livelihoods.
Collapse
Affiliation(s)
- Jianbo Qiu
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/ Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jianhong Xu
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/ Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianrong Shi
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/ Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Serajazari M, Hudson K, Kaviani M, Navabi A. Fusarium graminearum Chemotype-Spring Wheat Genotype Interaction Effects in Type I and II Resistance Response Assays. PHYTOPATHOLOGY 2019; 109:643-649. [PMID: 30451634 DOI: 10.1094/phyto-10-18-0394-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium head blight (FHB), caused by several Fusarium spp., is a worldwide problem that severely impacts cereal grain yield and poses major risks to human and animal health due to production of the mycotoxin deoxynivalenol (DON) and its acetylated forms, 3-acetyl-DON (3-ADON) and 15-acetyl-DON (15-ADON). Recent studies suggest an inconsistent effect of F. graminearum chemotypes and resistance of wheat (Triticum aestivum) genotypes. To gain insight into the interaction effects of F. graminearum chemotypes and spring wheat genotypes on FHB resistance response, 10 spring wheat genotypes with varying levels of FHB resistance were inoculated with 10 F. graminearum isolates, consisting of 5 3-ADON- and 5 15-ADON-producing isolates and evaluated in type I (spray inoculation) and type II (point inoculation) resistance assays. Wheat genotypes carrying the resistance allele of the Fhb1 quantitative trait locus on chromosome 3BS had lower disease in type II evaluations, regardless of F. graminearum isolate or chemotype. Isolates of F. graminearum were also significantly different for disease aggressiveness. In addition, the 3-ADON-producing isolates were 18% more aggressive than the 15-ADON isolates in type I resistance assays. No difference in aggressiveness of the two chemotypes was observed, when tested in type II resistance assays. There was no interaction effect between F. graminearum chemotypes and spring wheat genotypes, suggesting that screening of germplasm for resistance can be performed with limited number of aggressive isolates.
Collapse
Affiliation(s)
- Mitra Serajazari
- Department of Plant Agriculture, University of Guelph, Guelph, ON Canada
| | - Kerin Hudson
- Department of Plant Agriculture, University of Guelph, Guelph, ON Canada
| | - Mina Kaviani
- Department of Plant Agriculture, University of Guelph, Guelph, ON Canada
| | - Alireza Navabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON Canada
| |
Collapse
|
20
|
Góral T, Wiśniewska H, Ochodzki P, Nielsen LK, Walentyn-Góral D, Stępień Ł. Relationship between Fusarium Head Blight, Kernel Damage, Concentration of Fusarium Biomass, and Fusarium Toxins in Grain of Winter Wheat Inoculated with Fusarium culmorum. Toxins (Basel) 2018; 11:E2. [PMID: 30577649 PMCID: PMC6357003 DOI: 10.3390/toxins11010002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Winter wheat lines were evaluated for their reaction to Fusarium head blight (FHB) after inoculation with Fusarium culmorum in two field experiments. A mixture of two F. culmorum chemotypes was applied (3ADON-deoxynivalenol producing, NIV-nivalenol producing). Different types of resistance were evaluated, including head infection, kernel damage, Fusarium biomass content and trichothecenes B (deoxynivalenol (DON), and nivalenol (NIV)) accumulation in grain. The aim of the study was to find relationships between different types of resistance. Head infection (FHB index) and Fusarium damaged kernels (FDK) were visually scored. Fusarium biomass was analysed using real-time PCR. Trichothecenes B accumulation was analysed using gas chromatography. Wheat lines differ in their reaction to inoculation for all parameters describing FHB resistance. We found a wide variability of FHB indexes, FDK, and Fusarium biomass content. Both toxins were present. DON content was about 60% higher than NIV and variability of this proportion between lines was observed. Significant correlation was found between head infection symptoms and FDK. Head infection was correlated with F. culmorum biomass and NIV concentration in grain. No correlation was found between the FHB index and DON concentration. Similarly, FDK was not correlated with DON content, but it was with NIV content; however, the coefficients were higher than for the FHB index. Fusarium biomass amount was positively correlated with both toxins as well as with the FHB index and FDK. Environmental conditions significantly influenced the DON/NIV ratio in grain. In locations where less F. culmorum biomass was detected, the DON amount was higher than NIV, while in locations where more F. culmorum biomass was observed, NIV prevailed over DON.
Collapse
Affiliation(s)
- Tomasz Góral
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute⁻National Research Institute, Radzików, 05-870 Błonie, Poland.
| | - Halina Wiśniewska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Piotr Ochodzki
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute⁻National Research Institute, Radzików, 05-870 Błonie, Poland.
| | | | - Dorota Walentyn-Góral
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute⁻National Research Institute, Radzików, 05-870 Błonie, Poland.
| | - Łukasz Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
21
|
Li W, Xia Y, Zhang H, Zhang X, Chen H. A Victorivirus from Fusarium asiaticum, the pathogen of Fusarium head blight in China. Arch Virol 2018; 164:313-316. [PMID: 30232613 DOI: 10.1007/s00705-018-4038-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Abstract
A Victorivirus was detected in isolate F16176 of the fungus Fusarium asiaticum, the causal agent of Fusarium head blight in China. The full genome sequence of the virus was sequenced and characterized. The complete cDNA sequence is 5,281 nucleotides long with 64.2% G + C content and contains two open reading frames (ORFs) that overlap at the pentanucleotide UAAUG. The two ORFs are predicted to encode coat protein (CP) and RNA-dependent RNA polymerase (RdRp), which are conserved among the dsRNA mycoviruses of the genus Victorivirus. Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of RdRp indicated that this dsRNA mycovirus is a new virus belonging to the species Rosellinia necatrix victorivirus 1 in the family Totiviridae. This study is the first to report a full-length genomic sequence of a putative member of the genus Victorivirus in F. asiaticum.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yunlei Xia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Haotian Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Agricultural College, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xing Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Agricultural College, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
22
|
Bilska K, Jurczak S, Kulik T, Ropelewska E, Olszewski J, Żelechowski M, Zapotoczny P. Species Composition and Trichothecene Genotype Profiling of Fusarium Field Isolates Recovered from Wheat in Poland. Toxins (Basel) 2018; 10:E325. [PMID: 30103473 PMCID: PMC6115980 DOI: 10.3390/toxins10080325] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
Abstract
Fusarium head blight (FHB) of cereals is the major head disease negatively affecting grain production worldwide. In 2016 and 2017, serious outbreaks of FHB occurred in wheat crops in Poland. In this study, we characterized the diversity of Fusaria responsible for these epidemics using TaqMan assays. From a panel of 463 field isolates collected from wheat, four Fusarium species were identified. The predominant species were F. graminearum s.s. (81%) and, to a lesser extent, F. avenaceum (15%). The emergence of the 15ADON genotype was found ranging from 83% to 87% of the total trichothecene genotypes isolated in 2016 and 2017, respectively. Our results indicate two dramatic shifts within fungal field populations in Poland. The first shift is associated with the displacement of F. culmorum by F. graminearum s.s. The second shift resulted from a loss of nivalenol genotypes. We suggest that an emerging prevalence of F. graminearum s.s. may be linked to boosted maize production, which has increased substantially over the last decade in Poland. To detect variation within Tri core clusters, we compared sequence data from randomly selected field isolates with a panel of strains from geographically diverse origins. We found that the newly emerged 15ADON genotypes do not exhibit a specific pattern of polymorphism enabling their clear differentiation from the other European strains.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Sebastian Jurczak
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Ewa Ropelewska
- Department of Systems Engineering, Faculty of Engineering, University of Warmia and Mazury in Olsztyn, Heweliusza 14, 10-718 Olsztyn, Poland.
| | - Jacek Olszewski
- Experimental Education Unit, Oczapowskiego 8, 10-719 Olsztyn, Poland.
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Piotr Zapotoczny
- Department of Systems Engineering, Faculty of Engineering, University of Warmia and Mazury in Olsztyn, Heweliusza 14, 10-718 Olsztyn, Poland.
| |
Collapse
|