1
|
Enríquez-Flores S, De la Mora-De la Mora I, García-Torres I, Flores-López LA, Martínez-Pérez Y, López-Velázquez G. Human Triosephosphate Isomerase Is a Potential Target in Cancer Due to Commonly Occurring Post-Translational Modifications. Molecules 2023; 28:6163. [PMID: 37630415 PMCID: PMC10459230 DOI: 10.3390/molecules28166163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer involves a series of diseases where cellular growth is not controlled. Cancer is a leading cause of death worldwide, and the burden of cancer incidence and mortality is rapidly growing, mainly in developing countries. Many drugs are currently used, from chemotherapeutic agents to immunotherapy, among others, along with organ transplantation. Treatments can cause severe side effects, including remission and progression of the disease with serious consequences. Increased glycolytic activity is characteristic of cancer cells. Triosephosphate isomerase is essential for net ATP production in the glycolytic pathway. Notably, some post-translational events have been described that occur in human triosephosphate isomerase in which functional and structural alterations are provoked. This is considered a window of opportunity, given the differences that may exist between cancer cells and their counterpart in normal cells concerning the glycolytic enzymes. Here, we provide elements that bring out the potential of triosephosphate isomerase, under post-translational modifications, to be considered an efficacious target for treating cancer.
Collapse
Affiliation(s)
- Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Luis A. Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, CONAHCYT-Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Yoalli Martínez-Pérez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Mexico City 14380, Mexico;
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| |
Collapse
|
2
|
Peerapen P, Boonmark W, Thongboonkerd V. Characterizations of annexin A1-interacting proteins in apical membrane and cytosolic compartments of renal tubular epithelial cells. Comput Struct Biotechnol J 2023; 21:3796-3809. [PMID: 37560129 PMCID: PMC10407547 DOI: 10.1016/j.csbj.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Annexin A1 (ANXA1) is a multifunctional calcium-binding protein that can bind to membrane phospholipids. Under high-calcium condition, ANXA1 expression increases on renal epithelial cell surface, leading to enhanced adhesion of calcium oxalate (CaOx) crystal (stone material) onto the cells. To regulate various cellular processes, ANXA1 interacts with many other intracellular protein partners. However, components of the ANXA1-interacting protein complex remain unclear. Herein, we characterized the interacting complexes of apical membrane (ApANXA1) and cytosolic (cyANXA1) forms of ANXA1 in apical membrane and cytosolic compartments, respectively, of renal epithelial cells under high-calcium condition using proteomic and bioinformatic approaches. After fractionation, the ApANXA1- and CyANXA1-interacting partners were identified by immunoprecipitation followed by nanoLC‑ESI‑Qq-TOF tandem mass spectrometry (IP-MS/MS). The ANXA1-interacting partners that were common in both apical membrane and cytosolic compartments and those unique in each compartment were then analyzed for their physico-chemical properties (molecular weight, isoelectric point, amino acid contents, instability index, aliphatic index, and grand average of hydropathicity), secondary structure (α-helix, β-turn, random coil, and extended strand), molecular functions, biological processes, reactome pathways and KEGG pathways. The data demonstrated that each set of these interacting proteins exhibited common and unique characteristics and properties. The knowledge from this study may lead to better understanding of the ApANXA1 and CyAXNA1 biochemistry and functions as well as the pathophysiology of CaOx kidney stone formation induced by high-calcium condition.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Li Y, Wang D, Ge H, Güngör C, Gong X, Chen Y. Cytoskeletal and Cytoskeleton-Associated Proteins: Key Regulators of Cancer Stem Cell Properties. Pharmaceuticals (Basel) 2022; 15:1369. [PMID: 36355541 PMCID: PMC9698833 DOI: 10.3390/ph15111369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 08/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells possessing stemness characteristics that are closely associated with tumor proliferation, recurrence and resistance to therapy. Recent studies have shown that different cytoskeletal components and remodeling processes have a profound impact on the behavior of CSCs. In this review, we outline the different cytoskeletal components regulating the properties of CSCs and discuss current and ongoing therapeutic strategies targeting the cytoskeleton. Given the many challenges currently faced in targeted cancer therapy, a deeper comprehension of the molecular events involved in the interaction of the cytoskeleton and CSCs will help us identify more effective therapeutic strategies to eliminate CSCs and ultimately improve patient survival.
Collapse
Affiliation(s)
- Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cenap Güngör
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xuejun Gong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Promiscuity mapping of the S100 protein family using a high-throughput holdup assay. Sci Rep 2022; 12:5904. [PMID: 35393447 PMCID: PMC8991199 DOI: 10.1038/s41598-022-09574-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
S100 proteins are small, typically homodimeric, vertebrate-specific EF-hand proteins that establish Ca2+-dependent protein-protein interactions in the intra- and extracellular environment and are overexpressed in various pathologies. There are about 20 distinct human S100 proteins with numerous potential partner proteins. Here, we used a quantitative holdup assay to measure affinity profiles of most members of the S100 protein family against a library of chemically synthetized foldamers. The profiles allowed us to quantitatively map the binding promiscuity of each member towards the foldamer library. Since the library was designed to systematically contain most binary natural amino acid side chain combinations, the data also provide insight into the promiscuity of each S100 protein towards all potential naturally occurring S100 partners in the human proteome. Such information will be precious for future drug design to interfere with S100 related pathologies.
Collapse
|
5
|
The COVID-19 Cell Signalling Problem: Spike, RAGE, PKC, p38, NFκB & IL-6 Hyper-Expression and the Human Ezrin Peptide, VIP, PKA-CREB Solution. IMMUNO 2022. [DOI: 10.3390/immuno2020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
SARS-CoV-2 infection inhibits interferon expression, while hyper-activating innate-immune signalling and expression of pro-inflammatory cytokines. SARS-CoV-2 proteins: Spike, M and nsp6, nsp12 and nsp13 inhibit IFR3-mediated Type-1-interferon defence, but hyper-activate intracellular signalling, which leads to dysfunctional expression of pro-inflammatory cytokines, particularly IL-1β IL-6, IL-8, and TNFα. Ezrin, a sub-membrane adaptor-protein, organises multi-protein-complexes such as ezrin+NHERF1+NHE+CFTR, which control the density and location of ACE2 receptor expression on the luminal surface of airway-epithelial-cells, as well as determining susceptibility to SARS-CoV-2 infection. This protein complex is vital for lung-surfactant production for efficient gas-exchange. Ezrin also forms multi-protein-complexes that regulate signalling kinases; Ras, PKC, PI3K, and PKA. m-RAGE is a pattern-recognition-receptor of the innate immune system that is triggered by AGEs, which are chemically modified proteins common in the elderly and obese. m-RAGE forms multi-protein complexes with ezrin and TIRAP, a toll-like-receptor adaptor-protein. The main cause of COVID-19 is not viral infection but pro-inflammatory p38MAPK signalling mediated by TLRs and RAGE. In contrast, it appears that activated ezrin+PKA signalling results in the activation of transcription-factor CREB, which suppresses NFκB mediated pro-inflammatory cytokine expression. In addition, competition between ezrin and TIRAP to form multi-protein-complexes on membrane PIP2-lipid-rafts is a macromolecular-switch that changes the priority from innate immune activation programs to adaptive immune activation programs. Human Vasoactive Intestinal Peptide (VIP), and Human Ezrin Peptides (HEP-1 and RepG3) probably inhibit COVID-19 by activating the ezrin+PKA and ras>Raf>MEK>ERK>RSK>CREB>IL-10 signalling, which favours activation of adaptive immunity programs and inhibition of the dysfunctional innate-inflammation, the cause of COVID-19. HEP-1, RepG3, and VIP in individual human volunteers and in small clinical studies have been shown to be effective COVID-19 therapies, and seem to have a closely related mechanism of action.
Collapse
|
6
|
A biophysical perspective of the regulatory mechanisms of ezrin/radixin/moesin proteins. Biophys Rev 2022; 14:199-208. [PMID: 35340609 PMCID: PMC8921360 DOI: 10.1007/s12551-021-00928-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Many signal transductions resulting from ligand-receptor interactions occur at the cell surface. These signaling pathways play essential roles in cell polarization, membrane morphogenesis, and the modulation of membrane tension at the cell surface. However, due to the large number of membrane-binding proteins, including actin-membrane linkers, and transmembrane proteins present at the cell surface, the molecular mechanisms underlying the regulation at the cell surface are yet unclear. Here, we describe the molecular functions of one of the key players at the cell surface, ezrin/radixin/moesin (ERM) proteins from a biophysical point of view. We focus our discussion on biophysical properties of ERM proteins revealed by using biophysical tools in live cells and in vitro reconstitution systems. We first describe the structural properties of ERM proteins and then discuss the interactions of ERM proteins with PI(4,5)P2 and the actin cytoskeleton. These properties of ERM proteins revealed by using biophysical approaches have led to a better understanding of their physiological functions in cells and tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00928-0.
Collapse
|
7
|
Sebák F, Horváth LB, Kovács D, Szolomájer J, Tóth GK, Babiczky Á, Bősze S, Bodor A. Novel Lysine-Rich Delivery Peptides of Plant Origin ERD and Human S100: The Effect of Carboxyfluorescein Conjugation, Influence of Aromatic and Proline Residues, Cellular Internalization, and Penetration Ability. ACS OMEGA 2021; 6:34470-34484. [PMID: 34963932 PMCID: PMC8697381 DOI: 10.1021/acsomega.1c04637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
The need for novel drug delivery peptides is an important issue of the modern pharmaceutical research. Here, we test K-rich peptides from plant dehydrin ERD14 (ERD-A, ERD-B, and ERD-C) and the C-terminal CPP-resembling region of S100A4 (S100) using the 5(6)-carboxyfluorescein (Cf) tag at the N-terminus. Via a combined pH-dependent NMR and fluorescence study, we analyze the effect of the Cf conjugation/modification on the structural behavior, separately investigating the (5)-Cf and (6)-Cf forms. Flow cytometry results show that all peptides internalize; however, there is a slight difference between the cellular internalization of (5)- and (6)-Cf-peptides. We indicate the possible importance of residues with an aromatic sidechain and proline. We prove that ERD-A localizes mostly in the cytosol, ERD-B and S100 have partial colocalization with lysosomal staining, and ERD-C mainly localizes within vesicle-like compartments, while the uptake mechanism mainly occurs through energy-dependent paths.
Collapse
Affiliation(s)
- Fanni Sebák
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Doctoral
School of Pharmaceutical Sciences, Semmelweis
University, Üllői
út 26, H-1085 Budapest, Hungary
| | - Lilla Borbála Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - Dániel Kovács
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - János Szolomájer
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor K. Tóth
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ákos Babiczky
- Institute
of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Doctoral
School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
| | - Andrea Bodor
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
| |
Collapse
|
8
|
Ecsédi P, Gógl G, Nyitray L. Studying the Structures of Relaxed and Fuzzy Interactions: The Diverse World of S100 Complexes. Front Mol Biosci 2021; 8:749052. [PMID: 34708078 PMCID: PMC8542695 DOI: 10.3389/fmolb.2021.749052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
S100 proteins are small, dimeric, Ca2+-binding proteins of considerable interest due to their associations with cancer and rheumatic and neurodegenerative diseases. They control the functions of numerous proteins by forming protein–protein complexes with them. Several of these complexes were found to display “fuzzy” properties. Examining these highly flexible interactions, however, is a difficult task, especially from a structural biology point of view. Here, we summarize the available in vitro techniques that can be deployed to obtain structural information about these dynamic complexes. We also review the current state of knowledge about the structures of S100 complexes, focusing on their often-asymmetric nature.
Collapse
Affiliation(s)
- Péter Ecsédi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
9
|
Kim B, Jung S, Kim H, Kwon JO, Song MK, Kim MK, Kim HJ, Kim HH. The role of S100A4 for bone metastasis in prostate cancer cells. BMC Cancer 2021; 21:137. [PMID: 33549040 PMCID: PMC7868026 DOI: 10.1186/s12885-021-07850-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Prostate cancers frequently metastasize to bone, where the best microenvironment for distant colonization is provided. Since osteotropic metastasis of prostate cancer is a critical determinant of patients' survival, searches for preventive measures are ongoing in the field. Therefore, it is important to dissect the mechanisms of each step of bone metastasis, including the epithelial-mesenchymal transition (EMT) and cross-talk between metastatic niches and cancer cells. METHODS In this study, we established a highly bone-metastatic subline of human prostate cancer cells by selecting bone-homing population of PC3 cells after cardiac injection of eight-week-old male BALB/c-nude mice. Then we assessed the proliferation, EMT characteristics, and migration properties of the subline (mtPC3) cells in comparison with the parental PC3 cells. To investigate the role of S100A4, we performed gene knock-down by lentiviral transduction, or treated cells with recombinant S100A4 protein or a S100A4-neutralizing antibody. The effect of cancer cells on osteoclastogenesis was evaluated after treatment of pre-osteoclasts with conditioned medium (CM) from cancer cells. RESULTS The mtPC3 cells secreted a markedly high level of S100A4 protein and showed elevated cell proliferation and mesenchymal properties. The increased proliferation and EMT traits of mtPC3 cells was inhibited by S100A4 knock-down, but was not affected by exogenous S100A4. Furthermore, S100A4 released from mtPC3 cells stimulated osteoclast development via the cell surface receptor RAGE. Down-regulation or neutralization of S100A4 in the CM of mtPC3 cells attenuated cancer-induced osteoclastogenesis. CONCLUSION Altogether, our results suggest that intracellular S100A4 promotes cell proliferation and EMT characteristics in tumor cells, and that secreted S100A4 activates osteoclastogenesis, contributing to osteolytic bone metastasis. Thus, S100A4 upregulation in cancer cells highly metastatic to bone might be a key element in regulating bone metastasis.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
- Current address: Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Suhan Jung
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Haemin Kim
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York City, NY, USA
| | - Jun-Oh Kwon
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Min-Kyoung Song
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Hyung Joon Kim
- Department of Oral Physiology, BK21 PLUS Project, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Mulgeum-eup, Yangsan, Busan, 50612, South Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080.
| |
Collapse
|
10
|
Dudás EF, Pálfy G, Menyhárd DK, Sebák F, Ecsédi P, Nyitray L, Bodor A. Tumor-Suppressor p53TAD 1-60 Forms a Fuzzy Complex with Metastasis-Associated S100A4: Structural Insights and Dynamics by an NMR/MD Approach. Chembiochem 2020; 21:3087-3095. [PMID: 32511842 PMCID: PMC7689910 DOI: 10.1002/cbic.202000348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Conformationally flexible protein complexes represent a major challenge for structural and dynamical studies. We present herein a method based on a hybrid NMR/MD approach to characterize the complex formed between the disordered p53TAD1-60 and the metastasis-associated S100A4. Disorder-to-order transitions of both TAD1 and TAD2 subdomains upon interaction is detected. Still, p53TAD1-60 remains highly flexible in the bound form, with residues L26, M40, and W53 being anchored to identical hydrophobic pockets of the S100A4 monomer chains. In the resulting "fuzzy" complex, the clamp-like binding of p53TAD1-60 relies on specific hydrophobic anchors and on the existence of extended flexible segments. Our results demonstrate that structural and dynamical NMR parameters (cumulative Δδ, SSP, temperature coefficients, relaxation time, hetNOE) combined with MD simulations can be used to build a structural model even if, due to high flexibility, the classical solution structure calculation is not possible.
Collapse
Affiliation(s)
- Erika F. Dudás
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
| | - Dóra K. Menyhárd
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
- MTA-ELTE Protein Modelling Research GroupPázmány Péter sétány. 1/aBudapest1117Hungary
| | - Fanni Sebák
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
- Doctoral School of Pharmaceutical SciencesSemmelweis UniversityÜllői út 26Budapest1085Hungary
| | - Péter Ecsédi
- Department of BiochemistryEötvös Loránd UniversityPázmány Péter sétány 1/cBudapest1117Hungary
| | - László Nyitray
- Department of BiochemistryEötvös Loránd UniversityPázmány Péter sétány 1/cBudapest1117Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
| |
Collapse
|
11
|
Ezrin interacts with L-periaxin by the "head to head and tail to tail" mode and influences the location of L-periaxin in Schwann cell RSC96. Biochim Biophys Acta Gen Subj 2020; 1864:129520. [PMID: 31931020 DOI: 10.1016/j.bbagen.2020.129520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/31/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
In the peripheral nervous system (PNS), Schwann cells (SCs) are required for the myelination of axons. Periaxin (PRX), one of the myelination proteins expressed in SCs, is critical for the normal development and maintenance of PNS. As a member of the ERM (ezrin-radxin-moesin) protein family, ezrin holds our attention since their link to the formation of the nodes of Ranvier. Furthermore, PRX and ezrin are co-expressed in cytoskeletal complexes with periplakin and desmoyokin in lens fiber cells. In the present study, we observed that L-periaxin and ezrin interacted in a "head to head and tail to tail" mode in SC RSC96 through NLS3 region of L-periaxin with F3 subdomain of ezrin interaction, and the region of L-periaxin (residues 1368-1461) with ezrin (residues 475-557) interaction. A phosphorylation-mimicking mutation of ezrin resulted in L-periaxin accumulation on SC RSC96 membrane. Ezrin could inhibit the self-association of L-periaxin, and ezrin overexpression in sciatic nerve injury rats could facilitate the repair of impaired myelin sheath. Therefore, the interaction between L-periaxin and ezrin may adopt a close form to complete protein accumulation and to participate in myelin sheath maintenance.
Collapse
|
12
|
Simon MA, Ecsédi P, Kovács GM, Póti ÁL, Reményi A, Kardos J, Gógl G, Nyitray L. High-throughput competitive fluorescence polarization assay reveals functional redundancy in the S100 protein family. FEBS J 2020; 287:2834-2846. [PMID: 31837246 DOI: 10.1111/febs.15175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/02/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022]
Abstract
The calcium-binding, vertebrate-specific S100 protein family consists of 20 paralogs in humans (referred as the S100ome), with several clinically important members. To explore their protein-protein interactions (PPIs) quantitatively, we have chosen an unbiased, high-throughput, competitive fluorescence polarization (FP) assay that revealed a partial functional redundancy when the complete S100ome (n = 20) was tested against numerous model partners (n = 13). Based on their specificity, the S100ome can be grouped into two distinct classes: promiscuous and orphan. In the first group, members bound to several ligands (> 4-5) with comparable high affinity, while in the second one, the paralogs bound only one partner weakly, or no ligand was identified. Our results demonstrate that FP assays are highly suitable for quantitative interaction profiling of selected protein families. Moreover, we provide evidence that PPI-based phenotypic characterization can complement or even exceed the information obtained from the sequence-based phylogenetic analysis of the S100ome, an evolutionary young protein family.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Péter Ecsédi
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám L Póti
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Reményi
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Universite de Strasbourg, Illkirch, France
| | - László Nyitray
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
13
|
Serrano A, Apolloni S, Rossi S, Lattante S, Sabatelli M, Peric M, Andjus P, Michetti F, Carrì MT, Cozzolino M, D'Ambrosi N. The S100A4 Transcriptional Inhibitor Niclosamide Reduces Pro-Inflammatory and Migratory Phenotypes of Microglia: Implications for Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8101261. [PMID: 31623154 PMCID: PMC6829868 DOI: 10.3390/cells8101261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
S100A4, belonging to a large multifunctional S100 protein family, is a Ca2+-binding protein with a significant role in stimulating the motility of cancer and immune cells, as well as in promoting pro-inflammatory properties in different cell types. In the CNS, there is limited information concerning S100A4 presence and function. In this study, we analyzed the expression of S100A4 and the effect of the S100A4 transcriptional inhibitor niclosamide in murine activated primary microglia. We found that S100A4 was strongly up-regulated in reactive microglia and that niclosamide prevented NADPH oxidase 2, mTOR (mammalian target of rapamycin), and NF-κB (nuclear factor-kappa B) increase, cytoskeletal rearrangements, migration, and phagocytosis. Furthermore, we found that S100A4 was significantly up-regulated in astrocytes and microglia in the spinal cord of a transgenic rat SOD1-G93A model of amyotrophic lateral sclerosis. Finally, we demonstrated the increased expression of S100A4 also in fibroblasts derived from amyotrophic lateral sclerosis (ALS) patients carrying SOD1 pathogenic variants. These results ascribe S100A4 as a marker of microglial reactivity, suggesting the contribution of S100A4-regulated pathways to neuroinflammation, and identify niclosamide as a possible drug in the control and attenuation of reactive phenotypes of microglia, thus opening the way to further investigation for a new application in neurodegenerative conditions.
Collapse
Affiliation(s)
- Alessia Serrano
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Savina Apolloni
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Simona Rossi
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy.
| | - Serena Lattante
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Mario Sabatelli
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Centro Clinico NEMO, 00168 Rome, Italy.
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Mina Peric
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia.
| | - Pavle Andjus
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia.
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Maria Teresa Carrì
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy.
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
14
|
S100A4 released from highly bone-metastatic breast cancer cells plays a critical role in osteolysis. Bone Res 2019; 7:30. [PMID: 31667000 PMCID: PMC6804941 DOI: 10.1038/s41413-019-0068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone destruction induced by breast cancer metastasis causes severe complications, including death, in breast cancer patients. Communication between cancer cells and skeletal cells in metastatic bone microenvironments is a principal element that drives tumor progression and osteolysis. Tumor-derived factors play fundamental roles in this form of communication. To identify soluble factors released from cancer cells in bone metastasis, we established a highly bone-metastatic subline of MDA-MB-231 breast cancer cells. This subline (mtMDA) showed a markedly elevated ability to secrete S100A4 protein, which directly stimulated osteoclast formation via surface receptor RAGE. Recombinant S100A4 stimulated osteoclastogenesis in vitro and bone loss in vivo. Conditioned medium from mtMDA cells in which S100A4 was knocked down had a reduced ability to stimulate osteoclasts. Furthermore, the S100A4 knockdown cells elicited less bone destruction in mice than the control knockdown cells. In addition, administration of an anti-S100A4 monoclonal antibody (mAb) that we developed attenuated the stimulation of osteoclastogenesis and bone loss by mtMDA in mice. Taken together, our results suggest that S100A4 released from breast cancer cells is an important player in the osteolysis caused by breast cancer bone metastasis.
Collapse
|
15
|
S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants (Basel) 2019; 8:antiox8090404. [PMID: 31533268 PMCID: PMC6769533 DOI: 10.3390/antiox8090404] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.
Collapse
|
16
|
Wang Y, Jiang S, Cao Z, Xie C, Li W, Ma Y, Zhang J, Lin L. Detecting the location and significance of Ezrin protein expression in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:248-254. [PMID: 31938107 PMCID: PMC6957936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/07/2017] [Indexed: 06/10/2023]
Abstract
To explore the characteristics of localization and prognostic implication of Ezrin expression in HCC, 92 cases of HCC meeting strict follow-up criteria were selected for immunohistochemical staining of Ezrin protein. Correlations between Ezrin expression and clinicopathological features of HCC were evaluated using Chi-square tests, survival rates were calculated using the Kaplan-Meier method, and the relationship between prognostic factors and patient overallsurvival was analyzed using Cox proportional hazard analysis. In results, Ezrin protein was mainly expressed in the inner side of the cell membrane of the adjacent non tumor tissues, and diffusely expressed in cytoplasm of HCC tissues. There was an obviously difference between the benign and malignant tissues about the location of Ezrin expression. Ezrin strong-expression rates were significantly higher in HCC samples compared with the adjacent non tumor tissues (P<0.05). The Ezrin strong-expression rate was closely related with the differentiation (P<0.01), AJCC stage and metastasis of HCC (P<0.05, respectively). Therefore, the sub-cellular localization of Ezrin protein in the liver cells will be changed in the process of the transformation from the benign to malignant, and Ezrin plays an important role in the progression of HCC.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning UniversityDandong 118003, China
| | - Shaochen Jiang
- Liaoning Coloproctological Hospital, The Third Affiliated Hospital of Liaoning University of Traditional MedicineShenyang 110000, China
| | - Zhongliang Cao
- Department of General Surgery, Dandong Center HospitalDandong 118002, China
| | - Chunxiao Xie
- Department of Emergency, Dandong First HospitalDandong 118001, China
| | - Weidong Li
- Department of Anesthesiology, Dandong First HospitalDandong 118001, China
| | - Yibing Ma
- Department of Pathology, Dandong Center HospitalDandong 118002, China
| | - Jinhui Zhang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning UniversityDandong 118003, China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College of Eastern Liaoning UniversityDandong 118003, China
| |
Collapse
|
17
|
Syed DN, Aljohani A, Waseem D, Mukhtar H. Ousting RAGE in melanoma: A viable therapeutic target? Semin Cancer Biol 2017; 49:20-28. [PMID: 29079306 DOI: 10.1016/j.semcancer.2017.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/28/2017] [Accepted: 10/23/2017] [Indexed: 01/11/2023]
Abstract
Melanoma remains an important health concern, given the steady increase in incidence and acquisition of resistance to systemic therapies. The receptor for advanced glycation end products (RAGE) initially identified for its binding to advanced glycation end products was subsequently acknowledged as a pattern recognition receptor given its ability to recognize similar structural elements within numerous ligands. Recent studies have elucidated a plausible role of RAGE in melanoma progression through modulation of inflammatory, proliferative and invasive cellular responses. Several of its ligands including the S100 proteins and HMGB1 are being investigated for their involvement in melanoma metastasis and as potential biomarkers of the disease. Targeting RAGE signaling represents a viable therapeutic strategy which remains underexplored in cutaneous malignancies. Here we have summarized current knowledge on the functionality of RAGE with special focus on specific ligands enumerated in various in vitro and in vivo melanoma models.
Collapse
Affiliation(s)
- Deeba N Syed
- Department of Dermatology, University of Wisconsin-Madison, United States.
| | - Ahmed Aljohani
- School of Medicine and Public Health, Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison WI 53706, United States; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Durdana Waseem
- Department of Dermatology, University of Wisconsin-Madison, United States
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, United States
| |
Collapse
|