1
|
Yu J, Jin Y, Xu C, Fang C, Zhang Z, Chen L, Xu G. Downregulation of miR-125a-5p Promotes Endothelial Progenitor Cell Migration and Angiogenesis and Alleviates Deep Vein Thrombosis in Mice Via Upregulation of MCL-1. Mol Biotechnol 2023; 65:1664-1678. [PMID: 36738360 DOI: 10.1007/s12033-023-00676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to recanalization of deep vein thrombosis (DVT). MicroRNAs (miRNAs) play regulatory roles in functions of EPCs, which is becoming a promising therapeutic choice for thrombus resolution. The main purpose of this study was to explore the effect of miR-125a-5p on EPC functions in deep vein thrombosis (DVT). EPCs were isolated from the peripheral blood of patients with DVT. In DVT mouse models, DVT was induced by stenosis of the inferior vena cava (IVC). The levels of miR-125a-5p and myeloid cell leukemia sequence 1 (MCL-1) in EPCs and thrombi of DVT mice were detected by RT-qPCR. EPC migration, angiogenesis, and apoptosis were estimated by Transwell assay, tube formation assay, and flow cytometry analysis. Luciferase reporter assay was utilized for detecting the binding of miR-125a-5p and MCL-1. The phosphorylation of PI3K and AKT was estimated by western blot. DVT formation in vivo was observed through hematoxylin-eosin (H&E) staining. The expression of thrombus resolution marker, CD34 molecule (CD34), in the thrombi was measured by immunofluorescence staining. MiR-125a-5p upregulation repressed EPC migration and angiogenesis and facilitated apoptosis. MiR-125a-5p downregulation showed the opposite effect. MCL-1 was targeted and negatively regulated by miR-125a-5p. Additionally, miR-125a-5p inhibited the PI3K/AKT pathway in EPCs. Inhibition of MCL-1 or PI3K/AKT pathway reversed the effect of miR-125a-5p knockdown on EPC functions. The in vivo experiments revealed that miR-125a-5p downregulation repressed thrombus formation and promoted the homing capability of EPCs to the thrombosis site, thereby alleviating DVT mice. Downregulation of miR-125a-5p promotes EPC migration and angiogenesis by upregulating MCL-1, thereby enhancing EPC homing to thrombi and facilitating thrombus resolution.
Collapse
Affiliation(s)
- Jingfan Yu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Yiqi Jin
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Chen Xu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Changwen Fang
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Zhixuan Zhang
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Lei Chen
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China.
| | - Guoxiong Xu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 188 Guangji Road, Gusu District, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
2
|
Ibáñez-Cabellos JS, Pallardó FV, García-Giménez JL, Seco-Cervera M. Oxidative Stress and Epigenetics: miRNA Involvement in Rare Autoimmune Diseases. Antioxidants (Basel) 2023; 12:antiox12040800. [PMID: 37107175 PMCID: PMC10135388 DOI: 10.3390/antiox12040800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autoimmune diseases (ADs) such as Sjögren’s syndrome, Kawasaki disease, and systemic sclerosis are characterized by chronic inflammation, oxidative stress, and autoantibodies, which cause joint tissue damage, vascular injury, fibrosis, and debilitation. Epigenetics participate in immune cell proliferation and differentiation, which regulates the development and function of the immune system, and ultimately interacts with other tissues. Indeed, overlapping of certain clinical features between ADs indicate that numerous immunologic-related mechanisms may directly participate in the onset and progression of these diseases. Despite the increasing number of studies that have attempted to elucidate the relationship between miRNAs and oxidative stress, autoimmune disorders and oxidative stress, and inflammation and miRNAs, an overall picture of the complex regulation of these three actors in the pathogenesis of ADs has yet to be formed. This review aims to shed light from a critical perspective on the key AD-related mechanisms by explaining the intricate regulatory ROS/miRNA/inflammation axis and the phenotypic features of these rare autoimmune diseases. The inflamma-miRs miR-155 and miR-146, and the redox-sensitive miR miR-223 have relevant roles in the inflammatory response and antioxidant system regulation of these diseases. ADs are characterized by clinical heterogeneity, which impedes early diagnosis and effective personalized treatment. Redox-sensitive miRNAs and inflamma-miRs can help improve personalized medicine in these complex and heterogeneous diseases.
Collapse
Affiliation(s)
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - Marta Seco-Cervera
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| |
Collapse
|
3
|
Xiong Y, Xu J, Zhang D, Wu S, Li Z, Zhang J, Xia Z, Xia P, Xia C, Tang X, Liu X, Liu J, Yu P. MicroRNAs in Kawasaki disease: An update on diagnosis, therapy and monitoring. Front Immunol 2022; 13:1016575. [PMID: 36353615 PMCID: PMC9638168 DOI: 10.3389/fimmu.2022.1016575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 08/15/2023] Open
Abstract
Kawasaki disease (KD) is an acute autoimmune vascular disease featured with a long stage of febrile. It predominantly afflicts children under 5 years old and causes an increased risk of cardiovascular combinations. The onset and progression of KD are impacted by many aspects, including genetic susceptibility, infection, and immunity. In recent years, many studies revealed that miRNAs, a novel class of small non-coding RNAs, may play an indispensable role in the development of KD via differential expression and participation in the central pathogenesis of KD comprise of the modulation of immunity, inflammatory response and vascular dysregulation. Although specific diagnose criteria remains unclear up to date, accumulating clinical evidence indicated that miRNAs, as small molecules, could serve as potential diagnostic biomarkers and exhibit extraordinary specificity and sensitivity. Besides, miRNAs have gained attention in affecting therapies for Kawasaki disease and providing new insights into personalized treatment. Through consanguineous coordination with classical therapies, miRNAs could overcome the inevitable drug-resistance and poor prognosis problem in a novel point of view. In this review, we systematically reviewed the existing literature and summarized those findings to analyze the latest mechanism to explore the role of miRNAs in the treatment of KD from basic and clinical aspects retrospectively. Our discussion helps to better understand the pathogenesis of KD and may offer profound inspiration on KD diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yiyi Xiong
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiawei Xu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuqin Wu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhongbin Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cai Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianping Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Qiu Y, Zhang Y, Li Y, Hua Y, Zhang Y. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Front Cardiovasc Med 2022; 9:981010. [PMID: 36003919 PMCID: PMC9393387 DOI: 10.3389/fcvm.2022.981010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Kawasaki disease (KD) is an acute, inflammation mediated vasculitis, mainly affecting in children under five, which is consider as the most common coronary artery disease in children. The injuries of coronary arteries would result in dilation or thrombus formation, bringing great threaten to patients. Endothelium, located in the inner surface of coronary artery, serves as the interface between the circulating inflammatory cells and vascular media or adventitia, which is the first target of inflammatory attacks during early stage of KD. A series of studies have determined vascular endothelial cells damages and dysfunction in KD patients. However, current therapeutic strategy is still challenging. So that it is critical to underline the mechanisms of endothelium injuries. In this review, the role of endothelial cells in the pathogenesis of KD and the therapeutic methods for endothelial cells were systematically described.
Collapse
|
5
|
Zhao J, Chen D. Kawasaki disease: SOCS2-AS1/miR-324-5p/CUEDC2 axis regulates the progression of human umbilical vein endothelial cells. Pediatr Res 2022; 92:388-395. [PMID: 32688371 DOI: 10.1038/s41390-020-1029-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Kawasaki disease (KD) is the most prevailing cause of acquired heart disease in children, due to permanent coronary artery damage. Recently, the role of long noncoding RNAs (lncRNAs) in human diseases has been highlighted. However, the role of lncRNA SOCS2 antisense RNA 1 (SOCS2-AS1) on the function of human umbilical vein endothelial cells (HUVECs) in KD remains elusive. METHODS SOCS2-AS1 expression was examined via RT-qPCR. CCK-8, EdU, caspase-3 activity, flow cytometry and TUNEL assays were conducted for exploring the function of SOCS2-AS1 in HUVECs of KD. The interaction among RNAs (SOCS2-AS1, miR-324-5p and CUEDC2) was validated via luciferase reporter, RIP and RNA pull-down assays. RESULTS SOCS2-AS1 was highly expressed in serum and tissues of KD patients. SOCS2-AS1 depletion repressed the proliferation of HUVECs, whereas it facilitated apoptosis. Further, SOCS2-AS1 could bind with miR-324-5p and negatively regulated miR-324-5p expression in HUVECs. Besides, CUE domain containing 2 (CUEDC2) was the downstream target of miR-324-5p, and SOCS2-AS1 could release CUEDC2 expression via sponging miR-324-5p in HUVECs. Furthermore, downregulating miR-324-5p or upregulating CUEDC2 could rescue the progression of HUVECs restrained by SOCS2-AS1 knockdown. CONCLUSIONS SOCS2-AS1 upregulates CUEDC2 via inhibiting miR-324-5p to promote the progression of HUVECs in KD, providing new insights for KD treatment. IMPACT SOCS2-AS1 is highly expressed in the serum of KD patients. SOCS2-AS1 contributes to cell proliferation in HUVECs of KD through elevating CUEDC2 expression by sequestering miR-324-5p. SOCS2-AS1/miR-324-5p/CUEDC2 axis exerts a progression-facilitating function in KD. These findings suggest SOCS2-AS1 as a novel potential target for KD treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pediatrics, Yancheng Maternal and Child Health Care Hospital, Yancheng, Jiangsu, 224002, China
| | - Daye Chen
- Department of Pediatrics, Wuxi Xishan District People's Hospital, Zhongda Hospital Wuxi Branch, Southeast University, Wuxi, Jiangsu, 214101, China.
| |
Collapse
|
6
|
Li D, Chen L, Zhang X, Wang Y, Huang C, Li J, He F, He W. miR‑125a‑5p reverses epithelial‑mesenchymal transition and restores drug sensitivity by negatively regulating TAFAZZIN signaling in breast cancer. Mol Med Rep 2021; 24:812. [PMID: 34549308 PMCID: PMC8477177 DOI: 10.3892/mmr.2021.12452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miR)‑125a‑5p represses tafazzin phospholipid‑lysophospholipid transacylases (TAFAZZIN) expression and inhibits the epithelial‑mesenchymal transition (EMT) of ovarian cancer cells. EMT was found to have a crucial role in the acquisition of chemoresistance. Thus, the present study aimed to determine whether miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer. The expression of miR‑125a‑5p/TAFAZZIN and its association with chemotherapy response were determined in tissue samples from patients with breast cancer. Furthermore, the effects of miR‑125a‑5p on breast cancer cells were elucidated using cell proliferation and cell apoptosis assays. Then, the regulatory mechanism of miR‑125a‑5p in breast cancer was investigated by reverse transcription‑quantitative PCR, western blotting, dual‑luciferase reporter and RNA immunoprecipitation assays. The results demonstrated that miR‑125a‑5p inhibited the EMT of MCF‑7/adriamycin (Adr) breast cancer cells, as well as decreased the proliferation and increased the apoptosis of breast cancer cells treated with Adr/docetaxel. In addition, miR‑125a‑5p downregulated the expression levels of TAFAZZIN, Transglutaminase 2, phosphorylated‑AKT, N‑cadherin, vimentin and proliferating cell nuclear antigen, and significantly increased those of E‑cadherin, cleaved caspase-3 and Bax in MCF7/Adr cells. Similar results were obtained with small interfering RNA‑TAFAZZIN. Moreover, TAFAZZIN was identified as a direct target of miR‑125a‑5p in MCF7/Adr breast cancer cells. In addition, increased miR‑125a‑5p expression was observed in breast tumors from patients exhibiting a chemotherapy response, and TAFAZZIN mRNA expression was elevated in patients with no chemotherapy response. Hence, miR‑125a‑5p expression was negatively correlated with TAFAZZIN mRNA expression in breast cancer tissues. All these data suggested that miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer and, therefore, has potential as a novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Dongmei Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Limei Chen
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Xiaofang Zhang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Yanhua Wang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Chuansheng Huang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Jianglong Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Feilong He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Wenxing He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
7
|
Sharma K, Vignesh P, Srivastava P, Sharma J, Chaudhary H, Mondal S, Kaur A, Kaur H, Singh S. Epigenetics in Kawasaki Disease. Front Pediatr 2021; 9:673294. [PMID: 34249810 PMCID: PMC8266996 DOI: 10.3389/fped.2021.673294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Kawasaki disease (KD) is a common febrile multisystemic inflammatory illness in children that preferentially affects coronary arteries. Children with KD who develop coronary artery aneurysms have a life-long risk of premature coronary artery disease. Hypothesis of inherent predisposition to KD is supported by epidemiological evidence that suggests increased risk of development of disease in certain ethnicities and in children with a previous history of KD in siblings or parents. However, occurrence of cases in clusters, seasonal variation, and very low risk of recurrence suggests an acquired trigger (such as infections) for the development of illness. Epigenetic mechanisms that modulate gene expression can plausibly explain the link between genetic and acquired predisposing factors in KD. Analysis of epigenetic factors can also be used to derive biomarkers for diagnosis and prognostication in KD. Moreover, epigenetic mechanisms can also help in pharmacogenomics with the development of targeted therapies. In this review, we analysed the available literature on epigenetic factors such as methylation, micro-RNAs, and long non-coding RNAs in KD and discuss how these mechanisms can help us better understand the disease pathogenesis and advance the development of new biomarkers in KD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Surjit Singh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Luo Y, Yu M, Li P, Huang L, Wu J, Kong M, Li Y, Wu Z, Kang Z, Yi L, Yang Z. The Expression and Role of microRNA-133a in Plasma of Patients with Kawasaki Disease. Immunol Invest 2021; 51:826-838. [PMID: 33501869 DOI: 10.1080/08820139.2021.1877302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Kawasaki disease (KD)), also known as mucocutaneous lymph node syndrome (MCLS), is an autoimmune and systemic vasculitis syndrome. Its etiology and pathogenesis are still unclear. microRNAs (miRNA), a novel class of small non-coding RNAs, regulate the expression of multiple protein-encoding genes at the post-transcriptional level. We intend to study the change of miRNA-133a in the plasma of patients with KD, explore the role of miRNA-133a on HUVEC and define the pathogenesis of vascular dysfunction in KD. miRNA-133a expression and the mRNA and protein expression of protein phosphatase 2 catalytic subunit alpha (PPP2CA) were assessed by RT-qPCR and Western blot, respectively. The PPP2CA mRNA 3'UTR was predicted to be the potential target of miRNA-133a by using the miRNA databases and verified by the luciferase assay. The plasmids of miRNA-133a mimics and inhibitors were transfected into HUVEC cells. The plasma soluble vascular endothelial cadherin (sVE-cadherin, the excised extracellular part of VE-cadherin) levels were investigated by ELISA. The results suggested that miRNA-133a was increased by 3.8 times in the acute KD group and by 2.7 times in the convalescent KD group compared with the control group (both P = .000). PPP2CA is the target gene of miRNA-133a and its expression was inhibited by miRNA-133a acting on PPP2CA mRNA 3'UTR (P = .013). The plasma sVE-cadherin levels in the acute KD groups were increased compared with the control group (P = .024). The ROC curve analysis showed that the expression of miRNA-133a segregate acute KD patients from convalescent KD patients and healthy children. Our results suggest that miRNA-133a might be a new biomarker for KD.
Collapse
Affiliation(s)
- Yeping Luo
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Meng Yu
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengzhu Li
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Medical Experiments, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiping Wu
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Min Kong
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Li
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiang Wu
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijuan Kang
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Yi
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuocheng Yang
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
10
|
The Platelet microRNA Profile of Kawasaki Disease: Identification of Novel Diagnostic Biomarkers. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9061568. [PMID: 32733962 PMCID: PMC7383328 DOI: 10.1155/2020/9061568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022]
Abstract
Challenging diagnosis and unknown etiology of Kawasaki disease (KD) increase the coronary artery lesions incidence. microRNAs (miRNAs) are the most promising biomarkers because of their stability in peripheral blood and noninvasive measurement procedure, whose potential utility have been proved in cancers. To explore the utility of differentially expressed (DE) miRNAs as early diagnostic markers, 44 patients (25 incomplete KD and 19 complete KD) and 31 febrile controls were recruited for small RNA sequencing. From all the 1922 expressed miRNA, 210 DE miRNAs were found between KD and febrile control groups. Though platelet miRNA profiles of complete KD incomplete KD were much similar through cluster analysis, the DE miRNAs were not identical. Eight DE miRNAs were validated by real-time quantitative PCR (qRT-PCR) in complete or incomplete KD groups using a normalizer, miR-126-3p, which was identified by geNorm and NormFinder tools. The expression level of miRNAs continuous changed over time was observed and the function analysis showed the potential role of miRNAs as therapeutic biomarkers. Additionally, the prediction model for KD showed a sensitivity of 78.8% and a specificity of 71.4%, respectively. This study used small RNA sequencing to identify miRNA biomarkers KD diagnosis based on a large sample size. Our findings shine a light on the understanding of molecular pathogenesis of KD and may improve the accuracy of KD diagnosis and prognosis in clinical.
Collapse
|
11
|
Li Y, Wu X, Gao F, Wang X. MiR-197-3p regulates endothelial cell proliferation and migration by targeting IGF1R and BCL2 in Kawasaki disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4181-4192. [PMID: 31933818 PMCID: PMC6949791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is a multisystemic vasculitis syndrome. Accumulating evidences indicated that microRNAs play a critical role in KD. However, the mechanism was still not fully understood. The study aimed to research the functions of microRNA-197-3p (miR-197-3p) in the progression of KD. METHODS Level of miR-197-3p was detected by quantitative polymerase chain reaction (qRT-PCR) in acute KD serum. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was performed to determine cell proliferation in HCAECs. Cell apoptosis was evaluated by flow cytometry. In addition, transwell assay was used to identify the migration capacity of HCAECs in vitro. The expression of insulin-like growth factor type 1 receptor (IGF1R), B cell lymphoma 2 (BCL2), apoptosis-relative of Cleaved-caspase 3 (C-caspase 3) and Cleaved-PARP (C-PARP), as well as transition-relative of E-cadherin, N-cadherin, and Vimentin were measured by western blot assay. Lastly, dual-luciferase reporter assay was employed to verify the relationship between miR-197-3p and IGF1R or BCL2 in vitro. RESULTS Level of miR-197-3p was higher in Acute KD samples than that of healthy control and convalescent KD samples. Mechanistically, the role of miR-197-3p was exerted through directly targeting IGF1R and BCL2 in KD serum-induced HCAECs. Functionally, the inhibiting effect on cell apoptosis as well as promoting effects on cell proliferation and migration of miR-197-3p deletion was abrogated by either si-IGF1R or si-BCL2. CONCLUSION miR-197-3p modifies cell behaviors of proliferation, apoptosis and migration by targeting IGF1R and BCL2 in KD, providing a new perspective for the treatment of KD clinically.
Collapse
Affiliation(s)
- Yan Li
- Department of Pediatric Cardiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 611731, China
| | - Xindan Wu
- Department of Pediatric Cardiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 611731, China
| | - Fang Gao
- Department of Pediatric Cardiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 611731, China
| | - Xianmin Wang
- Department of Pediatric Cardiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 611731, China
| |
Collapse
|
12
|
Wang S, Ran L, Zhang W, Leng X, Wang K, Liu G, Song J, Wang Y, Zhang X, Wang Y, Zhang L, Ma Y, Liu K, Li H, Zhang W, Qin G, Song F. FOXS1 is regulated by GLI1 and miR-125a-5p and promotes cell proliferation and EMT in gastric cancer. Sci Rep 2019; 9:5281. [PMID: 30918291 PMCID: PMC6437149 DOI: 10.1038/s41598-019-41717-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant neoplasm and the second leading cause of cancer death. Identification of key molecular signaling pathways involved in gastric carcinogenesis and progression facilitates early GC diagnosis and the development of targeted therapies for advanced GC patients. Emerging evidence has revealed a close correlation between forkhead box (FOX) proteins and cancer development. However, the prognostic significance of forkhead box S1 (FOXS1) in patients with GC and the function of FOXS1 in GC progression remain undefined. In this study, we found that upregulation of FOXS1 was frequently detected in GC tissues and strongly correlated with an aggressive phenotype and poor prognosis. Functional assays confirmed that FOXS1 knockdown suppressed cell proliferation and colony numbers, with induction of cell arrest in the G0/G1 phase of the cell cycle, whereas forced expression of FOXS1 had the opposite effect. Additionally, forced expression of FOXS1 accelerated tumor growth in vivo and increased cell migration and invasion through promoting epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Mechanistically, the core promoter region of FOXS1 was identified at nucleotides −660~ +1, and NFKB1 indirectly bind the motif on FOXS1 promoters and inhibit FOXS1 expression. Gene set enrichment analysis revealed that the FOXS1 gene was most abundantly enriched in the hedgehog signaling pathway and that GLI1 expression was significantly correlated with FOXS1 expression in GC. GLI1 directly bound to the promoter motif of FOXS1 and significantly decreased FOXS1 expression. Finally, we found that miR-125a-5p repressed FOXS1 expression at the translational level by binding to the 3′ untranslated region (UTR) of FOXS1. Together, these results suggest that FOXS1 can promote GC development and could be exploited as a diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Sen Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Longke Ran
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Wanfeng Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Leng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Kexin Wang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan Province, 646000, China
| | - Geli Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yujing Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Xianqin Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Lian Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Ma
- Information Technology Office of Chongqing Medical University, Chongqing, 400016, China
| | - Kun Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Haiyu Li
- Chongqing Public Health Medical Center, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guijun Qin
- Department of Endocrinology of the Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China. .,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
13
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
14
|
Yan W, Yang W, Liu Z, Wu G. Characterization of microRNA expression in primary human colon adenocarcinoma cells (SW480) and their lymph node metastatic derivatives (SW620). Onco Targets Ther 2018; 11:4701-4709. [PMID: 30127618 PMCID: PMC6091476 DOI: 10.2147/ott.s169233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background and objective Metastasis is the major cause of cancer-related deaths in patients with colon cancer, however, the exact molecular mechanism is unclear. MicroRNAs (miRNAs) play an important role in the pathogenesis and progression of cancer. Therefore, in this study, we aimed to identify differentially expressed miRNAs in two colon carcinoma cell lines: SW480, derived from primary colon carcinoma and SW620, derived from lymph node metastasis, which were obtained from the same patient. Materials and methods Three independent samples of cancer cells were collected from SW480 and SW620 cells, respectively. An miRNA microarray platform, miRCURY LNA™ microRNA array with 1,223 probes containing 3,000 capture probes, was used to determine the miRNA expression profiles of these two cell lines. Differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results The raw data were submitted to the Gene Expression Omnibus database (GSE72412). Thirteen miRNAs were differentially expressed between SW480 and SW620 cells, of which, seven miRNAs (hsa-miR-920, hsa-miR-636, hsa-miR-766-3p, hsa-miR-545-5p, hsa-miR-195-3p, hsa-miR-125a-3p, and hsa-miR-196b-3p) were found to be upregulated and six miRNAs (hsa-miR-3613-3p, hsa-miR-29b-3p, hsa-miR-1297, hsa-miR-141-5p, hsa-miR-200c-3p, and hsa-miR-141-3p) were found to be downregulated. Target analysis of the predicted miRNAs showed that these genes were primarily involved in protein binding, cell adhesion, and cancer metastasis. Furthermore, qRT-PCR validated the results of miRNA microarray. Conclusion This is the first systematic analysis of the differences of miRNAs between SW480 and SW620 cells. The results provide useful information to explore potential biomarkers of miRNAs for predicting colon cancer metastasis.
Collapse
Affiliation(s)
- Wei Yan
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, People's Republic of China,
| | - Wenchao Yang
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, People's Republic of China,
| | - Zhongcai Liu
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, People's Republic of China,
| | - Guoyang Wu
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, People's Republic of China,
| |
Collapse
|
15
|
Zhang X, Xin G, Sun D. Serum exosomal miR-328, miR-575, miR-134 and miR-671-5p as potential biomarkers for the diagnosis of Kawasaki disease and the prediction of therapeutic outcomes of intravenous immunoglobulin therapy. Exp Ther Med 2018; 16:2420-2432. [PMID: 30186482 PMCID: PMC6122496 DOI: 10.3892/etm.2018.6458] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to screen serum exosomal microRNAs (miRNAs) for the early diagnosis of Kawasaki disease (KD) and to investigate their underlying mechanisms by analyzing microarray data under accession numbers GSE60965 [exosomal miRNA, including three pooled serum samples from 5 healthy children, 5 patients with KD and 5 patients with KD following intravenous immunoglobulin (IVIG) therapy] and GSE73577 (mRNA, including peripheral blood mononuclear cell samples from 19 patients with KD prior to and following IVIG treatment) from the Gene Expression Omnibus database. Differentially expressed miRNAs (DE-miRNAs) and genes (DEGs) were identified using the Linear Models for Microarray data method, and the mRNA targets of DE-miRNAs were predicted using the miRWalk 2.0 database. The functions of the target genes were analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). As a result, 65 DE-miRNAs were identified with different expression patterns between the healthy children and patients with KD and between patients with KD and patients with KD following IVIG therapy. The target genes of 15 common DE-miRNAs were predicted. Following overlapping the target genes of DE-miRNAs with 355 DEGs, 28 common genes were identified and further screened to construct a network containing 30 miRNA-mRNA regulatory associations. Of these associations, only miR-328-spectrin α, erythrocytic 1, miR-575-cyclic AMP-responsive element-binding protein 5/b-1,4-galactosyltransferase 5/WD repeat and FYVE domain-containing 3/cystatin-A/C-X-C motif chemokine receptor 1/protein phosphatase 1 regulatory subunit 3B, miR-134-acyl-CoA synthetase long chain family member 1/C-type lectin domain family 1 member A and miR-671-5p-tripartite motif containing 25/leucine rich repeat kinase 2/kinesin family member 1B/leucine rich repeat neuronal 1 were involved in the negative regulation of gene expression. Functional analysis indicated that the identified target genes may be associated with inflammation. Accordingly, serum exosomal miR-328, miR-575, miR-134 and miR-671-5p may act as potential biomarkers for the diagnosis of KD and the prediction of outcomes of the IVIG therapy by influencing the expression of inflammatory genes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guangda Xin
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dajun Sun
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss recent observations of epigenetic changes related to the complex pathogenesis of systemic vasculitides and their contribution to the field. RECENT FINDINGS There have been new observations of epigenetic changes in vasculitis and their potential role in disease pathogenesis in antineutrophil cytoplasmic antibody-associated vasculitis, giant-cell arteritis, Kawasaki disease, Behçet's disease, and IgA vasculitis. Some of this recent work has focused on the efficacy of using DNA methylation and miRNA expression as clinical biomarkers for disease activity and how DNA methylation and histone modifications interact to regulate disease-related gene expression. SUMMARY DNA methylation, histone modification, and miRNA expression changes are all fruitful ground for biomarker discovery and therapeutic targets in vasculitis. Current knowledge has provided targeted and suggested effects, but in many cases, has relied upon small cohorts, cosmopolitan cell populations, and limited knowledge of functional interactions. Expanding our knowledge of how these epigenetic mechanisms interact in a disease-specific and cell-specific manner will help to better understand the pathogenesis of systemic vasculitis.
Collapse
|
17
|
Ding N, Sun X, Wang T, Huang L, Wen J, Zhou Y. miR‑378a‑3p exerts tumor suppressive function on the tumorigenesis of esophageal squamous cell carcinoma by targeting Rab10. Int J Mol Med 2018; 42:381-391. [PMID: 29693138 PMCID: PMC5979826 DOI: 10.3892/ijmm.2018.3639] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/05/2018] [Indexed: 01/09/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a life-threatening cancer with increasing incidence worldwide. MicroRNAs (miRs) have been reported to be involved in the progression of various types of cancer. In previous studies, the expression of miR-378a-3p was shown to be reduced in ESCC tissues. However, the mechanism underlying the effect of miR-378a-3p in ESCC remains to be elucidated. By employing a reverse transcription-quantitative polymerase chain reaction, miR-378a-3p expression was tested in ESCC tissues and cell lines. In addition, the effects of miR-378a-3p on cell viability, proliferation, apoptosis, migration and invasion were studied using an MTT assay, an EdU assay, flow cytometry analysis, wound healing analysis and a Transwell assay. In the present study, the level of miR-378a-3p was significantly downregulated in ESCC clinical tissues and cell lines (EC109 and KYSE150). In addition, the overexpression of miR-378a-3p suppressed the viability, proliferation, migration and invasion of the ESCC cells. The upregulated expression of miR-378a-3p also increased the expression levels of B-cell lymphoma 2-associated X protein and caspase-3, and decreased the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9, which attenuated ESCC tumorigenesis. Furthermore, Rab10 was confirmed to be a direct target gene of miR-378a-3p, and was negatively affected by miR-378a-3p. The silencing of Rab10 revealed antitumor effects in ESCC cell lines, and the expression of miR-378a-3p was negatively correlated with that of Rab10 in ESCC. Collectively, miR-378a-3p may act as a tumor-suppressor in ESCC cells through negatively regulating Rab10.
Collapse
Affiliation(s)
- Naixin Ding
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiujin Sun
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Tingting Wang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Lei Huang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Wen
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiqin Zhou
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
18
|
Wu R, Shen D, Sohun H, Ge D, Chen X, Wang X, Chen R, Wu Y, Zeng J, Rong X, Su X, Chu M. miR‑186, a serum microRNA, induces endothelial cell apoptosis by targeting SMAD6 in Kawasaki disease. Int J Mol Med 2018; 41:1899-1908. [PMID: 29344637 PMCID: PMC5810213 DOI: 10.3892/ijmm.2018.3397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Kawasaki disease (KD) is an acute, self‑limited vasculitis that predominantly affects medium‑sized arteries, particularly the coronary arteries. Recent studies have indicated that microRNAs are involved in many diseases, including KD. However, the detailed mechanism remains unclear. The aim of the present study was to explore the role of miR‑186 in KD and potentially discover a new target for KD treatment. The results demonstrated that miR‑186 was upregulated in serum from patients with KD and KD serum could increase miR‑186 transcript levels in endothelial cells (HUVECs). Overexpression of miR‑186 mimic induced HUVEC apoptosis through mitogen‑activated protein kinase (MAPK) activation by targeting and inhibiting SMAD family member 6 (SMAD6). Furthermore, KD serum induced HUVEC apoptosis through miR‑186. In conclusion, the present results suggested that KD serum‑associated miR‑186 has an essential role in endothelial cell apoptosis by activating the MAPK pathway through targeting the SMAD6 gene.
Collapse
Affiliation(s)
- Rongzhou Wu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Danping Shen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hareshwaree Sohun
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Donghui Ge
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xianda Chen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xuliang Wang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ruiyao Chen
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yuqing Wu
- Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jingjing Zeng
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiaoping Su
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Maoping Chu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
19
|
MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki Disease. Sci Rep 2018; 8:1016. [PMID: 29343815 PMCID: PMC5772486 DOI: 10.1038/s41598-018-19310-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Kawasaki Disease (KD) is an acute inflammatory disease that takes the form of systemic vasculitis. Endothelial microparticles (EMPs) have been recognized as an important transcellular delivery system. We hypothesized whether EMPs are involved in vasculitis in acute KD. Fifty patients with acute KD were enrolled, divided into two subgroups: those with coronary artery lesions (CAL) (n = 5) and those without CAL (NCAL) (n = 45). EMPs were measured using flow cytometry, and microRNA (miR) expression profiling was performed by microRNA array. The percentage of EMPs in acute KD was significantly higher than in controls (P < 0.0001). EMPs in patients with CAL rapidly increased after the initial treatment, and was significantly higher than those in NCAL (P < 0.001). In patients with CAL, we identified 2 specific miRs encapsulated in EMPs, hsa-miR-145-5p and hsa-miR-320a, which are predicted to affect monocyte function using in silico analysis, and were demonstrated to upregulate inflammatory cytokine mRNAs in THP-1 monocytes. In situ hybridization confirmed that hsa-miR-145-5p was preferentially expressed in CAL. EMPs may serve as a sensitive marker for the severity of vasculitis in acute KD. Moreover, these 2 specific miRs encapsulated in EMPs might be involved in inflammatory cytokine regulation and the pathogenesis of vasculitis in acute KD.
Collapse
|