1
|
Mactaggart M, Whitaker AP, Wilkinson KN, Hall MJR. Novel use of a servosphere to study apodous insects: Investigation of blow fly post-feeding larval dispersal. MEDICAL AND VETERINARY ENTOMOLOGY 2025; 39:14-21. [PMID: 39044406 PMCID: PMC11793127 DOI: 10.1111/mve.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Blow flies (Diptera: Calliphoridae) are arguably the most important providers of an estimate of minimum post-mortem interval in forensic investigations. They usually undergo a post-feeding dispersal from the body. While previous studies have looked at dispersal of groups of larvae, recording the dispersal activity of individual larvae has not previously been demonstrated. A servosphere was used here to record the speed, directionality and phototaxis of individual post-feeding larvae of two species of blow fly on a smooth plastic surface over time. The servosphere rotates to compensate for the movement of an insect placed at its apex, thereby enabling its unimpeded locomotion in any direction to be studied and behavioural changes to external stimuli recorded. To our knowledge, the servosphere has not previously been used to study apodous insects. The objective of our study was to compare dispersal behaviour of Calliphora vicina Robineau-Desvoidy and Protophormia terraenovae (Robineau-Desvoidy), both common primary colonisers of human and animal cadavers, but showing different post-feeding dispersal strategies. Larvae of C. vicina generally disperse from the body while those of P. terraenovae remain on or close to the body. Our aims were to study (1) changes in dispersal speed over a 1-h period; (2) changes in dispersal speed once a day for 4 days, between the end of feeding and onset of pupariation; and (3) response of dispersing larvae to light. We demonstrated that (1) the movement of three C. vicina larvae tracked for 1 continuous hour on 1 day slowed from an average of 3 to <1.7 mms-1; (2) the average speed of 20 larvae of C. vicina (4.08 mms-1) recorded for 5 min once per day over a 4-day period between onset of dispersal and pupariation was significantly greater than that of P. terraenovae (2.36 mms-1; p < 0.0001), but that speed of both species increased slightly over the 4 days; (3) the responses of larvae of C. vicina to changes in light direction from the four cardinal directions of the compass, showed that they exhibited a strong negative phototactic response within 5 s, turning to move at approximately 180° away from the new light position. While conducted to observe larval calliphorid post-feeding behaviour, the results of this proof of concept study show that apodous insects can be studied on a servosphere to produce both qualitative and quantitative data.
Collapse
Affiliation(s)
- Molly Mactaggart
- Faculty of Law, Crime and JusticeUniversity of WinchesterWinchesterUK
- Natural History MuseumLondonUK
| | - Amoret P. Whitaker
- Faculty of Law, Crime and JusticeUniversity of WinchesterWinchesterUK
- Natural History MuseumLondonUK
| | | | | |
Collapse
|
2
|
Mizumoto 水元 惟暁 N, Nagaya 永谷 直久 N, Fujisawa 藤澤 隆介 R. Wasted Efforts Impair Random Search Efficiency and Reduce Choosiness in Mate-Pairing Termites. Am Nat 2024; 204:589-599. [PMID: 39556876 DOI: 10.1086/732877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
AbstractRandom search theories predict that animals employ movement patterns that optimize encounter rates with target resources. However, animals are not always able to achieve the best search strategy. Energy depletion, for example, limits searchers' movement activities, forcing them to adjust their behaviors before and after encounters. Here, we investigate the cost of mate search in a termite, Reticulitermes speratus, and reveal that the costs associated with mate finding reduce the selectivity of mating partners. After a dispersal flight, termites search for a mating partner with limited reserved energy. We found that their movement activity and diffusiveness progressively declined over extended mate search. Our data-based simulations qualitatively confirmed that the reduced movement diffusiveness decreased the searching efficiency. Also, prolonged search periods reduced survival rate and the number of offspring. Thus, mate search has two different negative effects on termites. Finally, we found that termites with an extended mate search reduced the selectivity of mating partners, where males immediately paired with any encountering females. Thus, termites dramatically changed their mate search behavior depending on their internal states. Our finding highlights that accounting for the searchers' internal states is essential to fill the gap between random search theories and empirical behavioral observations.
Collapse
|
3
|
Shirai K, Shimamura K, Koubara A, Shigaki S, Fujisawa R. Development of a behavioral trajectory measurement system (Bucket-ANTAM) for organisms moving in a two-dimensional plane. ARTIFICIAL LIFE AND ROBOTICS 2022. [DOI: 10.1007/s10015-022-00811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Wang Y, Hayashibe M, Owaki D. Prediction of Whole-Body Velocity and Direction From Local Leg Joint Movements in Insect Walking via LSTM Neural Networks. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3191850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuchen Wang
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Mitsuhiro Hayashibe
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Dai Owaki
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Fukai K, Ogai Y, Shinohara S, Moriyama T. Evaluation of turn alternation in pill bugs using omnidirectional motion compensator ANTAM. ARTIFICIAL LIFE AND ROBOTICS 2022. [DOI: 10.1007/s10015-022-00802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Maekawa T, Higashide D, Hara T, Matsumura K, Ide K, Miyatake T, Kimura KD, Takahashi S. Cross-species behavior analysis with attention-based domain-adversarial deep neural networks. Nat Commun 2021; 12:5519. [PMID: 34535659 PMCID: PMC8448872 DOI: 10.1038/s41467-021-25636-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/19/2021] [Indexed: 01/12/2023] Open
Abstract
Since the variables inherent to various diseases cannot be controlled directly in humans, behavioral dysfunctions have been examined in model organisms, leading to better understanding their underlying mechanisms. However, because the spatial and temporal scales of animal locomotion vary widely among species, conventional statistical analyses cannot be used to discover knowledge from the locomotion data. We propose a procedure to automatically discover locomotion features shared among animal species by means of domain-adversarial deep neural networks. Our neural network is equipped with a function which explains the meaning of segments of locomotion where the cross-species features are hidden by incorporating an attention mechanism into the neural network, regarded as a black box. It enables us to formulate a human-interpretable rule about the cross-species locomotion feature and validate it using statistical tests. We demonstrate the versatility of this procedure by identifying locomotion features shared across different species with dopamine deficiency, namely humans, mice, and worms, despite their evolutionary differences.
Collapse
Affiliation(s)
- Takuya Maekawa
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.
| | - Daiki Higashide
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Takahiro Hara
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | | | - Kaoru Ide
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Takahisa Miyatake
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | | - Susumu Takahashi
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
7
|
Berry R. The Behavioral Response to Heat in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1626-1637. [PMID: 33704449 PMCID: PMC8285017 DOI: 10.1093/jme/tjab020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 06/12/2023]
Abstract
The bed bug, Cimex lectularius L., is a common ectoparasite found to live among its vertebrate hosts. Antennal segments in bugs are critical for sensing multiple cues in the environment for survival. To determine whether the thermo receptors of bed bugs are located on their antennae; innovative bioassays were created to observe the choice between heated and unheated stimuli and to characterize the response of bugs to a heat source. Additionally, the effect of complete antenectomized segments on heat detection were evaluated. Heat, carbon dioxide, and moisture are cues that are found to activate bed bug behavior; a temperature at 38°C was used to assess the direction/degree at which the insect reacts to the change in distance from said stimulus. Using a lightweight spherical ball suspended by air through a vacuum tube, bed bugs and other insects are able to move in 360° while on a stationary point. Noldus EthoVision XT was used to capture video images and to track the bed bugs during 5-min bioassays. A bioassay was created using four Petri dish arenas to observe bed bug attraction to heat based on antennae segments at 40°C. The purpose of this study was to evaluate the effects of heat on complete antenectomized segments of the antennae. The results in this experiment suggest that bed bugs detect and are attracted to heat modulated by nutritional status. Learning the involvement of antennae segments in heat detection will help identify the location and role of thermoreceptors for bed bug host interaction.
Collapse
Affiliation(s)
- Raymond Berry
- Department of Biology, New Mexico State University, Las Cruces, NM
| |
Collapse
|
8
|
Ant foragers might present variation and universal property in their movements. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:429-435. [PMID: 33860356 DOI: 10.1007/s00359-021-01484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Investigating the locomotion mechanisms of animals improves our understanding of both their inherent movements and responses to external stimuli. Moreover, identifying the movement patterns of animals reveals their foraging search efficiency. The navigational mechanisms of foraging ants have been well studied; they present typical search strategies for pinpointing their goal. However, the detailed movement patterns of ants and the properties of their exploratory behaviors have yet to be fully studied, perhaps because of the inherent difficulty in investigating ants on a restricted flat field (on which they tend to walk along walls and stop moving around corners). Here, we address this problem using a spherical treadmill system (ANTAM), and we use this system to investigate the diffusiveness of Japanese wood ants' movements. On the treadmill, the ants walked over long distances without any restrictions. We found that the diffusiveness of movements varied across individuals and depended on time. Interestingly, further analysis indicated that the evolution of individual walkers' travel paths exhibited pink noise, even if individuals apparently produced different types of trajectories. Such complex paths may be related to optimized search strategies since ants produced both small and long paths unpredictably.
Collapse
|
9
|
Pun P, Brown J, Cobb T, Wessells RJ, Kim DH. Navigation of a Freely Walking Fruit Fly in Infinite Space Using a Transparent Omnidirectional Locomotion Compensator (TOLC). SENSORS 2021; 21:s21051651. [PMID: 33673520 PMCID: PMC7956841 DOI: 10.3390/s21051651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 01/22/2023]
Abstract
Animal behavior is an essential element in behavioral neuroscience study. However, most behavior studies in small animals such as fruit flies (Drosophilamelanogaster) have been performed in a limited spatial chamber or by tethering the fly's body on a fixture, which restricts its natural behavior. In this paper, we developed the Transparent Omnidirectional Locomotion Compensator (TOLC) for a freely walking fruit fly without tethering, which enables its navigation in infinite space. The TOLC maintains a position of a fruit fly by compensating its motion using the transparent sphere. The TOLC is capable of maintaining the position error < 1 mm for 90.3% of the time and the heading error < 5° for 80.2% of the time. The inverted imaging system with a transparent sphere secures the space for an additional experimental apparatus. Because the proposed TOLC allows us to observe a freely walking fly without physical tethering, there is no potential injury during the experiment. Thus, the TOLC will offer a unique opportunity to investigate longitudinal studies of a wide range of behavior in an unrestricted walking Drosophila.
Collapse
Affiliation(s)
- Pikam Pun
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA;
| | - Jacobs Brown
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA 30060, USA;
| | - Tyler Cobb
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA; (T.C.); (R.J.W.)
| | - Robert J. Wessells
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA; (T.C.); (R.J.W.)
| | - Dal Hyung Kim
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA 30060, USA;
- Correspondence:
| |
Collapse
|
10
|
Goulard R, Buehlmann C, Niven JE, Graham P, Webb B. A motion compensation treadmill for untethered wood ants ( Formica rufa): evidence for transfer of orientation memories from free-walking training. ACTA ACUST UNITED AC 2020; 223:223/24/jeb228601. [PMID: 33443039 PMCID: PMC7774907 DOI: 10.1242/jeb.228601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
The natural scale of insect navigation during foraging makes it challenging to study under controlled conditions. Virtual reality and trackball setups have offered experimental control over visual environments while studying tethered insects, but potential limitations and confounds introduced by tethering motivates the development of alternative untethered solutions. In this paper, we validate the use of a motion compensator (or ‘treadmill’) to study visually driven behaviour of freely moving wood ants (Formica rufa). We show how this setup allows naturalistic walking behaviour and preserves foraging motivation over long time frames. Furthermore, we show that ants are able to transfer associative and navigational memories from classical maze and arena contexts to our treadmill. Thus, we demonstrate the possibility to study navigational behaviour over ecologically relevant durations (and virtual distances) in precisely controlled environments, bridging the gap between natural and highly controlled laboratory experiments. Summary: We have developed and validated a motion compensating treadmill for wood ants which opens new perspectives to study insect navigation behaviour in a fully controlled manner over ecologically relevant durations.
Collapse
Affiliation(s)
- Roman Goulard
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | | | - Jeremy E Niven
- University of Sussex, School of Life Sciences, Brighton BN1 9QG, UK
| | - Paul Graham
- University of Sussex, School of Life Sciences, Brighton BN1 9QG, UK
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
11
|
Maekawa T, Ohara K, Zhang Y, Fukutomi M, Matsumoto S, Matsumura K, Shidara H, Yamazaki SJ, Fujisawa R, Ide K, Nagaya N, Yamazaki K, Koike S, Miyatake T, Kimura KD, Ogawa H, Takahashi S, Yoda K. Deep learning-assisted comparative analysis of animal trajectories with DeepHL. Nat Commun 2020; 11:5316. [PMID: 33082335 PMCID: PMC7576204 DOI: 10.1038/s41467-020-19105-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
A comparative analysis of animal behavior (e.g., male vs. female groups) has been widely used to elucidate behavior specific to one group since pre-Darwinian times. However, big data generated by new sensing technologies, e.g., GPS, makes it difficult for them to contrast group differences manually. This study introduces DeepHL, a deep learning-assisted platform for the comparative analysis of animal movement data, i.e., trajectories. This software uses a deep neural network based on an attention mechanism to automatically detect segments in trajectories that are characteristic of one group. It then highlights these segments in visualized trajectories, enabling biologists to focus on these segments, and helps them reveal the underlying meaning of the highlighted segments to facilitate formulating new hypotheses. We tested the platform on a variety of trajectories of worms, insects, mice, bears, and seabirds across a scale from millimeters to hundreds of kilometers, revealing new movement features of these animals.
Collapse
Affiliation(s)
- Takuya Maekawa
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.
| | - Kazuya Ohara
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Yizhe Zhang
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | | | - Sakiko Matsumoto
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Kentarou Matsumura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Hokkaido University, Hokkaido, Japan
| | | | - Ryusuke Fujisawa
- Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Kaoru Ide
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Naohisa Nagaya
- Department of Intelligent Systems, Kyoto Sangyo University, Kyoto, Japan
| | - Koji Yamazaki
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Shinsuke Koike
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takahisa Miyatake
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Osaka University, Osaka, Japan
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Hokkaido University, Hokkaido, Japan
| | - Susumu Takahashi
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Shokaku T, Moriyama T, Murakami H, Shinohara S, Manome N, Morioka K. Development of an automatic turntable-type multiple T-maze device and observation of pill bug behavior. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:104104. [PMID: 33138567 DOI: 10.1063/5.0009531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
In recent years, various animal observation instruments have been developed to support long-term measurement and analysis of animal behaviors. This study proposes an automatic observation instrument that specializes for turning behaviors of pill bugs and aims to obtain new knowledge in the field of ethology. Pill bugs strongly tend to turn in the opposite direction of a preceding turn. This alternation of turning is called turn alternation reaction. However, a repetition of turns in the same direction is called turn repetition reaction and has been considered a malfunction of turn alternation. In this research, the authors developed an automatic turntable-type multiple T-maze device and observed the turning behavior of 34 pill bugs for 6 h to investigate whether turn repetition is a malfunction. As a result, most of the pill bug movements were categorized into three groups: sub-diffusion, Brownian motion, and Lévy walk. This result suggests that pill bugs do not continue turn alternation mechanically but elicit turn repetition moderately, which results in various movement patterns. In organisms with relatively simple nervous systems such as pill bugs, stereotypical behaviors such as turn alternation have been considered mechanical reactions and variant behaviors such as turn repetition have been considered malfunctions. However, our results suggest that a moderate generation of turn repetition is involved in the generation of various movement patterns. This study is expected to provide a new perspective on the conventional view of the behaviors of simple organisms.
Collapse
Affiliation(s)
- Takaharu Shokaku
- Department of Network Design, Meiji University, Nakano, Tokyo 164-8525, Japan
| | - Toru Moriyama
- Faculty of Texitile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Hisashi Murakami
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo 153-8904, Japan
| | - Shuji Shinohara
- Faculty of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Nobuhito Manome
- Faculty of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuyuki Morioka
- Department of Network Design, Meiji University, Nakano, Tokyo 164-8525, Japan
| |
Collapse
|
13
|
Abstract
A special class of random walks, so-called Lévy walks, has been observed in a variety of organisms ranging from cells, insects, fishes, and birds to mammals, including humans. Although their prevalence is considered to be a consequence of natural selection for higher search efficiency, some findings suggest that Lévy walks might also be epiphenomena that arise from interactions with the environment. Therefore, why they are common in biological movements remains an open question. Based on some evidence that Lévy walks are spontaneously generated in the brain and the fact that power-law distributions in Lévy walks can emerge at a critical point, we hypothesized that the advantages of Lévy walks might be enhanced by criticality. However, the functional advantages of Lévy walks are poorly understood. Here, we modeled nonlinear systems for the generation of locomotion and showed that Lévy walks emerging near a critical point had optimal dynamic ranges for coding information. This discovery suggested that Lévy walks could change movement trajectories based on the magnitude of environmental stimuli. We then showed that the high flexibility of Lévy walks enabled switching exploitation/exploration based on the nature of external cues. Finally, we analyzed the movement trajectories of freely moving Drosophila larvae and showed empirically that the Lévy walks may emerge near a critical point and have large dynamic range and high flexibility. Our results suggest that the commonly observed Lévy walks emerge near a critical point and could be explained on the basis of these functional advantages.
Collapse
|
14
|
Abstract
In this article, we make a detailed study of some mathematical aspects associated with a generalized Lévy process using fractional diffusion equation with Mittag–Leffler kernel in the context of Atangana–Baleanu operator. The Lévy process has several applications in science, with a particular emphasis on statistical physics and biological systems. Using the continuous time random walk, we constructed a fractional diffusion equation that includes two fractional operators, the Riesz operator to Laplacian term and the Atangana–Baleanu in time derivative, i.e., a A B D t α ρ ( x , t ) = K α , μ ∂ x μ ρ ( x , t ) . We present the exact solution to model and discuss how the Mittag–Leffler kernel brings a new point of view to Lévy process. Moreover, we discuss a series of scenarios where the present model can be useful in the description of real systems.
Collapse
|
15
|
Iwatani Y, Ogawa H, Shidara H, Sakura M, Sato T, Hojo MK, Honma A, Tsurui-Sato K. Markerless visual servo control of a servosphere for behavior observation of a variety of wandering animals. Adv Robot 2019. [DOI: 10.1080/01691864.2019.1570334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yasushi Iwatani
- Department of Science and Technology, Hirosaki University, Hirosaki, Japan
| | - Hiroto Ogawa
- Department of Biological Science, Hokkaido University, Sapporo, Japan
| | - Hisashi Shidara
- Department of Biological Science, Hokkaido University, Sapporo, Japan
| | | | - Takuya Sato
- Department of Biology, Kobe University, Kobe, Japan
| | - Masaru K. Hojo
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Atsushi Honma
- Okinawa Prefectural Plant Protection Center, Naha, Japan
- Graduate School of Agriculture, University of the Ryukyus, Nishihara, Japan
| | - Kaori Tsurui-Sato
- Center for Strategic Research Project, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
16
|
Murano J, Mitsuishi M, Moriyama T. Behavioral pattern of pill bugs revealed in virtually infinite multiple T-maze. ARTIFICIAL LIFE AND ROBOTICS 2018. [DOI: 10.1007/s10015-018-0457-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|