1
|
Singh H, Koury J, Maung R, Roberts AJ, Kaul M. Interferon-β deficiency alters brain response to chronic HIV-1 envelope protein exposure in a transgenic model of NeuroHIV. Brain Behav Immun 2024; 118:1-21. [PMID: 38360376 PMCID: PMC11173373 DOI: 10.1016/j.bbi.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infects the central nervous system (CNS) and causes HIV-associated neurocognitive disorders (HAND) in about half of the population living with the virus despite combination anti-retroviral therapy (cART). HIV-1 activates the innate immune system, including the production of type 1 interferons (IFNs) α and β. Transgenic mice expressing HIV-1 envelope glycoprotein gp120 (HIVgp120tg) in the CNS develop memory impairment and share key neuropathological features and differential CNS gene expression with HIV patients, including the induction of IFN-stimulated genes (ISG). Here we show that knocking out IFNβ (IFNβKO) in HIVgp120tg and non-tg control mice impairs recognition and spatial memory, but does not affect anxiety-like behavior, locomotion, or vision. The neuropathology of HIVgp120tg mice is only moderately affected by the KO of IFNβ but in a sex-dependent fashion. Notably, in cerebral cortex of IFNβKO animals presynaptic terminals are reduced in males while neuronal dendrites are reduced in females. The IFNβKO results in the hippocampal CA1 region of both male and female HIVgp120tg mice in an ameliorated loss of neuronal presynaptic terminals but no protection of neuronal dendrites. Only female IFNβ-deficient HIVgp120tg mice display diminished microglial activation in cortex and hippocampus and increased astrocytosis in hippocampus compared to their IFNβ-expressing counterparts. RNA expression for some immune genes and ISGs is also affected in a sex-dependent way. The IFNβKO abrogates or diminishes the induction of MX1, DDX58, IRF7 and IRF9 in HIVgp120tg brains of both sexes. Expression analysis of neurotransmission related genes reveals an influence of IFNβ on multiple components with more pronounced changes in IFNβKO females. In contrast, the effects of IFNβKO on MAPK activities are independent of sex with pronounced reduction of active ERK1/2 but also of active p38 in the HIVgp120tg brain. In summary, our findings show that the absence of IFNβ impairs memory dependent behavior and modulates neuropathology in HIVgp120tg brains, indicating that its absence may facilitate development of HAND. Moreover, our data suggests that endogenous IFNβ plays a vital role in maintaining neuronal homeostasis and memory function.
Collapse
Affiliation(s)
- Hina Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| | - Ricky Maung
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Amanda J Roberts
- Animal Models Core, The Scripps Research Institute, 10550 North Torrey Pines Road, MB6, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Plaza-Jennings A, Akbarian S. Genomic Exploration of the Brain in People Infected with HIV-Recent Progress and the Road Ahead. Curr HIV/AIDS Rep 2023; 20:357-367. [PMID: 37947981 PMCID: PMC10719125 DOI: 10.1007/s11904-023-00675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE OF REVIEW The adult human brain harbors billions of microglia and other myeloid and lymphoid cells highly susceptible to HIV infection and retroviral insertion into the nuclear DNA. HIV infection of the brain is important because the brain is a potentially large reservoir site that may be a barrier to HIV cure strategies and because infection can lead to the development of HIV-associated neurocognitive disorder. To better understand both the central nervous system (CNS) reservoir and how it can cause neurologic dysfunction, novel genomic, epigenomic, transcriptomic, and proteomic approaches need to be employed. Several characteristics of the reservoir are important to learn, including where the virus integrates, whether integrated proviruses are intact or defective, whether integrated proviruses can be reactivated from a latent state to seed ongoing infection, and how this all impacts brain function. RECENT FINDINGS Here, we discuss similarities and differences of viral integration sites between brain and blood and discuss evidence for and against the hypothesis that in the absence of susceptible T-lymphocytes in the periphery, the virus housing in the infected brain is not able to sustain a systemic infection. Moreover, microglia from HIV + brains across a wide range of disease severity appear to share one type of common alteration, which is defined by downregulated expression, and repressive chromosomal compartmentalization, for microglial genes regulating synaptic connectivity. Therefore, viral infection of the brain, including in immunocompetent cases with near-normal levels of CD4 blood lymphocytes, could be associated with an early disruption in microglia-dependent neuronal support functions, contributing to cognitive and neurological deficits in people living with HIV.
Collapse
Affiliation(s)
- Amara Plaza-Jennings
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Borrajo A, Pérez-Rodríguez D, Fernández-Pereira C, Prieto-González JM, Agís-Balboa RC. Genomic Factors and Therapeutic Approaches in HIV-Associated Neurocognitive Disorders: A Comprehensive Review. Int J Mol Sci 2023; 24:14364. [PMID: 37762667 PMCID: PMC10531836 DOI: 10.3390/ijms241814364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
HIV-associated neurocognitive disorders (HANDs) still persist despite improved life expectancy, reduced viral loads, and decreased infection severity. The number of patients affected by HANDs ranges from (30 to 50) % of HIV-infected individuals. The pathological mechanisms contributing to HANDs and the most serious manifestation of the disease, HIV-associated dementia (HAD), are not yet well understood. Evidence suggests that these mechanisms are likely multifactorial, producing neurocognitive complications involving disorders such as neurogenesis, autophagy, neuroinflammation, and mitochondrial dysfunction. Over the years, multiple pharmacological approaches with specific mechanisms of action acting upon distinct targets have been approved. Although these therapies are effective in reducing viral loading to undetectable levels, they also present some disadvantages such as common side effects, the need for administration with a very high frequency, and the possibility of drug resistance. Genetic studies on HANDs provide insights into the biological pathways and mechanisms that contribute to cognitive impairment in people living with HIV-1. Furthermore, they also help identify genetic variants that increase susceptibility to HANDs and can be used to tailor treatment approaches for HIV-1 patients. Identification of the genetic markers associated with disease progression can help clinicians predict which individuals require more aggressive management and by understanding the genetic basis of the disorder, it will be possible to develop targeted therapies to mitigate cognitive impairment. The main goal of this review is to provide details on the epidemiological data currently available and to summarise the genetic (specifically, the genetic makeup of the immune system), transcriptomic, and epigenetic studies available on HANDs to date. In addition, we address the potential pharmacological therapeutic strategies currently being investigated. This will provide valuable information that can guide clinical care, drug development, and our overall understanding of these diseases.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Daniel Pérez-Rodríguez
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Facultade de Bioloxía, Universidade de Vigo (UVigo), Campus Universitario Lagoas-Marcosende, s/n, 36310 Vigo, Spain
| | - Carlos Fernández-Pereira
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Area Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - José María Prieto-González
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R, Osborne OM, Sun E, Kluttz A, Toborek M. Occludin Regulates HIV-1 Infection by Modulation of the Interferon Stimulated OAS Gene Family. Mol Neurobiol 2023; 60:4966-4982. [PMID: 37209263 PMCID: PMC10199280 DOI: 10.1007/s12035-023-03381-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2, and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Kristyna Frydlova
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Rosalba Cabrera
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Olivia M Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Allan Kluttz
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| |
Collapse
|
7
|
Plaza-Jennings AL, Valada A, O'Shea C, Iskhakova M, Hu B, Javidfar B, Ben Hutta G, Lambert TY, Murray J, Kassim B, Chandrasekaran S, Chen BK, Morgello S, Won H, Akbarian S. HIV integration in the human brain is linked to microglial activation and 3D genome remodeling. Mol Cell 2022; 82:4647-4663.e8. [PMID: 36525955 PMCID: PMC9831062 DOI: 10.1016/j.molcel.2022.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
To explore genome organization and function in the HIV-infected brain, we applied single-nuclei transcriptomics, cell-type-specific chromosomal conformation mapping, and viral integration site sequencing (IS-seq) to frontal cortex from individuals with encephalitis (HIVE) and without (HIV+). Derepressive changes in 3D genomic compartment structures in HIVE microglia were linked to the transcriptional activation of interferon (IFN) signaling and cell migratory pathways, while transcriptional downregulation and repressive compartmentalization of neuronal health and signaling genes occurred in both HIVE and HIV+ microglia. IS-seq recovered 1,221 brain integration sites showing distinct genomic patterns compared with peripheral lymphocytes, with enrichment for sequences newly mobilized into a permissive chromatin environment after infection. Viral transcription occurred in a subset of highly activated microglia comprising 0.33% of all nuclei in HIVE brain. Our findings point to disrupted microglia-neuronal interactions in HIV and link retroviral integration to remodeling of the microglial 3D genome during infection.
Collapse
Affiliation(s)
- Amara L Plaza-Jennings
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aditi Valada
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Callan O'Shea
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marina Iskhakova
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benxia Hu
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Behnam Javidfar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriella Ben Hutta
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tova Y Lambert
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacinta Murray
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bibi Kassim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandhya Chandrasekaran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Morgello
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hyejung Won
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
8
|
Waight E, Zhang C, Mathews S, Kevadiya BD, Lloyd KCK, Gendelman HE, Gorantla S, Poluektova LY, Dash PK. Animal models for studies of HIV-1 brain reservoirs. J Leukoc Biol 2022; 112:1285-1295. [PMID: 36044375 PMCID: PMC9804185 DOI: 10.1002/jlb.5vmr0322-161r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/26/2022] [Indexed: 01/07/2023] Open
Abstract
The HIV-1 often evades a robust antiretroviral-mediated immune response, leading to persistent infection within anatomically privileged sites including the CNS. Continuous low-level infection occurs in the presence of effective antiretroviral therapy (ART) in CD4+ T cells and mononuclear phagocytes (MP; monocytes, macrophages, microglia, and dendritic cells). Within the CNS, productive viral infection is found exclusively in microglia and meningeal, perivascular, and choroidal macrophages. MPs serve as the principal viral CNS reservoir. Animal models have been developed to recapitulate natural human HIV-1 infection. These include nonhuman primates, humanized mice, EcoHIV, and transgenic rodent models. These models have been used to study disease pathobiology, antiretroviral and immune modulatory agents, viral reservoirs, and eradication strategies. However, each of these models are limited to specific component(s) of human disease. Indeed, HIV-1 species specificity must drive therapeutic and cure studies. These have been studied in several model systems reflective of latent infections, specifically in MP (myeloid, monocyte, macrophages, microglia, and histiocyte cell) populations. Therefore, additional small animal models that allow productive viral replication to enable viral carriage into the brain and the virus-susceptible MPs are needed. To this end, this review serves to outline animal models currently available to study myeloid brain reservoirs and highlight areas that are lacking and require future research to more effectively study disease-specific events that could be useful for viral eradication studies both in and outside the CNS.
Collapse
Affiliation(s)
- Emiko Waight
- Department of Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Chen Zhang
- Department of Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - K. C. Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology ProgramUniversity of California DavisCaliforniaUSA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
9
|
Petralia MC, Nicoletti F, Tancheva L, Kalfin R, Fagone P, Mangano K. Gene Co-Expression Network Modular Analysis Reveals Altered Immune Mechanisms in HIV-HAND. Brain Sci 2022; 12:brainsci12101378. [PMID: 36291312 PMCID: PMC9599201 DOI: 10.3390/brainsci12101378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Although the introduction of HAART has completely changed the natural course of HIV infection, the number of chronic forms of HIV-associated neurocognitive disorder (HAND) has risen. It is estimated that up to half of subjects undergoing HAART therapy exhibit mild cognitive impairments. In the current study, we apply the gene co-expression network modular analysis, a well-established system biology approach, to the gene expression profiles of cases from the National NeuroAIDS Tissue Consortium (NNTC). We observed a negative enrichment for genes associated with the control of immune responses and putatively regulated by the transcription factors IRF8 and SPI1 and by both type I and II interferons. Our study provides evidence of altered immune responses, which are likely associated with the occurrence of HAND in the absence of HIV encephalitis (HIVE).
Collapse
Affiliation(s)
- Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-478-1274
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| |
Collapse
|
10
|
Ojeda-Juárez D, Kaul M. Transcriptomic and Genetic Profiling of HIV-Associated Neurocognitive Disorders. Front Mol Biosci 2021; 8:721954. [PMID: 34778371 PMCID: PMC8586712 DOI: 10.3389/fmolb.2021.721954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Early in the HIV pandemic, it became evident that people living with HIV (PLWH) develop a wide range of neurological and neurocognitive complications. Even after the introduction of combination antiretroviral therapy (cART), which dramatically improved survival of PLWH, the overall number of people living with some form of HIV-associated neurocognitive disorders (HAND) seemed to remain unchanged, although the incidence of dementia declined and questions about the incidence and diagnosis of the mildest form of HAND arose. To better understand this complex disease, several transcriptomic analyses have been conducted in autopsy samples, as well as in non-human primates and small animal rodent models. However, genetic studies in the HIV field have mostly focused on the genetic makeup of the immune system. Much less is known about the genetic underpinnings of HAND. Here, we provide a summary of reported transcriptomic and epigenetic changes in HAND, as well as some of the potential genetic underpinnings that have been linked to HAND, and discuss future directions with hurdles to overcome and angles that remain to be explored.
Collapse
Affiliation(s)
- Daniel Ojeda-Juárez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
11
|
Massanett Aparicio J, Xu Y, Li Y, Colantuoni C, Dastgheyb R, Williams DW, Asahchop EL, McMillian JM, Power C, Fujiwara E, Gill MJ, Rubin LH. Plasma microRNAs are associated with domain-specific cognitive function in people with HIV. AIDS 2021; 35:1795-1804. [PMID: 34074816 PMCID: PMC8524348 DOI: 10.1097/qad.0000000000002966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cognitive impairment remains common in people with HIV (PWH) on antiretroviral therapy (ART). The clinical presentation and severity are highly variable in PWH suggesting that the pathophysiological mechanisms of cognitive complications are likely complex and multifactorial. MicroRNA (miRNA) expression changes may be linked to cognition as they are gene regulators involved in immune and stress responses as well as the development, plasticity, and differentiation of neurons. We examined plasma miRNA expression changes in relation to domain-specific and global cognitive function in PWH. DESIGN Cross-sectional observational study. METHODS Thirty-three PWH receiving care at the Southern Alberta Clinic, Canada completed neuropsychological (NP) testing and blood draw. Plasma miRNA extraction was followed by array hybridization. Random forest analysis was used to identify the top 10 miRNAs upregulated and downregulated in relation to cognition. RESULTS Few miRNAs were identified across cognitive domains; however, when evident a miRNA was only associated with two or three domains. Notably, miR-127-3p was related to learning/memory and miR-485-5p to motor function, miRNAs previously identified in CSF or plasma in Alzheimer's and Parkinson's, respectively. Using miRNET 2.0, a software-platform for understanding the biological relevance of the miRNA-targets (genes) relating to cognition through a network-based approach, we identified genes involved in signaling, cell cycle, and transcription relating to executive function, learning/memory, and language. CONCLUSION Findings support the idea that evaluating miRNA expression (or any molecular measure) in the context of global NP function might exclude miRNAs that could be important contributors to the domain-specific mechanisms leading to the variable neuropsychiatric outcomes seen in PWH.
Collapse
Affiliation(s)
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore
- Division of Biostatistics and Bioinformatics at The Sidney Kimmel Comprehensive Cancer Center
| | - Yuliang Li
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore
| | - Carlo Colantuoni
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
- Institute for Genome Sciences, University of Maryland, Baltimore
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Christopher Power
- Southern Alberta Clinic, Calgary
- Department of Medicine
- Neuroscience and Mental Health Institute
| | - Esther Fujiwara
- Neuroscience and Mental Health Institute
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - M John Gill
- Cumming School of Medicine, University of Calgary
- Southern Alberta Clinic, Calgary
| | - Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Sanna PP, Fu Y, Masliah E, Lefebvre C, Repunte-Canonigo V. Central nervous system (CNS) transcriptomic correlates of human immunodeficiency virus (HIV) brain RNA load in HIV-infected individuals. Sci Rep 2021; 11:12176. [PMID: 34108514 PMCID: PMC8190104 DOI: 10.1038/s41598-021-88052-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
To generate new mechanistic hypotheses on the pathogenesis and disease progression of neuroHIV and identify novel therapeutic targets to improve neuropsychological function in people with HIV, we investigated host genes and pathway dysregulations associated with brain HIV RNA load in gene expression profiles of the frontal cortex, basal ganglia, and white matter of HIV+ patients. Pathway analyses showed that host genes correlated with HIV expression in all three brain regions were predominantly related to inflammation, neurodegeneration, and bioenergetics. HIV RNA load directly correlated particularly with inflammation genesets representative of cytokine signaling, and this was more prominent in white matter and the basal ganglia. Increases in interferon signaling were correlated with high brain HIV RNA load in the basal ganglia and the white matter although not in the frontal cortex. Brain HIV RNA load was inversely correlated with genesets that are indicative of neuronal and synaptic genes, particularly in the cortex, indicative of synaptic injury and neurodegeneration. Brain HIV RNA load was inversely correlated with genesets that are representative of oxidative phosphorylation, electron transfer, and the tricarboxylic acid cycle in all three brain regions. Mitochondrial dysfunction has been implicated in the toxicity of some antiretrovirals, and these results indicate that mitochondrial dysfunction is also associated with productive HIV infection. Genes and pathways correlated with brain HIV RNA load suggest potential therapeutic targets to ameliorate neuropsychological functioning in people living with HIV.
Collapse
Affiliation(s)
- Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- , Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
13
|
Irollo E, Luchetta J, Ho C, Nash B, Meucci O. Mechanisms of neuronal dysfunction in HIV-associated neurocognitive disorders. Cell Mol Life Sci 2021; 78:4283-4303. [PMID: 33585975 PMCID: PMC8164580 DOI: 10.1007/s00018-021-03785-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is characterized by cognitive and behavioral deficits in people living with HIV. HAND is still common in patients that take antiretroviral therapies, although they tend to present with less severe symptoms. The continued prevalence of HAND in treated patients is a major therapeutic challenge, as even minor cognitive impairment decreases patient’s quality of life. Therefore, modern HAND research aims to broaden our understanding of the mechanisms that drive cognitive impairment in people with HIV and identify promising molecular pathways and targets that could be exploited therapeutically. Recent studies suggest that HAND in treated patients is at least partially induced by subtle synaptodendritic damage and disruption of neuronal networks in brain areas that mediate learning, memory, and executive functions. Although the causes of subtle neuronal dysfunction are varied, reversing synaptodendritic damage in animal models restores cognitive function and thus highlights a promising therapeutic approach. In this review, we examine evidence of synaptodendritic damage and disrupted neuronal connectivity in HAND from clinical neuroimaging and neuropathology studies and discuss studies in HAND models that define structural and functional impairment of neurotransmission. Then, we report molecular pathways, mechanisms, and comorbidities involved in this neuronal dysfunction, discuss new approaches to reverse neuronal damage, and highlight current gaps in knowledge. Continued research on the manifestation and mechanisms of synaptic injury and network dysfunction in HAND patients and experimental models will be critical if we are to develop safe and effective therapies that reverse subtle neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Chunta Ho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
14
|
Ma Z, Gao X, Shuai Y, Xing X, Ji J. The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics 2020; 16:819-837. [PMID: 33070685 DOI: 10.1080/15592294.2020.1827722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent RNA internal modification, is present in most eukaryotic species and prokaryotes. Studies have highlighted an intricate network architecture by which m6A epitranscriptome impacts on immune response and function. However, it was only until recently that the mechanisms underlying the involvement of m6A modification in immune system were uncovered. Here, we systematically review the m6A involvement in the regulation of innate and adaptive immune cells. Further, the interplay between m6A modification and anti-inflammatory, anti-viral and anti-tumour immunity is also comprehensively summarized. Finally, we focus on the future prospects of m6A modification in immune modulation. A better understanding of the crosstalk between m6A modification and immune system is of great significance to reveal new pathogenic pathways and to develop promising therapeutic targets of diseases.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
15
|
Judge M, Parker E, Naniche D, Le Souëf P. Gene Expression: the Key to Understanding HIV-1 Infection? Microbiol Mol Biol Rev 2020; 84:e00080-19. [PMID: 32404327 PMCID: PMC7233484 DOI: 10.1128/mmbr.00080-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling of the host response to HIV infection has promised to fill the gaps in our knowledge and provide new insights toward vaccine and cure. However, despite 20 years of research, the biggest questions remained unanswered. A literature review identified 62 studies examining gene expression dysregulation in samples from individuals living with HIV. Changes in gene expression were dependent on cell/tissue type, stage of infection, viremia, and treatment status. Some cell types, notably CD4+ T cells, exhibit upregulation of cell cycle, interferon-related, and apoptosis genes consistent with depletion. Others, including CD8+ T cells and natural killer cells, exhibit perturbed function in the absence of direct infection with HIV. Dysregulation is greatest during acute infection. Differences in study design and data reporting limit comparability of existing research and do not as yet provide a coherent overview of gene expression in HIV. This review outlines the extraordinarily complex host response to HIV and offers recommendations to realize the full potential of HIV host transcriptomics.
Collapse
Affiliation(s)
- Melinda Judge
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Denise Naniche
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação de Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Peter Le Souëf
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
16
|
Systems Biology Analysis of the Antagonizing Effects of HIV-1 Tat Expression in the Brain over Transcriptional Changes Caused by Methamphetamine Sensitization. Viruses 2020; 12:v12040426. [PMID: 32283831 PMCID: PMC7232389 DOI: 10.3390/v12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (Meth) abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein, trans-activator of transcription (Tat), has been described to induce changes in brain gene transcription that can result in impaired reward circuitry, as well as in inflammatory processes. In transgenic mice with doxycycline-induced Tat protein expression in the brain, i.e., a mouse model of neuroHIV, we tested global gene expression patterns induced by Meth sensitization. Meth-induced locomotor sensitization included repeated daily Meth or saline injections for seven days and Meth challenge after a seven-day abstinence period. Brain samples were collected 30 min after the Meth challenge. We investigated global gene expression changes in the caudate putamen, an area with relevance in behavior and HIV pathogenesis, and performed pathway and transcriptional factor usage predictions using systems biology strategies. We found that Tat expression alone had a very limited impact in gene transcription after the Meth challenge. In contrast, Meth-induced sensitization in the absence of Tat induced a global suppression of gene transcription. Interestingly, the interaction between Tat and Meth broadly prevented the Meth-induced global transcriptional suppression, by maintaining regulation pathways, and resulting in gene expression profiles that were more similar to the controls. Pathways associated with mitochondrial health, initiation of transcription and translation, as well as with epigenetic control, were heavily affected by Meth, and by its interaction with Tat in anti-directional ways. A series of systems strategies have predicted several components impacted by these interactions, including mitochondrial pathways, mTOR/RICTOR, AP-1 transcription factor, and eukaryotic initiation factors involved in transcription and translation. In spite of the antagonizing effects of Tat, a few genes identified in relevant gene networks remained downregulated, such as sirtuin 1, and the amyloid precursor protein (APP). In conclusion, Tat expression in the brain had a low acute transcriptional impact but strongly interacted with Meth sensitization, to modify effects in the global transcriptome.
Collapse
|
17
|
Festa LK, Irollo E, Platt BJ, Tian Y, Floresco S, Meucci O. CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility. eLife 2020; 9:e49717. [PMID: 31971513 PMCID: PMC7007222 DOI: 10.7554/elife.49717] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
Synaptodendritic pruning is a common cause of cognitive decline in neurological disorders, including HIV-associated neurocognitive disorders (HAND). HAND persists in treated patients as a result of chronic inflammation and low-level expression of viral proteins, though the mechanisms involved in synaptic damage are unclear. Here, we report that the chemokine CXCL12 recoups both cognitive performance and synaptodendritic health in a rodent model of HAND, which recapitulates the neuroinflammatory state of virally controlled individuals and the associated structural/functional deficiencies. CXCL12 preferentially regulates plastic thin spines on layer II/III pyramidal neurons of the medial prefrontal cortex via CXCR4-dependent stimulation of the Rac1/PAK actin polymerization pathway, leading to increased spine density and improved flexible behavior. Our studies unveil a critical role of CXCL12/CXCR4 signaling in spine dynamics and cognitive flexibility, suggesting that HAND - or other diseases driven by spine loss - may be reversible and upturned by targeting Rac1-dependent processes in cortical neurons.
Collapse
Affiliation(s)
- Lindsay K Festa
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaUnited States
- Center of Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious DiseasesDrexel University College of MedicinePhiladelphiaUnited States
| | - Elena Irollo
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaUnited States
| | - Brian J Platt
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaUnited States
| | - Yuzen Tian
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaUnited States
| | - Stan Floresco
- Department of PsychologyUniversity of British ColumbiaVancouverCanada
| | - Olimpia Meucci
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaUnited States
- Center of Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious DiseasesDrexel University College of MedicinePhiladelphiaUnited States
- Department of Microbiology and ImmunologyDrexel University College of MedicinePhiladelphiaUnited States
| |
Collapse
|
18
|
Festa LK, Irollo E, Platt BJ, Tian Y, Floresco S, Meucci O. CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility. eLife 2020. [PMID: 31971513 DOI: 10.7554/elife.49717.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synaptodendritic pruning is a common cause of cognitive decline in neurological disorders, including HIV-associated neurocognitive disorders (HAND). HAND persists in treated patients as a result of chronic inflammation and low-level expression of viral proteins, though the mechanisms involved in synaptic damage are unclear. Here, we report that the chemokine CXCL12 recoups both cognitive performance and synaptodendritic health in a rodent model of HAND, which recapitulates the neuroinflammatory state of virally controlled individuals and the associated structural/functional deficiencies. CXCL12 preferentially regulates plastic thin spines on layer II/III pyramidal neurons of the medial prefrontal cortex via CXCR4-dependent stimulation of the Rac1/PAK actin polymerization pathway, leading to increased spine density and improved flexible behavior. Our studies unveil a critical role of CXCL12/CXCR4 signaling in spine dynamics and cognitive flexibility, suggesting that HAND - or other diseases driven by spine loss - may be reversible and upturned by targeting Rac1-dependent processes in cortical neurons.
Collapse
Affiliation(s)
- Lindsay K Festa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States.,Center of Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, United States
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States
| | - Brian J Platt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States
| | - Yuzen Tian
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States
| | - Stan Floresco
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States.,Center of Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, United States
| |
Collapse
|
19
|
de Guglielmo G, Fu Y, Chen J, Larrosa E, Hoang I, Kawamura T, Lorrai I, Zorman B, Bryant J, George O, Sumazin P, Lefebvre C, Repunte-Canonigo V, Sanna PP. Increases in compulsivity, inflammation, and neural injury in HIV transgenic rats with escalated methamphetamine self-administration under extended-access conditions. Brain Res 2020; 1726:146502. [PMID: 31605699 PMCID: PMC7195807 DOI: 10.1016/j.brainres.2019.146502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
The abuse of stimulants, such as methamphetamine (METH), is associated with treatment non-compliance, a greater risk of viral transmission, and the more rapid clinical progression of immunological and central nervous system human immunodeficiency virus (HIV) disease. The behavioral effects of METH in the setting of HIV remain largely uncharacterized. We used a state-of-the-art paradigm of the escalation of voluntary intravenous drug self-administration in HIV transgenic (Tg) and wildtype rats. The rats were first allowed to self-administer METH under short-access (ShA) conditions, which is characterized by a nondependent and more "recreational" pattern of METH use, and then allowed to self-administer METH under long-access (LgA) conditions, which leads to compulsive (dependent) METH intake. HIV Tg and wildtype rats self-administered equal amounts of METH under ShA conditions. HIV Tg rats self-administered METH under LgA conditions following a 4-week enforced abstinence period to model the intermittent pattern of stimulant abuse in humans. These HIV Tg rats developed greater motivation to self-administer METH and self-administered larger amounts of METH. Impairments in function of the medial prefrontal cortex (mPFC) contribute to compulsive drug and alcohol intake. Gene expression profiling of the mPFC in HIV Tg rats with a history of escalated METH self-administration under LgA conditions showed transcriptional evidence of increased inflammation, greater neural injury, and impaired aerobic glucose metabolism than wildtype rats that self-administered METH under LgA conditions. The detrimental effects of the interaction between neuroHIV and escalated METH intake on the mPFC are likely key factors in the greater vulnerability to excessive drug intake in the setting of HIV.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Jihuan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Estefania Larrosa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ivy Hoang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Bryant
- University of Maryland and Institute of Human Virology, Baltimore, MD, United States
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Bioinformatics and Computational Biology, Servier, Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
20
|
Sokolova IV, Szucs A, Sanna PP. Reduced intrinsic excitability of CA1 pyramidal neurons in human immunodeficiency virus (HIV) transgenic rats. Brain Res 2019; 1724:146431. [PMID: 31491420 PMCID: PMC6939992 DOI: 10.1016/j.brainres.2019.146431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
The hippocampus is involved in key neuronal circuits that underlie cognition, memory, and anxiety, and it is increasingly recognized as a vulnerable structure that contributes to the pathogenesis of HIV-associated neurocognitive disorder (HAND). However, the mechanisms responsible for hippocampal dysfunction in neuroHIV remain unknown. The present study used HIV transgenic (Tg) rats and patch-clamp electrophysiological techniques to study the effects of the chronic low-level expression of HIV proteins on hippocampal CA1 pyramidal neurons. The dorsal and ventral areas of the hippocampus are involved in different neurocircuits and thus were evaluated separately. We found a significant decrease in the intrinsic excitability of CA1 neurons in the dorsal hippocampus in HIV Tg rats by comparing neuronal spiking induced by current step injections and by dynamic clamp to simulate neuronal spiking activity. The decrease in excitability in the dorsal hippocampus was accompanied by a higher rate of excitatory postsynaptic currents (EPSCs), whereas CA1 pyramidal neurons in the ventral hippocampus in HIV Tg rats had higher EPSC amplitudes. We also observed a reduction of hyperpolarization-activated nonspecific cationic current (Ih) in both the dorsal and ventral hippocampus. Neurotoxic HIV proteins have been shown to increase neuronal excitation. The lower excitability of CA1 pyramidal neurons that was observed herein may represent maladaptive homeostatic plasticity that seeks to stabilize baseline neuronal firing activity but may disrupt neural network function and contribute to HIV-associated neuropsychological disorders, such as HAND and depression.
Collapse
Affiliation(s)
- Irina V Sokolova
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States
| | - Attila Szucs
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States; University of California, San Diego, BioCircuits Institute, 9500 Gilman Drive, La Jolla, CA 92039-0328, United States; MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Lóránd University, Budapest, Hungary
| | - Pietro Paolo Sanna
- The Scripps Research Institute, Department of Immunology and Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1000, United States.
| |
Collapse
|
21
|
Nash B, Festa L, Lin C, Meucci O. Opioid and chemokine regulation of cortical synaptodendritic damage in HIV-associated neurocognitive disorders. Brain Res 2019; 1723:146409. [PMID: 31465771 PMCID: PMC6766413 DOI: 10.1016/j.brainres.2019.146409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 01/17/2023]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) persist despite effective antiretroviral therapies (ART). Evidence suggests that modern HAND is driven by subtle synaptodendritic damage in select brain regions, as ART-treated patients do not display overt neuronal death in postmortem brain studies. HAND symptoms are also aggravated by drug abuse, particularly with injection opioids. Opioid use produces region-specific synaptodendritic damage in similar brain regions, suggesting a convergent mechanism that may enhance HAND progression in opioid-using patients. Importantly, studies indicate that synaptodendritic damage and cognitive impairment in HAND may be reversible. Activation of the homeostatic chemokine receptor CXCR4 by its natural ligand CXCL12 positively regulates neuronal survival and dendritic spine density in cortical neurons, reducing functional deficits. However, the molecular mechanisms that underlie CXCR4, as well as opioid-mediated regulation of dendritic spines are not completely defined. Here, we will consolidate studies that describe the region-specific synaptodendritic damage in the cerebral cortex of patients and animal models of HAND, describe the pathways by which opioids may contribute to cortical synaptodendritic damage, and discuss the prospects of using the CXCR4 signaling pathway to identify new approaches to reverse dendritic spine deficits. Additionally, we will discuss novel research questions that have emerged from recent studies of CXCR4 and µ-opioid actions in the cortex. Understanding the pathways that underlie synaptodendritic damage and rescue are necessary for developing novel, effective therapeutics for this growing patient population.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Lindsay Festa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Chihyang Lin
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| |
Collapse
|
22
|
Bozzelli PL, Caccavano A, Avdoshina V, Mocchetti I, Wu JY, Conant K. Increased matrix metalloproteinase levels and perineuronal net proteolysis in the HIV-infected brain; relevance to altered neuronal population dynamics. Exp Neurol 2019; 323:113077. [PMID: 31678140 DOI: 10.1016/j.expneurol.2019.113077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) continue to persist despite effective control of viral replication. Although the mechanisms underlying HAND are poorly understood, recent attention has focused on altered neuronal population activity as a correlate of impaired cognition. However, while alterations in neuronal population activity in the gamma frequency range are noted in the setting of HAND, the underlying mechanisms for these changes is unclear. Perineuronal nets (PNNs) are a specialized extracellular matrix that surrounds a subset of inhibitory neurons important to the expression of neuronal oscillatory activity. In the present study, we observe that levels of PNN-degrading matrix metalloproteinases (MMPs) are elevated in HIV-infected post-mortem human brain tissue. Furthermore, analysis of two PNN components, aggrecan and brevican, reveals increased proteolysis in HIV-infected brains. In addition, local field potential recordings from ex vivo mouse hippocampal slices demonstrate that the power of carbachol-induced gamma activity is increased following PNN degradation. Together, these results provide a possible mechanism whereby increased MMP proteolysis of PNNs may stimulate altered neuronal oscillatory activity and contribute to HAND symptoms.
Collapse
Affiliation(s)
- P Lorenzo Bozzelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Adam Caccavano
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Jian-Young Wu
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
23
|
Age-Related Decrease in Tyrosine Hydroxylase Immunoreactivity in the Substantia Nigra and Region-Specific Changes in Microglia Morphology in HIV-1 Tg Rats. Neurotox Res 2019; 36:563-582. [PMID: 31286433 DOI: 10.1007/s12640-019-00077-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Animal models have been used to study cellular processes related to human immunodeficiency virus-1 (HIV-1)-associated neurocognitive disorders (HAND). The HIV-1 transgenic (Tg) rat expresses HIV viral genes except the gag-pol replication genes and exhibits neuropathological features similar to HIV patients receiving combined antiretroviral therapy (cART). Using this rat, alterations in dopaminergic function have been demonstrated; however, the data for neuroinflammation and glial reactivity is conflicting. Differences in behavior, tyrosine hydroxylase (TH) immunoreactivity, neuroinflammation, and glia reactivity were assessed in HIV-1 Tg male rats. At 6 and 12 weeks of age, rotarod performance was diminished, motor activity was not altered, and active avoidance latency performance and memory were diminished in HIV-1 Tg rats. TH+ immunoreactivity in the substantia nigra (SN) was decreased at 8 months but not at 2-5 months. At 5 months, astrocyte and microglia morphology was not altered in the cortex, hippocampus, or SN. In the striatum, astrocytes were unaltered, microglia displayed slightly thickened proximal processes, mRNA levels for Iba1 and Cd11b were elevated, and interleukin (Il)1α,Cxcr3, and cell adhesion molecule, Icam, decreased. In the hippocampus, mRNA levels for Tnfa and Cd11b were slightly elevated. No changes were observed in the cortex or SN. The data support an age-related effect of HIV proteins upon the nigrostriatal dopaminergic system and suggest an early response of microglia in the terminal synaptic region with little evidence of an associated neuroinflammatory response across brain regions.
Collapse
|
24
|
Bozzelli PL, Yin T, Avdoshina V, Mocchetti I, Conant KE, Maguire-Zeiss KA. HIV-1 Tat promotes astrocytic release of CCL2 through MMP/PAR-1 signaling. Glia 2019; 67:1719-1729. [PMID: 31124192 DOI: 10.1002/glia.23642] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.
Collapse
Affiliation(s)
- P Lorenzo Bozzelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Tao Yin
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Katherine E Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Kathleen A Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
25
|
Mathews S, Branch Woods A, Katano I, Makarov E, Thomas MB, Gendelman HE, Poluektova LY, Ito M, Gorantla S. Human Interleukin-34 facilitates microglia-like cell differentiation and persistent HIV-1 infection in humanized mice. Mol Neurodegener 2019; 14:12. [PMID: 30832693 PMCID: PMC6399898 DOI: 10.1186/s13024-019-0311-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Background Microglia are the principal innate immune defense cells of the centeral nervous system (CNS) and the target of the human immunodeficiency virus type one (HIV-1). A complete understanding of human microglial biology and function requires the cell’s presence in a brain microenvironment. Lack of relevant animal models thus far has also precluded studies of HIV-1 infection. Productive viral infection in brain occurs only in human myeloid linage microglia and perivascular macrophages and requires cells present throughout the brain. Once infected, however, microglia become immune competent serving as sources of cellular neurotoxic factors leading to disrupted brain homeostasis and neurodegeneration. Methods Herein, we created a humanized bone-marrow chimera producing human “microglia like” cells in NOD.Cg-PrkdcscidIl2rgtm1SugTg(CMV-IL34)1/Jic mice. Newborn mice were engrafted intrahepatically with umbilical cord blood derived CD34+ hematopoietic stem progenitor cells (HSPC). After 3 months of stable engraftment, animals were infected with HIV-1ADA, a myeloid-specific tropic viral isolate. Virologic, immune and brain immunohistology were performed on blood, peripheral lymphoid tissues, and brain. Results Human interleukin-34 under the control of the cytomegalovirus promoter inserted in NSG mouse strain drove brain reconstitution of HSPC derived peripheral macrophages into microglial-like cells. These human cells expressed canonical human microglial cell markers that included CD14, CD68, CD163, CD11b, ITGB2, CX3CR1, CSFR1, TREM2 and P2RY12. Prior restriction to HIV-1 infection in the rodent brain rested on an inability to reconstitute human microglia. Thus, the natural emergence of these cells from ingressed peripheral macrophages to the brain could allow, for the first time, the study of a CNS viral reservoir. To this end we monitored HIV-1 infection in a rodent brain. Viral RNA and HIV-1p24 antigens were readily observed in infected brain tissues. Deep RNA sequencing of these infected mice and differential expression analysis revealed human-specific molecular signatures representative of antiviral and neuroinflammatory responses. Conclusions This humanized microglia mouse reflected human HIV-1 infection in its known principal reservoir and showed the development of disease-specific innate immune inflammatory and neurotoxic responses mirroring what can occur in an infected human brain. Electronic supplementary material The online version of this article (10.1186/s13024-019-0311-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Amanda Branch Woods
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ikumi Katano
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Japan
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Midhun B Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Japan
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
26
|
Fu Y, Zorman B, Sumazin P, Sanna PP, Repunte-Canonigo V. Epitranscriptomics: Correlation of N6-methyladenosine RNA methylation and pathway dysregulation in the hippocampus of HIV transgenic rats. PLoS One 2019; 14:e0203566. [PMID: 30653517 PMCID: PMC6336335 DOI: 10.1371/journal.pone.0203566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Internal RNA modifications have been known for decades, however their roles in mRNA regulation have only recently started to be elucidated. Here we investigated the most abundant mRNA modification, N6-methyladenosine (m6A) in transcripts from the hippocampus of HIV transgenic (Tg) rats. The distribution of m6A peaks within HIV transcripts in HIV Tg rats largely corresponded to the ones observed for HIV transcripts in cell lines and T cells. Host transcripts were found to be differentially m6A methylated in HIV Tg rats. The functional roles of the differentially m6A methylated pathways in HIV Tg rats is consistent with a key role of RNA methylation in the regulation of the brain transcriptome in chronic HIV disease. In particular, host transcripts show significant differential m6A methylation of genes involved in several pathways related to neural function, suggestive of synaptodendritic injury and neurodegeneration, inflammation and immune response, as well as RNA processing and metabolism, such as splicing. Changes in m6A methylation were usually positively correlated with differential expression, while differential m6A methylation of pathways involved in RNA processing were more likely to be negatively correlated with gene expression changes. Thus, sets of differentially m6A methylated, functionally-related transcripts appear to be involved in coordinated transcriptional responses in the context of chronic HIV. Altogether, our results support that m6A methylation represents an additional layer of regulation of HIV and host gene expression in vivo that contributes significantly to the transcriptional effects of chronic HIV.
Collapse
Affiliation(s)
- Yu Fu
- Department of Immunology and Microbiology and Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology and Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail: (PPS); (VRC)
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology and Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail: (PPS); (VRC)
| |
Collapse
|
27
|
Maxi JK, Mercante D, Foret B, Oberhelman S, Ferguson TF, Bagby GJ, Nelson S, Amedee AM, Edwards S, Simon L, Molina PE. Chronic Binge Alcohol-Associated Differential Brain Region Modulation of Growth Factor Signaling Pathways and Neuroinflammation in Simian Immunodeficiency Virus-Infected Male Macaques. Alcohol Alcohol 2019; 54:477-486. [PMID: 31322648 PMCID: PMC6751413 DOI: 10.1093/alcalc/agz056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
AIMS Microarray analysis of hippocampal tissue from chronic binge alcohol (CBA)-administered, simian immunodeficiency virus (SIV)-infected male macaques identified altered immune response and neurogenesis as potential mechanisms underlying cognitive deficits in macaques. This study investigated the differential brain region associations between markers of neuroinflammation and growth factor signaling with microtubule-associated protein 2 (MAP2) expression. METHODS Adult male rhesus macaques were administered CBA (13-14 g EtOH/kg/week, n = 8) or sucrose (SUC, n = 7) beginning 3 months prior to SIV infection and continued until animals reached end-stage disease criteria (3-24 months post infection). Expression of inflammatory cytokines, growth factors, and viral loads were determined in the prefrontal cortex (PFC), caudate (CD), and hippocampus (HP). Brain-derived neurotropic factor (BDNF) expression and phosphorylation of intracellular kinases downstream of BDNF were investigated in the PFC. RESULTS Our results show reduced MAP2 expression in the PFC of longer-surviving, CBA/SIV macaques. BDNF expression was most closely associated with MAP2 expression in the PFC. In the caudate, significant positive associations were observed between MAP2 and BDNF, time to end-stage and set-point viral load and significant negative associations for CBA. In the hippocampus, positive associations were observed between MAP2 and inflammatory cytokines, and negative associations for brain viral load and CBA. CONCLUSIONS CBA differentially affects growth factor and inflammatory cytokine expression and viral load across brain regions. In the PFC, suppression of growth factor signaling may be an important neuropathological mechanism, while inflammatory processes may play a more important role in the CD and HP.
Collapse
Affiliation(s)
- John K Maxi
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Don Mercante
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Epidemiology, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Brittany Foret
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sarah Oberhelman
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Epidemiology, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Gregory J Bagby
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Steve Nelson
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- School of Medicine
| | - Angela M Amedee
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Scott Edwards
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Liz Simon
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Patricia E Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
28
|
Risk Factors and Pathogenesis of HIV-Associated Neurocognitive Disorder: The Role of Host Genetics. Int J Mol Sci 2018; 19:ijms19113594. [PMID: 30441796 PMCID: PMC6274730 DOI: 10.3390/ijms19113594] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Neurocognitive impairments associated with human immunodeficiency virus (HIV) infection remain a considerable health issue for almost half the people living with HIV, despite progress in HIV treatment through combination antiretroviral therapy (cART). The pathogenesis and risk factors of HIV-associated neurocognitive disorder (HAND) are still incompletely understood. This is partly due to the complexity of HAND diagnostics, as phenotypes present with high variability and change over time. Our current understanding is that HIV enters the central nervous system (CNS) during infection, persisting and replicating in resident immune and supporting cells, with the subsequent host immune response and inflammation likely adding to the development of HAND. Differences in host (human) genetics determine, in part, the effectiveness of the immune response and other factors that increase the vulnerability to HAND. This review describes findings from studies investigating the role of human host genetics in the pathogenesis of HAND, including potential risk factors for developing HAND. The similarities and differences between HAND and Alzheimer's disease are also discussed. While some specific variations in host genes regulating immune responses and neurotransmission have been associated with protection or risk of HAND development, the effects are generally small and findings poorly replicated. Nevertheless, a few specific gene variants appear to affect the risk for developing HAND and aid our understanding of HAND pathogenesis.
Collapse
|
29
|
Evering TH, Tsuji M. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System. Front Immunol 2018; 9:649. [PMID: 29670623 PMCID: PMC5893637 DOI: 10.3389/fimmu.2018.00649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023] Open
Abstract
Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| |
Collapse
|
30
|
Abstract
Primary human immunodeficiency virus (HIV) neuropathologies can affect all levels of the neuraxis and occur in all stages of natural history disease. Some, like HIV encephalitis, HIV myelitis, and diffuse infiltrative lymphocytosis of peripheral nerve, reflect productive infection of the nervous system; others, like vacuolar myelopathy, distal symmetric polyneuropathy, and central and peripheral nervous system demyelination, are not clearly related to regional viral replication, and reflect more complex cascades of dysregulated host immunity and metabolic dysfunction. In pediatric patients, the spectrum of neuropathology is altered by the impacts of HIV on a developing nervous system, with microcephaly, abundant brain mineralization, and corticospinal tract degeneration as examples of this unique interaction. With efficacious therapies, CD8 T-cell encephalitis is emerging as a significant entity; often this is clinically recognized as immune reconstitution inflammatory syndrome, but has also been described in the context of viral escape and treatment interruption. The relationship of HIV neuropathology to clinical symptoms is sometimes straightforward, and sometimes mysterious, as individuals can manifest significant deficits in the absence of discrete lesions. However, at all stages of the natural history disease, neuroinflammation is abundant, and critical to the generation of clinical abnormality. Neuropathologic and neurobiologic investigations will be central to understanding HIV nervous system disorders in the era of efficacious therapies.
Collapse
Affiliation(s)
- Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mount Sinai Medical Center, New York, NY, United States.
| |
Collapse
|
31
|
Li W, Gorantla S, Gendelman HE, Poluektova LY. Systemic HIV-1 infection produces a unique glial footprint in humanized mouse brains. Dis Model Mech 2017; 10:1489-1502. [PMID: 29084769 PMCID: PMC5769612 DOI: 10.1242/dmm.031773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/17/2017] [Indexed: 01/22/2023] Open
Abstract
Studies of innate glial cell responses for progressive human immunodeficiency virus type one (HIV-1) infection are limited by a dearth of human disease-relevant small-animal models. To overcome this obstacle, newborn NOD/SCID/IL2Rγc−/− (NSG) mice were reconstituted with a humanized brain and immune system. NSG animals of both sexes were transplanted with human neuroglial progenitor cells (NPCs) and hematopoietic stem cells. Intraventricular injection of NPCs symmetrically repopulated the mouse brain parenchyma with human astrocytes and oligodendrocytes. Human glia were in periventricular areas, white matter tracts, the olfactory bulb and the brain stem. HIV-1 infection led to meningeal and perivascular human leukocyte infiltration into the brain. Species-specific viral-neuroimmune interactions were identified by deep RNA sequencing. In the corpus callosum and hippocampus of infected animals, overlapping human-specific transcriptional alterations for interferon type 1 and 2 signaling pathways (STAT1, STAT2, IRF9, ISG15, IFI6) and a range of host antiviral responses (MX1, OAS1, RSAD2, BST2, SAMHD1) were observed. Glial cytoskeleton reorganization, oligodendrocyte differentiation and myelin ensheathment (MBP, MOBP, PLP1, MAG, ZNF488) were downregulated. The data sets were confirmed by real-time PCR. These viral defense-signaling patterns paralleled neuroimmune communication networks seen in HIV-1-infected human brains. In this manner, this new mouse model of neuroAIDS can facilitate diagnostic, therapeutic and viral eradication strategies for an infected nervous system. Summary: In mice with a humanized brain and immune system, systemic infection led to human-specific transcriptional induction of glial interferon antiviral innate immune pathways and alteration of neuronal progenitor differentiation and myelination.
Collapse
Affiliation(s)
- Weizhe Li
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| |
Collapse
|