1
|
Knapp EM, Kaiser A, Arnold RC, Sampson MM, Ruppert M, Xu L, Anderson MI, Bonanno SL, Scholz H, Donlea JM, Krantz DE. Mutation of the Drosophila melanogaster serotonin transporter dSERT impacts sleep, courtship, and feeding behaviors. PLoS Genet 2022; 18:e1010289. [PMID: 36409783 PMCID: PMC9721485 DOI: 10.1371/journal.pgen.1010289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The Serotonin Transporter (SERT) regulates extracellular serotonin levels and is the target of most current drugs used to treat depression. The mechanisms by which inhibition of SERT activity influences behavior are poorly understood. To address this question in the model organism Drosophila melanogaster, we developed new loss of function mutations in Drosophila SERT (dSERT). Previous studies in both flies and mammals have implicated serotonin as an important neuromodulator of sleep, and our newly generated dSERT mutants show an increase in total sleep and altered sleep architecture that is mimicked by feeding the SSRI citalopram. Differences in daytime versus nighttime sleep architecture as well as genetic rescue experiments unexpectedly suggest that distinct serotonergic circuits may modulate daytime versus nighttime sleep. dSERT mutants also show defects in copulation and food intake, akin to the clinical side effects of SSRIs and consistent with the pleomorphic influence of serotonin on the behavior of D. melanogaster. Starvation did not overcome the sleep drive in the mutants and in male dSERT mutants, the drive to mate also failed to overcome sleep drive. dSERT may be used to further explore the mechanisms by which serotonin regulates sleep and its interplay with other complex behaviors.
Collapse
Affiliation(s)
- Elizabeth M. Knapp
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Andrea Kaiser
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Rebecca C. Arnold
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Maureen M. Sampson
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Manuela Ruppert
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Li Xu
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | | | - Shivan L. Bonanno
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Henrike Scholz
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Jeffrey M. Donlea
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - David E. Krantz
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|
3
|
Briggs AM, Hambly MG, Simão-Gurge RM, Garrison SM, Khaku Z, Van Susteren G, Lewis EE, Riffell JA, Luckhart S. Anopheles stephensi Feeding, Flight Behavior, and Infection With Malaria Parasites are Altered by Ingestion of Serotonin. Front Physiol 2022; 13:911097. [PMID: 35747317 PMCID: PMC9209645 DOI: 10.3389/fphys.2022.911097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
Approximately 3.4 billion people are at risk of malaria, a disease caused by infection with Plasmodium spp. parasites, which are transmitted by Anopheles mosquitoes. Individuals with severe falciparum malaria often exhibit changes in circulating blood levels of biogenic amines, including reduced serotonin or 5-hydroxytryptamine (5-HT), and these changes are associated with disease pathology. In insects, 5-HT functions as an important neurotransmitter for many behaviors and biological functions. In Anopheles stephensi, we show that 5-HT is localized to innervation in the head, thorax, and midgut, suggesting a gut-to-brain signaling axis that could support the effects of ingested 5-HT on mosquito biology and behavioral responses. Given the changes in blood levels of 5-HT associated with severe malaria and the key roles that 5-HT plays in insect neurophysiology, we investigated the impact of ingesting blood with healthy levels of 5-HT (1.5 µM) or malaria-associated levels of 5-HT (0.15 µM) on various aspects of A. stephensi biology. In these studies, we provisioned 5-HT and monitored fecundity, lifespan, flight behavior, and blood feeding of A. stephensi. We also assessed the impact of 5-HT ingestion on infection of A. stephensi with the mouse malaria parasite Plasmodium yoelii yoelii 17XNL and the human malaria parasite Plasmodium falciparum. Our data show that ingestion of 5-HT associated with severe malaria increased mosquito flight velocity and investigation of visual objects in response to host odor (CO2). 5-HT ingestion in blood at levels associated with severe malaria also increased the tendency to take a second blood meal 4 days later in uninfected A. stephensi. In mosquitoes infected with P. y. yoelii 17XNL, feeding tendency was decreased when midgut oocysts were present but increased when sporozoites were present. In addition to these effects, treatment of A. stephensi with 5-HT associated with severe malaria increased infection success with P. y. yoelii 17XNL compared to control, while treatment with healthy levels of 5-HT decreased infection success with P. falciparum. These changes in mosquito behavior and infection success could be used as a basis to manipulate 5-HT signaling in vector mosquitoes for improved control of malaria parasite transmission.
Collapse
Affiliation(s)
- Anna M. Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Raquel M. Simão-Gurge
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Sarah M. Garrison
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Zainab Khaku
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Grace Van Susteren
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
4
|
Das De T, Sharma P, Tevatiya S, Chauhan C, Kumari S, Yadav P, Singla D, Srivastava V, Rani J, Hasija Y, Pandey KC, Kajla M, Dixit R. Bidirectional Microbiome-Gut-Brain-Axis Communication Influences Metabolic Switch-Associated Responses in the Mosquito Anopheles culicifacies. Cells 2022; 11:1798. [PMID: 35681493 PMCID: PMC9180301 DOI: 10.3390/cells11111798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The periodic ingestion of a protein-rich blood meal by adult female mosquitoes causes a drastic metabolic change in their innate physiological status, which is referred to as a 'metabolic switch'. While understanding the neural circuits for host-seeking is modestly attended, how the gut 'metabolic switch' modulates brain functions, and resilience to physiological homeostasis, remains unexplored. Here, through a comparative brain RNA-Seq study, we demonstrate that the protein-rich diet induces the expression of brain transcripts related to mitochondrial function and energy metabolism, possibly causing a shift in the brain's engagement to manage organismal homeostasis. A dynamic mRNA expression pattern of neuro-signaling and neuro-modulatory genes in both the gut and brain likely establishes an active gut-brain communication. The disruption of this communication through decapitation does not affect the modulation of the neuro-modulator receptor genes in the gut. In parallel, an unusual and paramount shift in the level of neurotransmitters (NTs), from the brain to the gut after blood feeding, further supports the idea of the gut's ability to serve as a 'second brain'. After blood-feeding, a moderate enrichment of the gut microbial population, and altered immunity in the gut of histamine receptor-silenced mosquitoes, provide initial evidence that the gut-microbiome plays a crucial role in gut-brain-axis communication. Finally, a comparative metagenomics evaluation of the gut microbiome highlighted that blood-feeding enriches the family members of the Morganellaceae and Pseudomonadaceae bacterial communities. The notable observation of a rapid proliferation of Pseudomonas bacterial sp. and tryptophan enrichment in the gut correlates with the suppression of appetite after blood-feeding. Additionally, altered NTs dynamics of naïve and aseptic mosquitoes provide further evidence that gut-endosymbionts are key modulators for the synthesis of major neuroactive molecules. Our data establish a new conceptual understanding of microbiome-gut-brain-axis communication in mosquitoes.
Collapse
Affiliation(s)
- Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Pooja Yadav
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Deepak Singla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Vartika Srivastava
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Mayur Kajla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| |
Collapse
|
5
|
Dhakal S, Ren Q, Liu J, Akitake B, Tekin I, Montell C, Lee Y. Drosophila TRPg is required in neuroendocrine cells for post-ingestive food selection. eLife 2022; 11:56726. [PMID: 35416769 PMCID: PMC9068209 DOI: 10.7554/elife.56726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanism through which the brain senses the metabolic state, enabling an animal to regulate food consumption, and discriminate between nutritional and non-nutritional foods is a fundamental question. Flies choose the sweeter non-nutritive sugar, L-glucose, over the nutritive D-glucose if they are not starved. However, under starvation conditions, they switch their preference to D-glucose, and this occurs independent of peripheral taste neurons. Here, we found that eliminating the TRPγ channel impairs the ability of starved flies to choose D-glucose. This food selection depends on trpγ expression in neurosecretory cells in the brain that express Diuretic hormone 44 (DH44). Loss of trpγ increases feeding, alters the physiology of the crop, which is the fly stomach equivalent, and decreases intracellular sugars and glycogen levels. Moreover, survival of starved trpγ flies is reduced. Expression of trpγ in DH44 neurons reverses these deficits. These results highlight roles for TRPγ in coordinating feeding with the metabolic state through expression in DH44 neuroendocrine cells.
Collapse
Affiliation(s)
- Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Qiuting Ren
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jiangqu Liu
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Bradley Akitake
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Izel Tekin
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Youngseok Lee
- Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Wen X, Stoffolano JG, Greamo B, Salemme V, Piñero JC. Effects of diluted Concord grape juice laced with sodium chloride and selected boron-containing compounds on attraction, consumption, crop muscle contractions, and mortality of adult Drosophila suzukii Matsumura (Diptera: Drosophilidae). PEST MANAGEMENT SCIENCE 2022; 78:703-710. [PMID: 34668308 DOI: 10.1002/ps.6683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In recent years, there has been interest in low-cost, reduced-risk materials that could be used for attract-and-kill of the invasive pest, spotted-wing Drosophila, Drosophila suzukii. This pest causes heavy economic damage to soft-skinned fruits in many countries. In this study, we evaluated physiological and behavioral effects of adding either borax, boric acid, or sodium chloride to diluted Concord grape juice (DGJ), a material that is attractive to adult D. suzukii. RESULTS Results showed that the addition of borax, sodium chloride and boric acid did not significantly affect the response of adult D. suzukii, relative to DGJ alone. Increases in concentrations (to 5% and 10%) of borax, sodium chloride and boric acid were correlated with decreased ingestion of materials. Mortality of males and females was almost 100% with lower concentrations (1% and 5%) of borax and boric acid within 72 h. The higher concentrations of sodium chloride (5% and 10%) resulted in 100% mortality of both sexes within 72 h. There was no significant effect of chemicals on the number of crop contractions of flies when fed for 4 h. CONCLUSIONS This study suggests that some substances such as boric acid and borax may act as toxicants without influencing the behavioral response of D. suzukii. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaojian Wen
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
- Beijing Key Laboratory for Forest Pests Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - John G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Brendan Greamo
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Victoria Salemme
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jaime C Piñero
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
7
|
Yao Z, Scott K. Serotonergic neurons translate taste detection into internal nutrient regulation. Neuron 2022; 110:1036-1050.e7. [PMID: 35051377 DOI: 10.1016/j.neuron.2021.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/26/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The nervous and endocrine systems coordinately monitor and regulate nutrient availability to maintain energy homeostasis. Sensory detection of food regulates internal nutrient availability in a manner that anticipates food intake, but sensory pathways that promote anticipatory physiological changes remain unclear. Here, we identify serotonergic (5-HT) neurons as critical mediators that transform gustatory detection by sensory neurons into the activation of insulin-producing cells and enteric neurons in Drosophila. One class of 5-HT neurons responds to gustatory detection of sugars, excites insulin-producing cells, and limits consumption, suggesting that they anticipate increased nutrient levels and prevent overconsumption. A second class of 5-HT neurons responds to gustatory detection of bitter compounds and activates enteric neurons to promote gastric motility, likely to stimulate digestion and increase circulating nutrients upon food rejection. These studies demonstrate that 5-HT neurons relay acute gustatory detection to divergent pathways for longer-term stabilization of circulating nutrients.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Solari P, Pasquini V, Secci M, Giglioli A, Crnjar R, Addis P. Chemosensitivity in the Sea Urchin Paracentrotus lividus (Echinodermata: Echinoidea) to Food-Related Compounds: An Innovative Behavioral Bioassay. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Like other animals, echinoderms rely on chemical senses to detect and localize food resources. Here, we evaluate the chemical sensitivity of the sea urchin Paracentrotus lividus to a number of stimuli possibly related to food, such as a few sugars, compared to the blue-green algae Spirulina (Arthrospira platensis). To do this we developed a simple, innovative method based on the recording of “urchinograms” estimating the movements of spines, pedicellariae, tube feet, and eventually of the whole sea urchin, in response to chemicals, while keeping both the whole animal and the stimulus in their natural environment, underwater. Our results show that Spirulina is a highly stimulating compound for the sea urchin, by acting in a dose-dependent manner. The animals resulted also sensitive, even if to a lesser extent, to some sugars, such as the monosaccharide glucose, but not to its isomer fructose, while among disaccharides, they sensed cellobiose, but not sucrose or trehalose. From an applied point of view, any insight into the chemical sensitivity of sea urchins toward potential food-related compounds may lead to the discovery of key chemicals that would help improve the efficiency and reduce the costs of dietary substrates for optimization of intensive rearing strategies. Although this method has been developed for P. lividus, it will be suitable to evaluate the chemical sensitivity of other echinoderms and other marine invertebrates characterized by low mobility.
Collapse
|
9
|
Bento FMM, Darolt JC, Merlin BL, Penã L, Wulff NA, Cônsoli FL. The molecular interplay of the establishment of an infection - gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. BMC Genomics 2021; 22:677. [PMID: 34544390 PMCID: PMC8454146 DOI: 10.1186/s12864-021-07988-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Candidatus Liberibacter asiaticus (CLas) is one the causative agents of greening disease in citrus, an unccurable, devastating disease of citrus worldwide. CLas is vectored by Diaphorina citri, and the understanding of the molecular interplay between vector and pathogen will provide additional basis for the development and implementation of successful management strategies. We focused in the molecular interplay occurring in the gut of the vector, a major barrier for CLas invasion and colonization. RESULTS We investigated the differential expression of vector and CLas genes by analyzing a de novo reference metatranscriptome of the gut of adult psyllids fed of CLas-infected and healthy citrus plants for 1-2, 3-4 and 5-6 days. CLas regulates the immune response of the vector affecting the production of reactive species of oxygen and nitrogen, and the production of antimicrobial peptides. Moreover, CLas overexpressed peroxiredoxin, probably in a protective manner. The major transcript involved in immune expression was related to melanization, a CLIP-domain serine protease we believe participates in the wounding of epithelial cells damaged during infection, which is supported by the down-regulation of pangolin. We also detected that CLas modulates the gut peristalsis of psyllids through the down-regulation of titin, reducing the elimination of CLas with faeces. The up-regulation of the neuromodulator arylalkylamine N-acetyltransferase implies CLas also interferes with the double brain-gut communication circuitry of the vector. CLas colonizes the gut by expressing two Type IVb pilin flp genes and several chaperones that can also function as adhesins. We hypothesized biofilm formation occurs by the expression of the cold shock protein of CLas. CONCLUSIONS The thorough detailed analysis of the transcritome of Ca. L. asiaticus and of D. citri at different time points of their interaction in the gut tissues of the host led to the identification of several host genes targeted for regulation by L. asiaticus, but also bacterial genes coding for potential effector proteins. The identified targets and effector proteins are potential targets for the development of new management strategies directed to interfere with the successful utilization of the psyllid vector by this pathogen.
Collapse
Affiliation(s)
- Flavia Moura Manoel Bento
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Josiane Cecília Darolt
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Bruna Laís Merlin
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Leandro Penã
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nelson Arno Wulff
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| |
Collapse
|
10
|
Liao S, Amcoff M, Nässel DR. Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103495. [PMID: 33171202 DOI: 10.1016/j.ibmb.2020.103495] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Excess consumption of high-fat diet (HFD) is likely to result in obesity and increases the predisposition to associated health disorders. Drosophila melanogaster has emerged as an important model to study the effects of HFD on metabolism, gut function, behavior, and ageing. In this study, we investigated the effects of HFD on physiology and behavior of female flies at different time-points over several weeks. We found that HFD decreases lifespan, and also with age leads to accelerated decline of climbing ability in both virgins and mated flies. In virgins HFD also increased sleep fragmentation with age. Furthermore, long-term exposure to HFD results in elevated adipokinetic hormone (AKH) transcript levels and an enlarged crop with increased lipid stores. We detected no long-term effects of HFD on body mass, or levels of triacylglycerides (TAG), glycogen or glucose, although fecundity was diminished. However, one week of HFD resulted in decreased body mass and elevated TAG levels in mated flies. Finally, we investigated the role of AKH in regulating effects of HFD during aging. Both with normal diet (ND) and HFD, Akh mutant flies displayed increased longevity compared to control flies. However, both mutants and controls showed shortened lifespan on HFD compared to ND. In flies exposed to ND, fecundity is decreased in Akh mutants compared to controls after one week, but increased after three weeks. However, HFD leads to a similar decrease in fecundity in both genotypes after both exposure times. Thus, long-term exposure to HFD increases AKH signaling, impairs lifespan and fecundity and augments age-related behavioral senescence.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
11
|
Ben-Menahem D. GnRH-Related Neurohormones in the Fruit Fly Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22095035. [PMID: 34068603 PMCID: PMC8126107 DOI: 10.3390/ijms22095035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic and phylogenetic analyses of various invertebrate phyla revealed the existence of genes that are evolutionarily related to the vertebrate’s decapeptide gonadotropin-releasing hormone (GnRH) and the GnRH receptor genes. Upon the characterization of these gene products, encoding peptides and putative receptors, GnRH-related peptides and their G-protein coupled receptors have been identified. These include the adipokinetic hormone (AKH) and corazonin (CRZ) in insects and their cognate receptors that pair to form bioactive signaling systems, which network with additional neurotransmitters/hormones (e.g., octopamine and ecdysone). Multiple studies in the past 30 years have identified many aspects of the biology of these peptides that are similar in size to GnRH and function as neurohormones. This review briefly describes the main activities of these two neurohormones and their receptors in the fruit fly Drosophila melanogaster. The similarities and differences between Drosophila AKH/CRZ and mammalian GnRH signaling systems are discussed. Of note, while GnRH has a key role in reproduction, AKH and CRZ show pleiotropic activities in the adult fly, primarily in metabolism and stress responses. From a protein evolution standpoint, the GnRH/AKH/CRZ family nicely demonstrates the developmental process of neuropeptide signaling systems emerging from a putative common ancestor and leading to divergent activities in distal phyla.
Collapse
Affiliation(s)
- David Ben-Menahem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
12
|
Kalsi M, Walter A, Lee B, DeLaat A, Trigueros RR, Happel K, Sepesy R, Nguyen B, Manwill PK, Rakotondraibe LH, Piermarini PM. Stop the crop: Insights into the insecticidal mode of action of cinnamodial against mosquitoes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104743. [PMID: 33357565 PMCID: PMC7770332 DOI: 10.1016/j.pestbp.2020.104743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Cinnamodial (CDIAL) is a drimane sesquiterpene dialdehyde found in the bark of Malagasy medicinal plants (Cinnamosma species; family Canellaceae). We previously demonstrated that CDIAL was insecticidal, antifeedant, and repellent against Aedes aegypti mosquitoes. The goal of the present study was to generate insights into the insecticidal mode of action for CDIAL, which is presently unknown. We evaluated the effects of CDIAL on the contractility of the ventral diverticulum (crop) isolated from adult female Ae. aegypti. The crop is a food storage organ surrounded by visceral muscle that spontaneously contracts in vitro. We found that CDIAL completely inhibited spontaneous contractions of the crop as well as those stimulated by the agonist 5-hydroxytryptamine. Several derivatives of CDIAL with known insecticidal activity also inhibited crop contractions. Morphometric analyses of crops suggested that CDIAL induced a tetanic paralysis that was dependent on extracellular Ca2+ and inhibited by Gd3+, a non-specific blocker of plasma membrane Ca2+ channels. Screening of numerous pharmacological agents revealed that a Ca2+ ionophore (A23187) was the only compound other than CDIAL to completely inhibit crop contractions via a tetanic paralysis. Taken together, our results suggest that CDIAL induces a tetanic paralysis of the crop by elevating intracellular Ca2+ through the activation of plasma membrane Ca2+ channels, which may explain the insecticidal effects of CDIAL against mosquitoes. Our pharmacological screening experiments also revealed the presence of two regulatory pathways in mosquito crop contractility not previously described: an inhibitory glutamatergic pathway and a stimulatory octopaminergic pathway. The latter pathway was also completely inhibited by CDIAL.
Collapse
Affiliation(s)
- Megha Kalsi
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Anton Walter
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Beenhwa Lee
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Andrew DeLaat
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Renata Rusconi Trigueros
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Katharina Happel
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Rose Sepesy
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Bao Nguyen
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Preston K Manwill
- Departments of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Liva Harinantenaina Rakotondraibe
- Departments of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Arora K, Green M, Prakash S. The Microbiome and Alzheimer's Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Front Bioeng Biotechnol 2020; 8:537847. [PMID: 33384986 PMCID: PMC7771210 DOI: 10.3389/fbioe.2020.537847] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The Microbiome has generated significant attention for its impacts not only on gastrointestinal health, but also on signaling pathways of the enteric and central nervous system via the microbiome gut-brain axis. In light of this, microbiome modulation may be an effective therapeutic strategy for treating or mitigating many somatic and neural pathologies, including neurodegenerative disorders. Alzheimer's disease (AD) is a chronic neurodegenerative disease that interferes with cerebral function by progressively impairing memory, thinking and learning through the continuous depletion of neurons. Although its etiopathogenesis remains uncertain, recent literature endorses the hypothesis that probiotic, prebiotic and synbiotic supplementation alters AD-like symptoms and improves many of its associated disease biomarkers. Alternatively, a dysfunctional microbiota impairs the gut epithelial barrier by inducing chronic gastric inflammation, culminating in neuroinflammation and accelerating AD progression. The findings in this review suggest that probiotics, prebiotics or synbiotics have potential as novel biological prophylactics in treatment of AD, due to their anti-inflammatory and antioxidant properties, their ability to improve cognition and metabolic activity, as well as their capacity of producing essential metabolites for gut and brain barrier permeability.
Collapse
Affiliation(s)
- Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
- Biena Inc., Saint-Hyacinthe, QC, Canada
| | - Miranda Green
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Mahishi D, Huetteroth W. The prandial process in flies. CURRENT OPINION IN INSECT SCIENCE 2019; 36:157-166. [PMID: 31765996 DOI: 10.1016/j.cois.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Feeding is fundamental to any heterotroph organism; in its role to quell hunger it overrides most other motivational states. But feeding also literally opens the door to harmful risks, especially for a saprophagous animal like Drosophila; ingestion of poisonous substrate can lead to irreversible damage. Thus feeding incorporates a series of steps with several checkpoints to guarantee that the ingestion remains beneficial and provides a balanced diet, or the feeding process is interrupted. Subsequently, we will summarize and describe the feeding process in Drosophila in a comprehensive manner. We propose eleven distinct steps for feeding, grouped into four categories, to address our current knowledge of prandial regulatory mechanisms in Drosophila.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Biology, University of Leipzig, Leipzig, Germany
| | - Wolf Huetteroth
- Department of Biology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Solari P, Maccioni R, Marotta R, Catelani T, Debellis D, Baroli B, Peddio S, Muroni P, Kasture S, Solla P, Stoffolano JG, Liscia A. The imbalance of serotonergic circuitry impairing the crop supercontractile muscle activity and the mitochondrial morphology of PD PINK1 B9Drosophila melanogaster are rescued by Mucuna pruriens. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:32-40. [PMID: 30393142 DOI: 10.1016/j.jinsphys.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Despite its great potentiality, little attention has been paid to modelling gastrointestinal symptoms of Parkinson's disease (PD) in Drosophila melanogaster (Dm). Our previous studies on standardized Mucuna pruriens extract (Mpe) have shown usefulness in the Drosophila model of PD. In this communication, we provide new information on the effect of Mpe on basal and serotonin treated contractions in the crop (i.e., an important and essential part of the gut) in Drosophila PD mutant for PTEN-induced putative kinase 1 (PINK1B9) gene. The effect of Mpe on PINK1B9 supplied with standard diet to larvae and/or adults, were assayed on 10-15 days old flies. Conversely from what we observed in the wild type flies, recordings demonstrated that exogenous applications of serotonin on crop muscles of untreated PINK1B9 affect neither the frequency nor the amplitude of the crop contraction, while the same muscle parameters are enhanced following brain injections of serotonin, thus suggesting that PINK1B9 mutants may likely have an impairment in the serotonergic pathways. Also, the mitochondrial morphology in the crop muscles is strongly compromised, as demonstrated by the transmission electron microscopy analysis. The Mpe treatment rescued the crop muscle parameters and also the mitochondrial morphology when supplied to both larvae and adults. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the gastrointestinal symptoms in PD and also confirms the useful employment of M. pruriens for PD treatment.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Riccardo Maccioni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberto Marotta
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Tiziano Catelani
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Doriana Debellis
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Biancamaria Baroli
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Italy
| | - John G Stoffolano
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.
| |
Collapse
|
16
|
Pauls D, Blechschmidt C, Frantzmann F, El Jundi B, Selcho M. A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster. Sci Rep 2018; 8:15314. [PMID: 30333565 PMCID: PMC6192984 DOI: 10.1038/s41598-018-33686-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/02/2018] [Indexed: 01/09/2023] Open
Abstract
The modulation of an animal’s behavior through external sensory stimuli, previous experience and its internal state is crucial to survive in a constantly changing environment. In most insects, octopamine (OA) and its precursor tyramine (TA) modulate a variety of physiological processes and behaviors by shifting the organism from a relaxed or dormant condition to a responsive, excited and alerted state. Even though OA/TA neurons of the central brain are described on single cell level in Drosophila melanogaster, the periphery was largely omitted from anatomical studies. Given that OA/TA is involved in behaviors like feeding, flying and locomotion, which highly depend on a variety of peripheral organs, it is necessary to study the peripheral connections of these neurons to get a complete picture of the OA/TA circuitry. We here describe the anatomy of this aminergic system in relation to peripheral tissues of the entire fly. OA/TA neurons arborize onto skeletal muscles all over the body and innervate reproductive organs, the heart, the corpora allata, and sensory organs in the antennae, legs, wings and halteres underlining their relevance in modulating complex behaviors.
Collapse
Affiliation(s)
- Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Christine Blechschmidt
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Felix Frantzmann
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Basil El Jundi
- Zoology II, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
17
|
Solari P, Sollai G, Masala C, Maccioni R, Crnjar R, Liscia A. Octopamine modulates the activity of motoneurons related to calling behavior in the gypsy moth Lymantria dispar. INSECT SCIENCE 2018; 25:797-808. [PMID: 29473996 DOI: 10.1111/1744-7917.12580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/31/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
A morphofunctional investigation of the different neuronal subpopulations projecting through each of the nerves IV-VI emerging bilaterally from the terminal abdominal ganglion (TAG) was correlated with the octopaminergic activity in the ganglion that controls the ovipositor movements associated with calling behavior in the female gypsy moth Lymantria dispar. Tetramethylrodamine-dextran backfills from nerve stumps resulted in a relatively low number of TAG projections, ranging from 12 to 13 for nerve pair IV, 12 to 14 for nerve pair V, and 8 to 9 for nerve pair VI. Furthermore, as assessed by electrophysiological recordings, a number of fibers within each of these nerves displays spontaneous tonic activity, also when the ganglion is fully disconnected from the ventral nerve cord (VNC). Octopamine (OA) applications to the TAG strongly enhanced the activity of these nerves, either by increasing the firing rate of a number of spontaneously firing units or by recruiting new ones. This octopaminergic activity affected calling behavior, and specifically the muscle activity leading to cycling extensions of the intersegmental membrane (IM) between segments VIII and IX (ovipositor). Our results indicate that in the female gypsy moth the octopaminergic neural activity of the TAG is coupled with extensions and retractions of IM for the purpose of releasing pheromone, where motor units innervated by nerve pair IV appear antagonistic with respect to those innervated by nerve pair V.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Carla Masala
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| |
Collapse
|
18
|
Abstract
In response to adverse environmental conditions many organisms from nematodes to mammals deploy a dormancy strategy, causing states of developmental or reproductive arrest that enhance somatic maintenance and survival ability at the expense of growth or reproduction. Dormancy regulation has been studied in C. elegans and in several insects, but how neurosensory mechanisms act to relay environmental cues to the endocrine system in order to induce dormancy remains unclear. Here we examine this fundamental question by genetically manipulating aminergic neurotransmitter signaling in Drosophila melanogaster. We find that both serotonin and dopamine enhance adult ovarian dormancy, while the downregulation of their respective signaling pathways in endocrine cells or tissues (insulin producing cells, fat body, corpus allatum) reduces dormancy. In contrast, octopamine signaling antagonizes dormancy. Our findings enhance our understanding of the ability of organisms to cope with unfavorable environments and illuminate some of the relevant signaling pathways.
Collapse
|
19
|
Calkins TL, DeLaat A, Piermarini PM. Physiological characterization and regulation of the contractile properties of the mosquito ventral diverticulum (crop). JOURNAL OF INSECT PHYSIOLOGY 2017; 103:98-106. [PMID: 29107658 PMCID: PMC5708170 DOI: 10.1016/j.jinsphys.2017.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 05/16/2023]
Abstract
In adult dipteran insects (flies), the crop is a diverticulum of the esophagus that serves as a food storage organ. The crop pumps stored contents into the alimentary canal for digestion and absorption. The pumping is mediated by peristaltic contractions of the crop musculature. In adult female mosquitoes, the crop (ventral diverticulum) selectively stores sugar solutions (e.g., nectar); proteinaceous blood meals by-pass the crop and are transferred directly to the midgut for digestion. The mechanisms that regulate crop contractions have never been investigated in mosquitoes. Here we provide the first physiological characterization of the contractile properties of the mosquito crop and explore the mechanisms that regulate crop contractions. Using an in vitro bioassay we found that the isolated crop spontaneously contracts in Ringer solution for at least 1 h and its contractions are dependent on extracellular Ca2+. Adding serotonin (5-hydroxytryptamine, 5-HT) or a membrane-permeable analog of cyclic adenosine monophosphate (cAMP) to the extracellular bath increased the frequency of crop contractions. On the other hand, adding benzethonium chloride (BzCl; a chemical that mimics the effects of myosuppressins), H-89 or Rp-cAMPS (inhibitors of protein kinase A, PKA), or carbenoxolone (an inhibitor of gap junctions) reduced the frequency of the unstimulated, spontaneous and/or 5-HT-stimulated crop contractions. Adding aedeskinin III did not detectably alter crop contraction rates. In addition to pharmacological evidence of gap junctions, we demonstrated that the crop expressed several mRNAs encoding gap junctional proteins (i.e. innexins). Furthermore, we localized immunoreactivity for innexin 2 and innexin 3 to muscle and epithelial cells of the crop, respectively. Our results 1) suggest that 5-HT and myosupressins oppositely regulate contractile activity of the mosquito crop, and 2) provide the first evidence for putative roles of cAMP, PKA, and gap junctions in modulating contractile activity of the dipteran crop.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Andrew DeLaat
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA.
| |
Collapse
|