1
|
Ellis SL, Baird ME, Harrison LP, Schulz KG, Harrison DP. A photophysiological model of coral bleaching under light and temperature stress: experimental assessment. CONSERVATION PHYSIOLOGY 2025; 13:coaf020. [PMID: 40235654 PMCID: PMC11997550 DOI: 10.1093/conphys/coaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/02/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
Marine heatwaves occurring against the backdrop of rising global sea surface temperatures have triggered mass coral bleaching and mortality. Irradiance is critical to coral growth but is also an implicating factor in photodamage, leading to the expulsion of symbiotic algae under increased temperatures. Numerical modelling is a valuable tool that can provide insight into the state of the symbiont photochemistry during coral bleaching events. However, very few numerical physiological models combine the influence of light and temperature for simulating coral bleaching. The coral bleaching model used was derived from the coral bleaching representation in the eReefs configuration of the CSIRO Environmental Modelling Suite, with the most significant change being the equation for the rate of detoxification of reactive oxygen species. Simulated physiological bleaching outcomes from the model were compared to photochemical bleaching proxies measured during an ex situ moderate degree-heating week (up to 4.4) experiment. The bleaching response of Acropora divaricata was assessed in an unshaded and 30% shade treatment. The model-simulated timing for the onset of bleaching under elevated temperatures closely corresponded with an initial photochemical decline as observed in the experiment. Increased bleaching severity under elevated temperature and unshaded light was also simulated by the model, an outcome confirmed in the experiment. This is the first experimental validation of a temperature-mediated, light-driven model of coral bleaching from the perspective of the symbiont. When forced by realistic environmental conditions, process-based mechanistic modelling could improve accuracy in predicting heterogeneous bleaching outcomes during contemporary marine heatwave events and future climate change scenarios. Mechanistic modelling will be invaluable in evaluating management interventions for deployment in coral reef environments.
Collapse
Affiliation(s)
- Sophia L Ellis
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Mark E Baird
- Environment Research Unit, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS 7001, Australia
| | - Luke P Harrison
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Kai G Schulz
- Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Daniel P Harrison
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
- School of Geosciences, University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
2
|
Coulibaly TY, Yoo S, Kumagai J, Managi S. Spatially varying impacts of sea surface temperature on coral bleaching: A geographically weighted regression approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124979. [PMID: 40112475 DOI: 10.1016/j.jenvman.2025.124979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Coral reefs are facing bleaching threats due to climate change. Previous analyses primarily quantify this risk by assessing the average global menace. However, various local factors amplify the effects of climate change in some regions, making the phenomenon spatially heterogeneous. Thus, this study examines the spatially varying effects of sea surface temperature (SST) on coral bleaching using Geographically Weighted Regression (GWR) to better understand regional variations in coral vulnerability. This machine learning algorithm incorporates geo-localization of observations to capture regionally varying relationships in the data, offering insights into the geographical patterns of the local factors influencing SST effects. The analyses use Coral Check's 7941 globally distributed observations of coral health, collected by professional scientists as well as trained and certified citizen scientists. These observations were assembled by marine experts and followed a standardized transect protocol. The research identifies areas most vulnerable to temperature-induced coral bleaching. First, stationary models revealed a statistically significant relationship between SST and coral bleaching, highlighting the critical global impact of temperature on coral reefs. Second, the GWR emphasizes that the most sensitive to temperature-induced bleaching are in Southern Africa and Southeast Asia. Third, this study predicts the implications of this impact using IPCC's representative concentration pathways of climate change, namely RCP 4.5 and RCP 8.5. The estimates reveal that by 2050 several seas around the equator will experience the highest levels of temperature-led coral bleaching. The findings underscore the need for a differentiated approach under the Paris Agreement on climate change to address coral reef bleaching and identify hotspot regions where targeted assistance is necessary.
Collapse
Affiliation(s)
- Thierry Yerema Coulibaly
- Departments of Civil Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| | - Sunbin Yoo
- Departments of Civil Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Junya Kumagai
- Department of Industrial Economics, Fukuoka University, 8-chōme-19-1 Nanakuma, Jonan Ward, Fukuoka, 814-0180, Japan
| | - Shunsuke Managi
- Departments of Civil Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Muñiz-Castillo AI, Rivera-Sosa A, McField M, Chollett I, Eakin CM, Enríquez S, Giró A, Drysdale I, Rueda M, Soto M, Craig N, Arias-González JE. Underlying drivers of coral reef vulnerability to bleaching in the Mesoamerican Reef. Commun Biol 2024; 7:1452. [PMID: 39506046 PMCID: PMC11541557 DOI: 10.1038/s42003-024-07128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Coral bleaching, a consequence of stressed symbiotic relationships between corals and algae, has escalated due to intensified heat stress events driven by climate change. Despite global efforts, current early warning systems lack local precision. Our study, spanning 2015-2017 in the Mesoamerican Reef, revealed prevalent intermediate bleaching, peaking in 2017. By scrutinizing 23 stress exposure and sensitivity metrics, we accurately predicted 75% of bleaching severity variation. Notably, distinct thermal patterns-particularly the climatological seasonal warming rate and various heat stress metrics-emerged as better predictors compared to conventional indices (such as Degree Heating Weeks). Surprisingly, deeper reefs with diverse coral communities showed heightened vulnerability. This study presents a framework for coral reef bleaching vulnerability assessment, leveraging accessible data (including historical and real-time sea surface temperature, habitat variables, and species composition). Its operational potential lies in seamless integration with existing monitoring systems, offering crucial insights for conservation and management.
Collapse
Affiliation(s)
- Aarón Israel Muñiz-Castillo
- Laboratorio de Ecología de Ecosistemas de Arrecifes Coralinos, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Mérida, 97310, Yucatán, Mexico.
- Healthy Reefs for Healthy People, Puerto Morelos, Mexico.
| | - Andrea Rivera-Sosa
- Laboratorio de Ecología de Ecosistemas de Arrecifes Coralinos, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Mérida, 97310, Yucatán, Mexico
| | - Melanie McField
- Healthy Reefs for Healthy People, Fort Lauderdale, USA.
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, 34949, FL, USA.
| | | | - C Mark Eakin
- Corals and Climate, Silver Spring, 20904, MD, USA
| | - Susana Enríquez
- Laboratorio de Fotobiología. Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cancun, 77500, Quintana Roo, Mexico
| | - Ana Giró
- Healthy Reefs for Healthy People, Guatemala City, Guatemala
| | - Ian Drysdale
- Healthy Reefs for Healthy People, Tegucigalpa, Honduras
| | - Marisol Rueda
- Healthy Reefs for Healthy People, Puerto Morelos, Mexico
| | - Mélina Soto
- Healthy Reefs for Healthy People, Puerto Morelos, Mexico
| | - Nicole Craig
- Healthy Reefs for Healthy People, Belmopan, Belize
| | - Jesús Ernesto Arias-González
- Laboratorio de Ecología de Ecosistemas de Arrecifes Coralinos, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Mérida, 97310, Yucatán, Mexico.
| |
Collapse
|
4
|
Saint-Amand A, Lambrechts J, Hanert E. Biophysical models resolution affects coral connectivity estimates. Sci Rep 2023; 13:9414. [PMID: 37296146 PMCID: PMC10256739 DOI: 10.1038/s41598-023-36158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Estimating connectivity between coral reefs is essential to inform reef conservation and restoration. Given the vastness of coral reef ecosystems, connectivity can only be simulated with biophysical models whose spatial resolution is often coarser than the reef scale. Here, we assess the impact of biophysical models resolution on connectivity estimates by comparing the outputs of five different setups of the same model with resolutions ranging from 250 m to 4 km. We show that increasing the model resolution around reefs yields more complex and less directional dispersal patterns. With a fine-resolution model, connectivity graphs have more connections but of weaker strength. The resulting community structure therefore shows larger clusters of well-connected reefs. Virtual larvae also tend to stay longer close to their source reef with a fine-resolution model, leading to an increased local retention and self-recruitment for species with a short pre-competency period. Overall, only about half of the reefs with the largest connectivity indicator values are similar for the finest and coarsest resolution models. Our results suggest that reef management recommendations should only be made at scales coarser than the model resolution. Reef-scale recommendations can hence only be made with models not exceeding about 500 m resolution.
Collapse
Affiliation(s)
- Antoine Saint-Amand
- Earth and Life Institute (ELI), Université catholique de Louvain, Croix du Sud 2, 1348, Louvain-la-Neuve, Belgium.
| | - Jonathan Lambrechts
- Institute of Mechanics, Materials and Civil Engineering (IMMC), Université catholique de Louvain, Avenue Georges Lemaître 4-6, 1348, Louvain-la-Neuve, Belgium
| | - Emmanuel Hanert
- Earth and Life Institute (ELI), Université catholique de Louvain, Croix du Sud 2, 1348, Louvain-la-Neuve, Belgium
- Institute of Mechanics, Materials and Civil Engineering (IMMC), Université catholique de Louvain, Avenue Georges Lemaître 4-6, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Holbrook SJ, Wencélius J, Dubel AK, Adam TC, Cook DC, Hunter CE, Lauer M, Lester SE, Miller SD, Rassweiler A, Schmitt RJ. Spatial covariation in nutrient enrichment and fishing of herbivores in an oceanic coral reef ecosystem. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2515. [PMID: 34918841 PMCID: PMC9285716 DOI: 10.1002/eap.2515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 05/28/2023]
Abstract
Both natural and anthropogenic stressors are increasing on coral reefs, resulting in large-scale loss of coral and potential shifts from coral- to macroalgae-dominated community states. Two factors implicated in shifts to macroalgae are nutrient enrichment and fishing of reef herbivores. Although either of these factors alone could facilitate establishment of macroalgae, reefs may be particularly vulnerable to coral-to-algae phase shifts in which strong bottom-up forcing from nutrient enrichment is accompanied by a weakening of herbivore control of macroalgae via intense fishing. We explored spatial heterogeneity and covariance in these drivers on reefs in the lagoons of Moorea, French Polynesia, where the local fishery heavily targets herbivorous fishes and there are spatially variable inputs of nutrients from agricultural fertilizers and wastewater systems. Spatial patterns of fishing and nutrient enrichment were not correlated at the two landscape scales we examined: among the 11 interconnected lagoons around the island or among major habitats (fringing reef, mid-lagoon, back reef) within a lagoon. This decoupling at the landscape scale resulted from patterns of covariation between enrichment and fishing that differed qualitatively between cross-shore and long-shore directions. At the cross-shore scale, nutrient enrichment declined but fishing increased from shore to the crest of the barrier reef. By contrast, nutrient enrichment and fishing were positively correlated in the long-shore direction, with both increasing with proximity to a pass in the barrier reef. Contrary to widespread assumptions in the scientific literature that human coastal population density correlates with impact on marine ecosystems and that fishing effort declines linearly with distance from the shore, these local stressors produced a complex spatial mosaic of reef vulnerabilities. Our findings support spatially explicit management involving the control of anthropogenic nutrients and strategic reductions in fishing pressure on herbivores by highlighting specific areas to target for management actions.
Collapse
Affiliation(s)
- Sally J. Holbrook
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Jean Wencélius
- Department of AnthropologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Alexandra K. Dubel
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Thomas C. Adam
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Dana C. Cook
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Chelsea E. Hunter
- Department of AnthropologySan Diego State UniversitySan DiegoCaliforniaUSA
- Department of AnthropologyThe Ohio State UniversityColumbusOhioUSA
| | - Matthew Lauer
- Department of AnthropologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Sarah E. Lester
- Department of GeographyFlorida State UniversityTallahasseeFloridaUSA
| | - Scott D. Miller
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Andrew Rassweiler
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Russell J. Schmitt
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
6
|
McManus LC, Forrest DL, Tekwa EW, Schindler DE, Colton MA, Webster MM, Essington TE, Palumbi SR, Mumby PJ, Pinsky ML. Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. GLOBAL CHANGE BIOLOGY 2021; 27:4307-4321. [PMID: 34106494 PMCID: PMC8453988 DOI: 10.1111/gcb.15725] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
Corals are experiencing unprecedented decline from climate change-induced mass bleaching events. Dispersal not only contributes to coral reef persistence through demographic rescue but can also hinder or facilitate evolutionary adaptation. Locations of reefs that are likely to survive future warming therefore remain largely unknown, particularly within the context of both ecological and evolutionary processes across complex seascapes that differ in temperature range, strength of connectivity, network size, and other characteristics. Here, we used eco-evolutionary simulations to examine coral adaptation to warming across reef networks in the Caribbean, the Southwest Pacific, and the Coral Triangle. We assessed the factors associated with coral persistence in multiple reef systems to understand which results are general and which are sensitive to particular geographic contexts. We found that evolution can be critical in preventing extinction and facilitating the long-term recovery of coral communities in all regions. Furthermore, the strength of immigration to a reef (destination strength) and current sea surface temperature robustly predicted reef persistence across all reef networks and across temperature projections. However, we found higher initial coral cover, slower recovery, and more evolutionary lag in the Coral Triangle, which has a greater number of reefs and more larval settlement than the other regions. We also found the lowest projected future coral cover in the Caribbean. These findings suggest that coral reef persistence depends on ecology, evolution, and habitat network characteristics, and that, under an emissions stabilization scenario (RCP 4.5), recovery may be possible over multiple centuries.
Collapse
Affiliation(s)
- Lisa C. McManus
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at ManoaKaneʻoheHIUSA
| | - Daniel L. Forrest
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
| | - Edward W. Tekwa
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine StationStanford UniversityPacific GroveCAUSA
| | - Peter J. Mumby
- Marine Spatial Ecology LaboratorySchool of Biological SciencesThe University of QueenslandSt LuciaQldAustralia
| | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
| |
Collapse
|
7
|
Abstract
Increasing evidence suggests that coral reefs exposed to elevated turbidity may be more resilient to climate change impacts and serve as an important conservation hotspot. However, logistical difficulties in studying turbid environments have led to poor representation of these reef types within the scientific literature, with studies using different methods and definitions to characterize turbid reefs. Here we review the geological origins and growth histories of turbid reefs from the Holocene (past), their current ecological and environmental states (present), and their potential responses and resilience to increasing local and global pressures (future). We classify turbid reefs using new descriptors based on their turbidity regime (persistent, fluctuating, transitional) and sources of sediment input (natural versus anthropogenic). Further, by comparing the composition, function and resilience of two of the most studied turbid reefs, Paluma Shoals Reef Complex, Australia (natural turbidity) and Singapore reefs (anthropogenic turbidity), we found them to be two distinct types of turbid reefs with different conservation status. As the geographic range of turbid reefs is expected to increase due to local and global stressors, improving our understanding of their responses to environmental change will be central to global coral reef conservation efforts.
Collapse
|
8
|
Padda SS, Glass JR, Stahlschmidt ZR. When it's hot and dry: life-history strategy influences the effects of heat waves and water limitation. J Exp Biol 2021; 224:jeb236398. [PMID: 33692081 DOI: 10.1242/jeb.236398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
The frequency, duration and co-occurrence of several environmental stressors, such as heat waves and droughts, are increasing globally. Such multiple stressors may have compounding or interactive effects on animals, resulting in either additive or non-additive costs, but animals may mitigate these costs through various strategies of resource conservation or shifts in resource allocation. Through a factorial experiment, we investigated the independent and interactive effects of a simulated heat wave and water limitation on life-history, physiological and behavioral traits. We used the variable field cricket, Gryllus lineaticeps, which exhibits a wing dimorphism that mediates two distinct life-history strategies during early adulthood. Long-winged individuals invest in flight musculature and are typically flight capable, whereas short-winged individuals lack flight musculature and capacity. A comprehensive and integrative approach with G. lineaticeps allowed us to examine whether life-history strategy influenced the costs of multiple stressors as well as the resulting cost-limiting strategies. Concurrent heat wave and water limitation resulted in largely non-additive and single-stressor costs to important traits (e.g. survival and water balance), extensive shifts in resource allocation priorities (e.g. reduced prioritization of body mass) and a limited capacity to conserve resources (e.g. heat wave reduced energy use only when water was available). Life-history strategy influenced the emergency life-history stage because wing morphology and stressor(s) interacted to influence body mass, boldness behavior and immunocompetence. Our results demonstrate that water availability and life-history strategy should be incorporated into future studies integrating important conceptual frameworks of stress across a suite of traits - from survival and life history to behavior and physiology.
Collapse
Affiliation(s)
- Sugjit S Padda
- University of the Pacific, Stockton, 3601 Pacific Avenue, Stockton, CA 95211, USA. School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Jordan R Glass
- University of the Pacific, Stockton, 3601 Pacific Avenue, Stockton, CA 95211, USA. School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Zachary R Stahlschmidt
- University of the Pacific, Stockton, 3601 Pacific Avenue, Stockton, CA 95211, USA. School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| |
Collapse
|
9
|
Selmoni O, Lecellier G, Vigliola L, Berteaux-Lecellier V, Joost S. Coral cover surveys corroborate predictions on reef adaptive potential to thermal stress. Sci Rep 2020; 10:19680. [PMID: 33184366 PMCID: PMC7661510 DOI: 10.1038/s41598-020-76604-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022] Open
Abstract
As anomalous heat waves are causing the widespread decline of coral reefs worldwide, there is an urgent need to identify coral populations tolerant to thermal stress. Heat stress adaptive potential is the degree of tolerance expected from evolutionary processes and, for a given reef, depends on the arrival of propagules from reefs exposed to recurrent thermal stress. For this reason, assessing spatial patterns of thermal adaptation and reef connectivity is of paramount importance to inform conservation strategies. In this work, we applied a seascape genomics framework to characterize the spatial patterns of thermal adaptation and connectivity for coral reefs of New Caledonia (Southern Pacific). In this approach, remote sensing of seascape conditions was combined with genomic data from three coral species. For every reef of the region, we computed a probability of heat stress adaptation, and two indices forecasting inbound and outbound connectivity. We then compared our indicators to field survey data, and observed that decrease of coral cover after heat stress was lower at reefs predicted with high probability of adaptation and inbound connectivity. Last, we discussed how these indicators can be used to inform local conservation strategies and preserve the adaptive potential of New Caledonian reefs.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- UMR250/9220 ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, New Caledonia, France
| | - Gaël Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, New Caledonia, France
- UVSQ, Université de Paris-Saclay, Versailles, France
| | - Laurent Vigliola
- UMR250/9220 ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, New Caledonia, France
| | | | - Stéphane Joost
- Laboratory of Geographic Information Systems, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Selmoni O, Rochat E, Lecellier G, Berteaux‐Lecellier V, Joost S. Seascape genomics as a new tool to empower coral reef conservation strategies: An example on north-western Pacific Acropora digitifera. Evol Appl 2020; 13:1923-1938. [PMID: 32908595 PMCID: PMC7463334 DOI: 10.1111/eva.12944] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Coral reefs are suffering a major decline due to the environmental constraints imposed by climate change. Over the last 20 years, three major coral bleaching events occurred in concomitance with anomalous heatwaves, provoking a severe loss of coral cover worldwide. The conservation strategies for preserving reefs, as they are implemented now, cannot cope with global climatic shifts. Consequently, researchers are advocating for preservation networks to be set-up to reinforce coral adaptive potential. However, the main obstacle to this implementation is that studies on coral adaption are usually hard to generalize at the scale of a reef system. Here, we study the relationships between genotype frequencies and environmental characteristics of the sea (seascape genomics), in combination with connectivity analysis, to investigate the adaptive potential of a flagship coral species of the Ryukyu Archipelago (Japan). By associating genotype frequencies with descriptors of historical environmental conditions, we discovered six genomic regions hosting polymorphisms that might promote resistance against heat stress. Remarkably, annotations of genes in these regions were consistent with molecular roles associated with heat responses. Furthermore, we combined information on genetic and spatial distances between reefs to predict connectivity at a regional scale. The combination of these results portrayed the adaptive potential of this population: we were able to identify reefs carrying potential heat stress adapted genotypes and to understand how they disperse to neighbouring reefs. This information was summarized by objective, quantifiable and mappable indices covering the whole region, which can be extremely useful for future prioritization of reefs in conservation planning. This framework is transferable to any coral species on any reef system and therefore represents a valuable tool for empowering preservation efforts dedicated to the protection of coral reefs in warming oceans.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Gael Lecellier
- UMR250/9220 ENTROPIE IRD‐CNRS‐URLabex CORAILNoumeaNew Caledonia
- UVSQUniversité de Paris‐SaclayVersaillesFrance
| | | | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
11
|
McManus LC, Vasconcelos VV, Levin SA, Thompson DM, Kleypas JA, Castruccio FS, Curchitser EN, Watson JR. Extreme temperature events will drive coral decline in the Coral Triangle. GLOBAL CHANGE BIOLOGY 2020; 26:2120-2133. [PMID: 31883173 DOI: 10.1111/gcb.14972] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 05/12/2023]
Abstract
In light of rapid environmental change, quantifying the contribution of regional- and local-scale drivers of coral persistence is necessary to characterize fully the resilience of coral reef systems. To assess multiscale responses to thermal perturbation of corals in the Coral Triangle (CT), we developed a spatially explicit metacommunity model with coral-algal competition, including seasonal larval dispersal and external spatiotemporal forcing. We tested coral sensitivity in 2,083 reefs across the CT region and surrounding areas under potential future temperature regimes, with and without interannual climate variability, exploring a range of 0.5-2.0°C overall increase in temperature in the system by 2054. We found that among future projections, reef survival probability and mean percent coral cover over time were largely determined by the presence or absence of interannual sea surface temperature (SST) extremes as well as absolute temperature increase. Overall, reefs that experienced SST time series that were filtered to remove interannual variability had approximately double the chance of survival than reefs subjected to unfiltered SST. By the end of the forecast period, the inclusion of thermal anomalies was equivalent to an increase of at least 0.5°C in SST projections without anomalies. Change in percent coral cover varied widely across the region within temperature scenarios, with some reefs experiencing local extinction while others remaining relatively unchanged. Sink strength and current thermal stress threshold were found to be significant drivers of these patterns, highlighting the importance of processes that underlie larval connectivity and bleaching sensitivity in coral networks.
Collapse
Affiliation(s)
- Lisa C McManus
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Vítor V Vasconcelos
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Diane M Thompson
- Department of Geoscience, University of Arizona, Tucson, AZ, USA
| | - Joan A Kleypas
- National Center for Atmospheric Research, Boulder, CO, USA
| | | | - Enrique N Curchitser
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - James R Watson
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
12
|
Kumagai NH, Yamano H, Committee Sango-Map-Project. High-resolution modeling of thermal thresholds and environmental influences on coral bleaching for local and regional reef management. PeerJ 2018; 6:e4382. [PMID: 29473007 PMCID: PMC5817939 DOI: 10.7717/peerj.4382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/29/2018] [Indexed: 11/28/2022] Open
Abstract
Coral reefs are one of the world's most threatened ecosystems, with global and local stressors contributing to their decline. Excessive sea-surface temperatures (SSTs) can cause coral bleaching, resulting in coral death and decreases in coral cover. A SST threshold of 1 °C over the climatological maximum is widely used to predict coral bleaching. In this study, we refined thermal indices predicting coral bleaching at high-spatial resolution (1 km) by statistically optimizing thermal thresholds, as well as considering other environmental influences on bleaching such as ultraviolet (UV) radiation, water turbidity, and cooling effects. We used a coral bleaching dataset derived from the web-based monitoring system Sango Map Project, at scales appropriate for the local and regional conservation of Japanese coral reefs. We recorded coral bleaching events in the years 2004-2016 in Japan. We revealed the influence of multiple factors on the ability to predict coral bleaching, including selection of thermal indices, statistical optimization of thermal thresholds, quantification of multiple environmental influences, and use of multiple modeling methods (generalized linear models and random forests). After optimization, differences in predictive ability among thermal indices were negligible. Thermal index, UV radiation, water turbidity, and cooling effects were important predictors of the occurrence of coral bleaching. Predictions based on the best model revealed that coral reefs in Japan have experienced recent and widespread bleaching. A practical method to reduce bleaching frequency by screening UV radiation was also demonstrated in this paper.
Collapse
Affiliation(s)
- Naoki H. Kumagai
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hiroya Yamano
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Committee Sango-Map-Project
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| |
Collapse
|