1
|
Hemmings Z, Evans MJ, Andrew NR. Spatial and temporal trends in dung beetle research. PeerJ 2025; 13:e18907. [PMID: 39995986 PMCID: PMC11849510 DOI: 10.7717/peerj.18907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/06/2025] [Indexed: 02/26/2025] Open
Abstract
Dung beetles are one of the most charismatic animal taxa. Their familiarity as ecosystem service providers is clear, but they also play a range of roles in a variety of different ecosystems worldwide. Here, we give an overview of the current state of dung beetle research and the changes in the prevalence of topics in a collated corpus of 4,145 peer-reviewed articles of dung beetle research, spanning from 1930 until 2024. We used a range of text-analysis tools, including topic modelling, to assess how the peer-reviewed literature on dung beetles has changed over this period. Most of the literature is split into three distinct, but related discourses-the agri/biological topics, the ecological topics, and the taxonomic topics. Publications on the 'effect of veterinary chemicals' and 'nesting behaviour' showed the largest drop over time, whereas articles relating to 'ecosystem function' had a meteoric rise from a low presence before the 2000's to being the most prevelant topic of dung beetle research in the last two decades. Research into dung beetles is global, but is dominated by Europe and North America. However, the research from South America, Africa, and Australia ranges wider in topics. Research in temperate and tropical mixed forests, as well as grasslands, savanna and shrublands dominated the corpus, as would be expected from a group of species directly associated with large mammals. Our assessment of dung beetle research comes when ecosystem service provision is becoming more important and more dominant in the literature globally. This review therefore should be of direct interest to dung beetle researchers, as well as researchers working in agricultural, ecological, and taxonomic arenas globally. Research worldwide and across agri/biological, ecological, and taxonomic discourses is imperative for a continued understanding of how dung beetles and their ecosystem services are modified across rapidly changing natural and agricultural landscapes.
Collapse
Affiliation(s)
- Zac Hemmings
- Department of Regional NSW, New South Wales Department of Primary Industries, Coffs Harbour, NSW, Australia
- Insect Ecology Lab, Zoology, University of New England, Lismore, NSW, Australia
| | - Maldwyn J. Evans
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Nigel R. Andrew
- Insect Ecology Lab, Zoology, University of New England, Lismore, NSW, Australia
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
2
|
Nervo B, Laini A, Roggero A, Palestrini C, Rolando A. Spatio-temporal modelling suggests that some dung beetle species (Coleoptera: Geotrupidae) may respond to global warming by boosting dung removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168127. [PMID: 37907105 DOI: 10.1016/j.scitotenv.2023.168127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
In the current framework of changes to the global climate, information on the thermal tolerance of dung beetles is crucial to understand how they might cope with increases in land temperature in terms of survival and ecosystem service provision. In this spatio-temporal modelling study, we investigated the thermal tolerance and effect of temperature changes on dung removal by three dung beetle species (Coleoptera: Geotrupidae) living within the 600-1400 m altitudinal belt in the Italian Alps. We chose large tunneler beetles because of their pivotal role in dung removal and nutrient recycling, important ecosystem services for maintaining the viability and profitability of the Alpine pastoral system. Our study used experimental data on dung removal at different temperatures to predict changes to this ecosystem service in the future considering different climatic scenarios and changes in land use for the specific study area. The results show that the temperature increases incurred between 1981 and 2005 may have boosted rates of spring dung removal across the entire study area (expressed as average dung removal per pair per month), partially compensating for the reduction in grassland extent within pasture-based livestock farming systems. Despite the limitations related to modelling future climate change scenarios and uncertainties deriving from several interacting factors (e.g., the sensitivity of large-bodied species to land-use changes), our results suggest that the predicted increases in temperature over the next 80 years would continue to boost dung removal, revealing a resilience of this service. The increase in dung removal rates, for all three species, is mainly related to the most extreme scenario of carbon emissions and for the months spanning from May to October of the interval 2041-2100. Focusing on large tunnelers and adopting a dynamic approach that considers changes in dung removal over space and time can assist ecosystem service conservation planning.
Collapse
Affiliation(s)
- Beatrice Nervo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Alex Laini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy.
| | - Angela Roggero
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Claudia Palestrini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Antonio Rolando
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
3
|
Perri DV, Bruzzone O, Easdale MH. Ecological relationships between coprophagous insects and livestock production: a review. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:735-747. [PMID: 37855149 DOI: 10.1017/s0007485323000494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The ecological function played by the coprophagous insects is an important issue in livestock production contexts. The role of this fauna, specially dung beetles, provides benefits to both rangelands and production performance. This interaction has been studied and reported in many scientific articles, in very different places and with diverse production contexts. However, a comprehensive review of the relationship between coprophagous insects and livestock production is still lacking. We reviewed the research studies on this topic during the past five decades, with a focus in Scarabaeidae taxon and livestock production, in order to identify further research priorities. We analysed 435 research articles. The main results were: (I) studies were mostly located in temperate broadleaf forest biome, whereas arid environments were less studied; (II) Production practices impacts category was the most studied, for which the effects produced by antiparasitic products on the coprophagous insects (n = 93; 21% of total revised articles) was the topics with major number of articles. Followed was Biology category (n = 69; 16%), then in Ecosystem function category the most frequent studies were on dung removal (n = 40; 9%), whereas in the Ecosystem Services category the most frequent studies were on biological control (n = 28; 6%); (III) Australia, Mexico, Brazil, and United States were the countries with most research articles. We identified some knowledge gaps on relevant ecological functions of this fauna, in relation to benefits to livestock production. There is a need for future research on nutrient cycling, bioturbation, effects on primary production and vegetation diversity.
Collapse
Affiliation(s)
- Daiana V Perri
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Modesta Victoria 4450 San Carlos de Bariloche, CP 8400, Rio Negro, Argentina
| | - Octavio Bruzzone
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Modesta Victoria 4450 San Carlos de Bariloche, CP 8400, Rio Negro, Argentina
| | - Marcos H Easdale
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Modesta Victoria 4450 San Carlos de Bariloche, CP 8400, Rio Negro, Argentina
| |
Collapse
|
4
|
Zilio M, Pigoli A, Rizzi B, Goglio A, Tambone F, Giordano A, Maretto L, Squartini A, Stevanato P, Meers E, Schoumans O, Adani F. Nitrogen dynamics in soils fertilized with digestate and mineral fertilizers: A full field approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161500. [PMID: 36690113 DOI: 10.1016/j.scitotenv.2023.161500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Highly stabilized digestate from sewage sludge and digestate-derived ammonium sulphate (RFs), were used in a comparison with synthetic mineral fertilizers (SF) to crop maize in a three-year plot trial in open fields. RFs and SF were dosed to ensure the same amount of mineral N (ammonia-N). In doing so, plots fertilized with digestate received much more N (+185 kg ha-1 of organic N) because digestate also contained organic N. The fate of nitrogen was studied by measuring mineral and organic N in soil at different depths, ammonia and N2O emissions, and N uptake in crops. Soil analyses indicated that at one-meter depth there was no significant difference in nitrate content between RF, SF and Unfertilized plots during crop season indicating that more N dosed with digestate did not lead to extra nitrate leaching. Ammonia emissions and N content in plants and grains measured were also similar for both RF and SF. Measuring denitrification activity by using gene makers resulted in a higher denitrification activity for RF than SF. Nevertheless, N2O measurements showed that SF emitted more N2O than RF (although it was not statistically different) (7.59 ± 3.2 kgN ha-1 for RF and 10.3 ± 6.8 kgN ha-1 for SF), suggesting that probably the addition of organic matter with digestate to RF, increased the denitrification efficiency so that N2 production was favoured. Soil analyses, although were not able detecting N differences between SF and Rf after three years of cropping, revealed a statistical increasing of total carbon, suggesting that dosing digestate lead to carbon (and maybe N) accumulation in soil. Data seem to suggest that N2O/N2 emission and organic N accumulation in soil can explain the fate of the extra N dosed (organic-N) in RF plots.
Collapse
Affiliation(s)
- Massimo Zilio
- Gruppo Ricicla labs. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| | - Ambrogio Pigoli
- Gruppo Ricicla labs. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Bruno Rizzi
- Gruppo Ricicla labs. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Andrea Goglio
- Gruppo Ricicla labs. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Fulvia Tambone
- Gruppo Ricicla labs. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Andrea Giordano
- Acqua & Sole Srl - Via Giulio Natta, 27010 Vellezzo Bellini, PV, Italy
| | - Laura Maretto
- DAFNAE, Università degli Studi di Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, PD, Italy
| | - Andrea Squartini
- DAFNAE, Università degli Studi di Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, PD, Italy
| | - Piergiorgio Stevanato
- DAFNAE, Università degli Studi di Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, PD, Italy
| | - Erik Meers
- Dept. Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Oscar Schoumans
- Wageningen Environmental Research, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands
| | - Fabrizio Adani
- Gruppo Ricicla labs. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
5
|
García CCV, Dubeux JCB, Martini X, Conover D, Santos ERS, Homem BGC, Ruiz-Moreno M, da Silva IAG, Abreu DS, Queiroz LMD, van Cleef FOS, Santos MVF, Fracetto GGM. The role of dung beetle species in nitrous oxide emission, ammonia volatilization, and nutrient cycling. Sci Rep 2023; 13:3572. [PMID: 36864179 PMCID: PMC9981724 DOI: 10.1038/s41598-023-30523-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
This study evaluated the role of dung beetle species alone or associated under different species on nitrous oxide (N2O) emission, ammonia volatilization, and the performance of pearl millet [Pennisetum glaucum (L.)]. There were seven treatments, including two controls (soil and soil + dung without beetles), single species of Onthophagus taurus [Shreber, 1759] (1), Digitonthophagus gazella [Fabricius, 1787] (2), or Phanaeus vindex [MacLeay, 1819] (3); and their assemblages (1 + 2 and 1 + 2 + 3). Nitrous oxide emission was estimated for 24 days, when pearl millet was planted in sequence to assess growth, nitrogen yield (NY), and dung beetle activity. Dung beetle species presented greater N2O flow of dung on the 6th day (80 g N2O-N ha-1 day-1) compared to soil and dung (2.6 g N2O-N ha-1 day-1). Ammonia emissions varied with the presence of dung beetles (P < 0.05), and D. gazella had less NH3-N on days 1, 6, and 12 with averages of 2061, 1526, and 1048 g ha-1 day-1, respectively. The soil N content increased with dung + beetle application. Dung application affected pearl millet herbage accumulation (HA) regardless of dung beetle presence, and averages ranged from 5 to 8 g DM bucket-1. A PCA analysis was applied to analyze variation and correlation to each variable, but it indicated a low principal component explanation (less than 80%), not enough to explain the variation in findings. Despite the greater dung removal, the largest species, P. vindex and their species combination, need to be more studied to get a better understanding about their contribution on greenhouse gases. The presence of dung beetles prior to planting improved pearl millet production by enhancing N cycling, although assemblages with the three beetle species enhanced N losses to the environment via denitrification.
Collapse
Affiliation(s)
- Carlos C V García
- Deparment of Animal Science, Federal Rural University of Pernambuco, Recife, PE, Brazil.
| | - José C B Dubeux
- University of Florida, North Florida Research and Education Center, Marianna, FL, USA
| | - Xavier Martini
- University of Florida, North Florida Research and Education Center, Marianna, FL, USA
| | - Derick Conover
- University of Florida, North Florida Research and Education Center, Marianna, FL, USA
| | | | | | - Martin Ruiz-Moreno
- University of Florida, North Florida Research and Education Center, Marianna, FL, USA
| | | | | | - Luana M D Queiroz
- University of Florida, North Florida Research and Education Center, Marianna, FL, USA
| | - Flavia O S van Cleef
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Mércia V F Santos
- Deparment of Animal Science, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Giselle G M Fracetto
- Department of Soil Science, Federal Rural University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
6
|
deCastro‐Arrazola I, Andrew NR, Berg MP, Curtsdotter A, Lumaret J, Menéndez R, Moretti M, Nervo B, Nichols ES, Sánchez‐Piñero F, Santos AMC, Sheldon KS, Slade EM, Hortal J. A trait-based framework for dung beetle functional ecology. J Anim Ecol 2023; 92:44-65. [PMID: 36443916 PMCID: PMC10099951 DOI: 10.1111/1365-2656.13829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Traits are key for understanding the environmental responses and ecological roles of organisms. Trait approaches to functional ecology are well established for plants, whereas consistent frameworks for animal groups are less developed. Here we suggest a framework for the study of the functional ecology of animals from a trait-based response-effect approach, using dung beetles as model system. Dung beetles are a key group of decomposers that are important for many ecosystem processes. The lack of a trait-based framework tailored to this group has limited the use of traits in dung beetle functional ecology. We review which dung beetle traits respond to the environment and affect ecosystem processes, covering the wide range of spatial, temporal and biological scales at which they are involved. Dung beetles show trait-based responses to variation in temperature, water, soil properties, trophic resources, light, vegetation structure, competition, predation and parasitism. Dung beetles' influence on ecosystem processes includes trait-mediated effects on nutrient cycling, bioturbation, plant growth, seed dispersal, other dung-based organisms and parasite transmission, as well as some cases of pollination and predation. We identify 66 dung beetle traits that are either response or effect traits, or both, pertaining to six main categories: morphology, feeding, reproduction, physiology, activity and movement. Several traits pertain to more than one category, in particular dung relocation behaviour during nesting or feeding. We also identify 136 trait-response and 77 trait-effect relationships in dung beetles. No response to environmental stressors nor effect over ecological processes were related with traits of a single category. This highlights the interrelationship between the traits shaping body-plans, the multi-functionality of traits, and their role linking responses to the environment and effects on the ecosystem. Despite current developments in dung beetle functional ecology, many knowledge gaps remain, and there are biases towards certain traits, functions, taxonomic groups and regions. Our framework provides the foundations for the thorough development of trait-based dung beetle ecology. It also serves as an example framework for other taxa.
Collapse
Affiliation(s)
- Indradatta deCastro‐Arrazola
- Germans Cabot Franciscans 48BunyolaSpain
- Departamento de Zoología, Facultad de CienciasUniversidad de GranadaGranadaSpain
| | - Nigel R. Andrew
- Insect Ecology Lab, Natural History MuseumUniversity of New EnglandArmidaleNew South WalesAustralia
| | - Matty P. Berg
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Alva Curtsdotter
- Insect Ecology Lab, Natural History MuseumUniversity of New EnglandArmidaleNew South WalesAustralia
| | | | - Rosa Menéndez
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | - Marco Moretti
- Biodiversity and Conservation BiologySwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Beatrice Nervo
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | | | | | - Ana M. C. Santos
- Terrestrial Ecology Group (TEG‐UAM), Departamento de EcologíaUniversidad Autónoma de MadridMadridSpain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM)Universidad Autónoma de MadridMadridSpain
| | - Kimberly S. Sheldon
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUnited States
| | - Eleanor M. Slade
- Asian School of the Environment, Nanyang Technological UniversitySingaporeSingapore
| | - Joaquín Hortal
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
- Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de LisboaLisbonPortugal
| |
Collapse
|
7
|
Gigliotti MS, Togni PHB, Frizzas MR. Attractiveness of dung beetles (Coleoptera: Scarabaeinae) to faeces from native mammals in different trophic guilds. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Marcela Soares Gigliotti
- Programa de Pós‐Graduação em Zoologia, Instituto de Ciências Biológicas Universidade de Brasília (UnB) Brasília Federal District Brazil
| | - Pedro Henrique Brum Togni
- Departamento de Ecologia, Instituto de Ciências Biológicas Universidade de Brasília (UnB) Brasília Federal District Brazil
| | - Marina Regina Frizzas
- Departamento de Zoologia, Instituto de Ciências Biológicas Universidade de Brasília (UnB) Brasília Federal District Brazil
| |
Collapse
|
8
|
Nervo B, Laini A, Roggero A, Fabbriciani F, Palestrini C, Rolando A. Interactions Between Individuals and Sex Rather Than Morphological Traits Drive Intraspecific Dung Removal in Two Dung Beetle Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.863669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dung beetle functional ecology has traditionally focused on studying the relation between traits and ecosystem functions in multispecies assemblages, often ignoring the contribution of behavioral interactions and trait variability within species. Here we focus on the factors that affect dung removal at an intraspecific level in two horned dung beetle species with dimorphic males (Onthophagus taurus and Onthophagus verticicornis). By setting treatments for each species with single individuals (one female, F; one major male, M; one minor male, m) or with pairs of individuals (MF, mF, MM, mm, FF), we examined the effect on dung removal of morphological traits (head, pronotum, leg, horn), sex, and interactions between individuals. Our results showed that dung removal at an intraspecific level depended more on sex and behavioral interactions than on the underlying morphological traits, whose effects on dung removal were negligible. Single females generally removed more dung than single males, which suggests that females are more effective than males. In both species, pairs with at least one female (MF, mF, FF) showed high dung removal efficiency, but did not perform differently from the sum of single treatments (M + F, m + f, F + F). This suggests an additive effect: males and females (or two females) join their efforts when they are together. The pairs with only males (MM and mm) removed less dung than the sum of the single individuals (M + M and m + m), which indicates a mutual inhibition of males. In both species, male morphs performed similarly as they removed the same amount of dung. Despite our results are limited to two Onthophagus species, we suggest that the intraspecific functional ecology of dung beetles might be more influenced by behavioral interactions and sex rather than by morphological traits.
Collapse
|
9
|
Zilio M, Pigoli A, Rizzi B, Herrera A, Tambone F, Geromel G, Meers E, Schoumans O, Giordano A, Adani F. Using highly stabilized digestate and digestate-derived ammonium sulphate to replace synthetic fertilizers: The effects on soil, environment, and crop production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152919. [PMID: 34998783 DOI: 10.1016/j.scitotenv.2022.152919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/01/2022] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Recovered fertilizers (a highly stabilized digestate and ammonium sulphate) obtained from anaerobic digestion of sewage sludge, were used on plot trials with a maize crop, in a comparison with synthetic fertilizers. After three consecutive cropping seasons, the soils fertilized with the recovered fertilizers (RF), compared to those fertilized with synthetic fertilizers (SF), did not show significant differences either in their chemical characteristics or in the accumulation of inorganic and organic pollutants (POPs). The RF ensured an ammonia N availability in the soil equal to that of the soil fertilized with SF, during the whole period of the experiment. Furthermore, no risks of N leaching were detected, and the use of RF did not result in a greater emission of ammonia or greenhouse gases than the use of SF. The agronomic results obtained using RF were equivalent to those obtained with SF (fertilizer use efficiency of 85.3 ± 10 and 93.6 ± 4.4% for RF and SF respectively). The data show that utilising a very stable digestate can be a good strategy to produce a bio-based fertilizer with similar performance to that of a synthetic fertilizer, without environmental risks.
Collapse
Affiliation(s)
- Massimo Zilio
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| | - Ambrogio Pigoli
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Bruno Rizzi
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Axel Herrera
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Fulvia Tambone
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Gabriele Geromel
- Acqua & Sole Srl Via Giulio Natta, 27010 Vellezzo Bellini (PV), Italy
| | - Erik Meers
- Dept. Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Oscar Schoumans
- Wageningen Environmental Research, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands
| | - Andrea Giordano
- Acqua & Sole Srl Via Giulio Natta, 27010 Vellezzo Bellini (PV), Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
10
|
Gotcha N, Cuthbert RN, Machekano H, Nyamukondiwa C. Density-dependent ecosystem service delivery under shifting temperatures by dung beetles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150575. [PMID: 34634717 DOI: 10.1016/j.scitotenv.2021.150575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Increases in the frequency and magnitude of suboptimal temperatures as a result of climate change are subjecting insects to unprecedented stresses. This may negatively affect their fitness and the efficiency of their ecosystem service provision. Dung beetles are ecosystem service providers: through feeding on and burying dung, they facilitate nutrient recycling, secondary seed dispersal, parasite control, soil bioturbation and dung decomposition. As such, prediction of how dung beetles respond to multiple anthropogenic environmental changes is critical for the conservation of ecosystem services. Here, we quantified ecosystem services via dung utilisation and dung ball production in three telecoprid species: Allogymnopleurus indigaceous, Scarabaeus zambezianus and Khepher prodigiosus. We examined ecosystem service efficiency factorially under different beetle densities towards different dung masses and under three temperature treatments (21 °C, 28 °C and 35 °C). Khepher prodigiosus, exhibited greatest dung utilisation efficiency overall across dung masses, compared to both S. zambezianus and A. indigaceous. Dung removal was exhibited under all the tested temperatures by all tested species, and therefore the sub-optimal temperatures employed here did not fully inhibit ecosystem service delivery. However, emergent effects among temperatures, beetle species and beetle density further affected removal efficiency: S. zambezianus and A. indigaceous utilisation increased with both warming and beetle density, whereas K. prodigiosus performance was less temperature- and density-dependent. Beetles also tended to exhibit positive density-dependence as dung supply increased. The numbers of dung balls produced differed across species, and increased with temperature and densities, with S. zambezianus producing significantly most balls overall. Our study provides novel evidence for differential density-dependent ecosystem service delivery among species across stressful temperature regimes and emergent effects for dung mass utilisation. This information is essential for biodiversity-ecosystem-function and is critical for the conservation of functionally efficacious species, with implications for natural capital conservation policy in rapidly changing environments.
Collapse
Affiliation(s)
- Nonofo Gotcha
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany; School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, United Kingdom
| | - Honest Machekano
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
11
|
Herrera A, D’Imporzano G, Zilio M, Pigoli A, Rizzi B, Meers E, Schouman O, Schepis M, Barone F, Giordano A, Adani F. Environmental Performance in the Production and Use of Recovered Fertilizers from Organic Wastes Treated by Anaerobic Digestion vs Synthetic Mineral Fertilizers. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:986-997. [PMID: 35087697 PMCID: PMC8785226 DOI: 10.1021/acssuschemeng.1c07028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/28/2021] [Indexed: 05/06/2023]
Abstract
Recovered fertilizers (RFs), in the form of digestate and digestate-derived ammonium sulfate, were produced from organic wastes by thermophilic anaerobic digestion (AD) at full scale. RFs were then used for crop production (maize), substituting synthetic mineral fertilizers (SFs). Environmental impacts due to both RF and SF production and use were studied by a life cycle assessment (LCA) approach using, as much as possible, data directly measured at full scale. The functional unit chosen was referred to as the fertilization of 1 ha of maize, as this paper intends to investigate the impacts of the use of RF (Scenario RF) for crop fertilization compared to that of SF (Scenario SF). Scenario RF showed better environmental performances than the system encompassing the production and use of urea and synthetic fertilizers (Scenario SF). In particular, for the Scenario RF, 11 of the 18 categories showed a lower impact than the Scenario SF, and 3 of the categories (ionizing radiation, fossil resource scarcity, and water consumption) showed net negative impacts in Scenario RF, getting the benefits from the credit for renewable energy production by AD. The LCA approach also allowed proposing precautions able to reduce further fertilizer impacts, resulting in total negative impacts in using RF for crop production. Anaerobic digestion represents the key to propose a sustainable approach in producing renewable fertilizers, thanks to both energy production and the modification that occurs to waste during a biological process, leaving a substrate (digestate) with high amending and fertilizing properties.
Collapse
Affiliation(s)
- Axel Herrera
- Gruppo
Ricicla—DiSAA, Università
degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giuliana D’Imporzano
- Gruppo
Ricicla—DiSAA, Università
degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Massimo Zilio
- Gruppo
Ricicla—DiSAA, Università
degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Ambrogio Pigoli
- Gruppo
Ricicla—DiSAA, Università
degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Bruno Rizzi
- Gruppo
Ricicla—DiSAA, Università
degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Erik Meers
- Department
of Green Chemistry and Technology, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Oscar Schouman
- Alterra,
Part of Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Micol Schepis
- Acqua
& Sole s.r.l., Via
Giulio Natta, 27010 Vellezzo Bellini, PV, Italy
| | - Federica Barone
- Acqua
& Sole s.r.l., Via
Giulio Natta, 27010 Vellezzo Bellini, PV, Italy
| | - Andrea Giordano
- Acqua
& Sole s.r.l., Via
Giulio Natta, 27010 Vellezzo Bellini, PV, Italy
| | - Fabrizio Adani
- Gruppo
Ricicla—DiSAA, Università
degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
- . Phone: +3902-50316545
| |
Collapse
|
12
|
Nervo B, Roggero A, Isaia M, Chamberlain D, Rolando A, Palestrini C. Integrating thermal tolerance, water balance and morphology: An experimental study on dung beetles. J Therm Biol 2021; 101:103093. [PMID: 34879911 DOI: 10.1016/j.jtherbio.2021.103093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
The impacts of extreme and rising mean temperatures due to climate change can pose significant physiological challenges for insects. An integrated approach that focuses on mechanisms of body temperature regulation, water balance and morphology may help to unravel the functional traits underpinning thermoregulation strategies and the most relevant trade-offs between temperature and water balance regulation. Here, we focused on four species of tunneler dung beetles as important providers of ecosystem services. In this experimental research, we first quantified two traits related to desiccation resistance and tolerance via experimental tests, and subsequently defined two levels of resistance and tolerance (i.e. low and high) according to significant differences among species. Second, we identified morphological traits correlated with water balance strategies, and we found that desiccation resistance and tolerance increased with small relative size of spiracles and wings. High levels of desiccation tolerance were also correlated with small body mass. Third, by integrating thermal tolerance with functional traits based on desiccation resistance and desiccation tolerance, we found that the species with the highest survival rates under elevated temperatures (Euoniticellus fulvus) was characterized by low desiccation resistance and high desiccation tolerance. Our results suggest shared physiological and morphological responses to temperature and desiccation, with potential conflicts between the need to regulate heat and water balance. They also highlighted the sensitivity of a large species such as Geotrupes stercorarius to warm and arid conditions with potential implications for its geographic distribution and the provisioning of ecosystem services under a climate change scenario.
Collapse
Affiliation(s)
- Beatrice Nervo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Angela Roggero
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Dan Chamberlain
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Antonio Rolando
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Claudia Palestrini
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| |
Collapse
|
13
|
Nervo B, Roggero A, Chamberlain D, Caprio E, Rolando A, Palestrini C. Physiological, morphological and ecological traits drive desiccation resistance in north temperate dung beetles. BMC ZOOL 2021; 6:26. [PMID: 37170349 PMCID: PMC10127359 DOI: 10.1186/s40850-021-00089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing temperatures and changes in precipitation patterns threaten the existence of many organisms. It is therefore informative to identify the functional traits that underlie differences in desiccation resistance to understand the response of different species to changes in water availability resulting from climate change. We used adult dung beetles as model species due to their importance to ecosystem services. We investigated: (i) the effect of physiological (water loss rate, water loss tolerance, body water content), morphological (body mass) and ecological (nesting behaviour) traits on desiccation resistance; (ii) the role of phylogenetic relatedness in the above associations; and, (iii) whether relatively large or small individuals within a species have similar desiccation resistance and whether these responses are consistent across species. RESULTS Desiccation resistance decreased with increasing water loss rate and increased with increasing water loss tolerance (i.e. proportion of initial water content lost at the time of death). A lack of consistent correlation between these traits due to phylogenetic relatedness suggests that the relationship is not determined by a shared evolutionary history. The advantage of a large body size in favouring desiccation resistance depended on the nesting behaviour of the dung beetles. In rollers (one species), large body sizes increased desiccation resistance, while in tunnelers and dwellers, desiccation resistance seemed not to be dependent on body mass. The phylogenetic correlation between desiccation resistance and nesting strategies was significant. Within each species, large individuals showed greater resistance to desiccation, and these responses were consistent across species. CONCLUSIONS Resistance to desiccation was explained mainly by the dung beetles' ability to reduce water loss rate (avoidance) and to tolerate water loss (tolerance). A reduction in water availability may impose a selection pressure on body size that varies based on nesting strategies, even though these responses may be phylogenetically constrained. Changes in water availability are more likely to affect dweller species, and hence the ecosystem services they provide.
Collapse
Affiliation(s)
- Beatrice Nervo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Angela Roggero
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Dan Chamberlain
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Enrico Caprio
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Antonio Rolando
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Claudia Palestrini
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| |
Collapse
|
14
|
Carrión-Paladines V, Fries A, Muñoz A, Castillo E, García-Ruiz R, Marín-Armijos D. Effects of Land-Use Change on the Community Structure of the Dung Beetle (Scarabaeinae) in an Altered Ecosystem in Southern Ecuador. INSECTS 2021; 12:insects12040306. [PMID: 33808282 PMCID: PMC8066223 DOI: 10.3390/insects12040306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary This study analyzed the abundance and diversity of dung beetle communities at several disturbed sites in a tropical dry forest ecosystem in southern Ecuador. Dung beetle community diversity indices with different land uses were related to environmental variables (altitude, temperature), soil physicochemical properties, and food supply (manure). The results indicated that the species Canthon balteatus, Dichotomius problematicus, and Onthophagus confusus are abundant in disturbed sites, where soils are generally more compact and less fertile but contain a greater food supply. These findings can help decision makers to identify disturbed areas and to implement adequate policies for sustainable environmental management. Abstract This study evaluated the effects of land-use change (L-UCH) on dung beetle community structure (Scarabaeinae) in a disturbed dry ecosystem in southern Ecuador. Five different L-UCH classes were analyzed by capturing the dung beetle species at each site using 120 pitfall traps in total. To determine dung beetle abundance and diversity at each L-UCH, a general linear model (GLM) and a redundancy analysis (RDA) were applied, which correlated environmental and edaphic conditions to the community structure. Furthermore, changes in dung-producing vertebrate fauna were examined, which varied significantly between the different L-UCH classes due to the specific anthropogenic use or level of ecosystem disturbance. The results indicated that soil organic matter, pH, potassium, and phosphorus (RDA: component 1), as well as temperature and altitude (RDA: component 2) significantly affect the abundance of beetles (GLM: p value < 0.001), besides the food availability (dung). The highest abundance and diversity (Simpson’s index > 0.4, Shannon-Wiener index > 1.10) was found in highly disturbed sites, where soils were generally more compacted, but with a greater food supply due to the introduced farm animals. At highly disturbed sites, the species Canthon balteatus, Dichotomius problematicus, and Onthphagus confuses were found specifically, which makes them useful as bio-indicators for disturbed dry forest ecosystems in southern Ecuador.
Collapse
Affiliation(s)
- Vinicio Carrión-Paladines
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 11-01-608, Ecuador; (A.M.); (D.M.-A.)
- Correspondence:
| | - Andreas Fries
- Departamento de Geología, Minas e Ingeniería Civil (DGMIC), Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 11-01-608, Ecuador;
| | - Andrés Muñoz
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 11-01-608, Ecuador; (A.M.); (D.M.-A.)
| | - Eddy Castillo
- Finca de Permacultura, Finca Fina, Solanda, Vilcabamba 110161, Ecuador;
| | - Roberto García-Ruiz
- Unidad de Ecología, Departamento de Biología Animal, Vegetal y Ecología, Facultad de Ciencias Experimentales, 23071 Jaén, Spain;
| | - Diego Marín-Armijos
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 11-01-608, Ecuador; (A.M.); (D.M.-A.)
| |
Collapse
|
15
|
Correa CM, Da Silva PG, Puker A, Abot AR. Spatiotemporal patterns of taxonomic and functional β‐diversity of dung beetles in native and introduced pastures in the Brazilian Pantanal. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- César M.A. Correa
- Universidade Estadual de Mato Grosso do Sul Aquidauana Mato Grosso do Sul79200‐000Brazil
| | - Pedro G. Da Silva
- Programa de Pós‐Graduação em Ecologia Conservação e Manejo da Vida Silvestre Universidade Federal de Minas Gerais Belo Horizonte Minas GeraisBrazil
| | - Anderson Puker
- Instituto Federal de EducaçãoCiência e Tecnologia de Mato Grosso Guarantã do Norte Mato GrossoBrazil
- Instituto Federal de EducaçãoCiência e Tecnologia de Rondônia Colorado do Oeste, Guarantã do NorteRondônia Brazil
| | - Alfredo R. Abot
- Universidade Estadual de Mato Grosso do Sul Aquidauana Mato Grosso do Sul79200‐000Brazil
| |
Collapse
|
16
|
Fowler F, Denning S, Hu S, Watson W. Carbon Neutral: The Failure of Dung Beetles (Coleoptera: Scarabaeidae) to Affect Dung-Generated Greenhouse Gases in the Pasture. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1105-1116. [PMID: 32894289 PMCID: PMC7568522 DOI: 10.1093/ee/nvaa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Research suggests dung beetles can churn, aerate, and desiccate dung in ways that influence the dung and soil microbes producing greenhouse gases (GHGs). We examined the impacts of the tunneling beetle, Onthophagus taurus (Schreber), and the dwelling beetle, Labarrus pseudolividus (Balthasar), on the carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emitted from pasture-laid bovine dung as well as their sum-total (CO2 + CH4 + N2O) effect on global warming, or their carbon dioxide equivalent (CO2e). Despite dung beetles potential effects on CH4 and N2O, the existing literature shows no ultimate CO2e reductions. We hypothesized that more dung beetles would degrade pats faster and reduce CO2e, and so we increased the average dung beetle biomass per dung volume 6.22× above previously published records, and visually documented any dung damage. However, the time effects were 2-5× greater for any GHG and CO2e (E = 0.27-0.77) than dung beetle effects alone (E = 0.09-0.24). This suggests that dung beetle communities cannot adequately reduce GHGs unless they can accelerate dung decomposition faster than time alone.
Collapse
Affiliation(s)
- Fallon Fowler
- Department of Entomology and Plant Pathology, North Carolina State University, Grinnells Animal Health Laboratories, Raleigh, NC
| | - Steve Denning
- Department of Entomology and Plant Pathology, North Carolina State University, Grinnells Animal Health Laboratories, Raleigh, NC
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Wes Watson
- Department of Entomology and Plant Pathology, North Carolina State University, Grinnells Animal Health Laboratories, Raleigh, NC
| |
Collapse
|
17
|
Wassmer T. Phenological Patterns and Seasonal Segregation of Coprophilous Beetles (Coleoptera: Scarabaeoidea and Hydrophilidae) on a Cattle Farm in SE-Michigan, United States Throughout the Year. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.563532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Weaving H, Sands B, Wall R. Reproductive sublethal effects of macrocyclic lactones and synthetic pyrethroids on the dung beetle Onthophagus similis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:195-200. [PMID: 31571556 DOI: 10.1017/s0007485319000567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dung-colonizing beetles provide a range of ecosystem services in farmland pasture systems. However, such beetles are declining in Northern temperate regions. This may, in part, be due to the widespread use of macrocyclic lactones (MLs) and synthetic pyrethroids (SPs) in livestock farming. These chemicals are used to control pests and parasites of cattle; the residues of which are excreted in dung at concentrations toxic to insects. While the lethal effects of such residues are well known, sublethal effects are less understood. Any effects, however, may have important consequences for beetle populations, particularly if they affect reproduction. To investigate, the impact of ML and SP exposure on the reproductive output of Onthophagus similis (Scriba), a Northern temperate dung beetle species, was examined. In laboratory trials, field-collected adult O. similis exposed to the ML ivermectin at 1 ppm (wet weight) over a period of 3 weeks had smaller oocytes (p = 0.016), smaller fat bodies and reduced motility compared to the control. In a farm-level investigation, cattle dung-baited pitfall trapping was undertaken on 23 beef cattle farms in SW England, which either used MLs (n = 9), SPs (n = 7) or neither chemical (n = 7). On farms that used no MLs or SPs, 24.2% of females caught were gravid. However, on farms that used MLs no gravid females were caught, and only 1% of the beetles caught on farms using SPs were gravid (p < 0.001). The association between ML and SP use and impaired reproductive output suggests that the use of such chemicals is likely to be ecologically damaging.
Collapse
Affiliation(s)
- H Weaving
- Veterinary Parasitology and Ecology Group, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - B Sands
- Veterinary Parasitology and Ecology Group, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - R Wall
- Veterinary Parasitology and Ecology Group, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
19
|
Piccini I, Palestrini C, Rolando A, Roslin T. Local management actions override farming systems in determining dung beetle species richness, abundance and biomass and associated ecosystem services. Basic Appl Ecol 2019. [DOI: 10.1016/j.baae.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Evans KS, Mamo M, Wingeyer A, Schacht WH, Eskridge KM, Bradshaw J, Ginting D. Dung Beetles Increase Greenhouse Gas Fluxes from Dung Pats in a North Temperate Grassland. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:537-548. [PMID: 31180435 DOI: 10.2134/jeq2018.03.0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soil fauna plays a critical role in various ecosystem processes, but empirical data measuring its impact on greenhouse gas (GHG) emissions from rangelands are limited. We quantified the effects of dung beetles on in situ CO, CH, and NO emissions from simulated cattle dung deposits. Soil in meadows of the semiarid Nebraska Sandhills was treated with three treatments (dung pats with exposure and without exposure to dung beetles, and a no dung control). A closed-chamber method was used to measure GHG fluxes at 0, 1, 2, 3, 7, 10, 14, 21, 28, and 56 d after dung placement in the early season (June-August) and late season (July-September) in 2014 and 2015. The greatest dung beetle abundance was 6 ± 2 beetles per quarter pat on Day 7; the abundance decreased to <2 ± 0.6 on Day 14 and 28 and zero on Day 56. Dung beetles increased fluxes of CO by 0.2 g C d m, NO by 0.4 mg N d m (only in late season 2015), and CH by 0.2 mg C d m. These increases were due to beetle-made macropores that facilitated gas transport in wet dung (initial moisture = 4.6 g g on a dry-weight basis) within 7 d after dung placement. Seasonal environmental differences resulted in greater CO, NO, and CH fluxes in the early season than in the late season. This study concluded that dung beetles increased GHG fluxes from early- and late-season dung deposits on meadows of the semiarid Nebraska Sandhills.
Collapse
|
21
|
Raine EH, Slade EM. Dung beetle-mammal associations: methods, research trends and future directions. Proc Biol Sci 2019; 286:20182002. [PMID: 30963853 PMCID: PMC6408906 DOI: 10.1098/rspb.2018.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dung beetles are increasingly used as a study taxon—both as bioindicators of environmental change, and as a model system for exploring ecosystem functioning. The advantages of this focal taxon approach are many; dung beetles are abundant in a wide range of terrestrial ecosystems, speciose, straightforward to sample, respond to environmental gradients and can be easily manipulated to explore species-functioning relationships. However, there remain large gaps in our understanding of the relationship between dung beetles and the mammals they rely on for dung. Here we review the literature, showing that despite an increase in the study of dung beetles linked to ecosystem functioning and to habitat and land use change, there has been little research into their associations with mammals. We summarize the methods and findings from dung beetle–mammal association studies to date, revealing that although empirical field studies of dung beetles rarely include mammal data, those that do, indicate mammal species presence and composition has a large impact on dung beetle species richness and abundance. We then review the methods used to carry out diet preference and ecosystem functioning studies, finding that despite the assumption that dung beetles are generalist feeders, there are few quantitative studies that directly address this. Together this suggests that conclusions about the effects of habitat change on dung beetles are based on incomplete knowledge. We provide recommendations for future work to identify the importance of considering mammal data for dung beetle distributions, composition and their contributions to ecosystem functioning; a critical step if dung beetles are to be used as a reliable bioindicator taxon.
Collapse
Affiliation(s)
- Elizabeth H Raine
- 1 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK
| | - Eleanor M Slade
- 1 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK.,2 Lancaster Environment Centre, University of Lancaster , Lancaster LA1 AYQ , UK
| |
Collapse
|
22
|
Kerman K, Roggero A, Rolando A, Palestrini C. Evidence for Male Horn Dimorphism and Related Pronotal Shape Variation in Copris lunaris (Linnaeus, 1758) (Coleoptera: Scarabaeidae, Coprini). INSECTS 2018; 9:insects9030108. [PMID: 30135396 PMCID: PMC6164466 DOI: 10.3390/insects9030108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 01/15/2023]
Abstract
Male horn dimorphism is a rather common phenomenon in dung beetles, where some adult individuals have well-developed head horns (i.e., major males), while others exhibit diminished horn length (i.e., minor males). We focused on horn dimorphism and associated head and pronotum shape variations in Copris lunaris. We examined the allometric relationship between horn length (i.e., cephalic and pronotal horns) and maximum pronotum width (as index of body size) by fitting linear and sigmoidal models for both sexes. We then asked whether head and pronotum shape variations, quantified using the geometric morphometric approach, contributed to this allometric pattern. We found that female cephalic and pronotal horn growth showed a typical isometric scaling with body size. Horn length in males, however, exhibited sigmoidal allometry, where a certain threshold in body size separated males into two distinct morphs as majors and minors. Interestingly, we highlighted the same allometric patterns (i.e., isometric vs. sigmoidal models) by scaling horn lengths with pronotum shape, making evident that male horn dimorphism is not only a matter of body size. Furthermore, the analysis of shape showed that the three morphs had similar heads, but different pronota, major males showing a more expanded, rounded pronotum than minor males and females. These morphological differences in C. lunaris can ultimately have important functional consequences in the ecology of this species, which should be explored in future work.
Collapse
Affiliation(s)
- Kaan Kerman
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, I-10123 Torino, Italy.
| | - Angela Roggero
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, I-10123 Torino, Italy.
| | - Antonio Rolando
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, I-10123 Torino, Italy.
| | - Claudia Palestrini
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, I-10123 Torino, Italy.
| |
Collapse
|
23
|
Piccini I, Nervo B, Forshage M, Celi L, Palestrini C, Rolando A, Roslin T. Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1440-1448. [PMID: 29070445 DOI: 10.1016/j.scitotenv.2017.10.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Rapid biodiversity loss has emphasized the need to understand how biodiversity affects the provisioning of ecological functions. Of particular interest are species and communities with versatile impacts on multiple parts of the environment, linking processes in the biosphere, lithosphere, and atmosphere to human interests in the anthroposphere (in this case, cattle farming). In this study, we examine the role of a specific group of insects - beetles feeding on cattle dung - on multiple ecological functions spanning these spheres (dung removal, soil nutrient content and greenhouse gas emissions). We ask whether the same traits which make species prone to extinction (i.e. response traits) may also affect their functional efficiency (as effect traits). To establish the link between response and effect traits, we first evaluated whether two traits (body mass and nesting strategy, the latter categorized as tunnelers or dwellers) affected the probability of a species being threatened. We then tested for a relationship between these traits and ecosystem functioning. Across Scandinavian dung beetle species, 75% of tunnelers and 30% of dwellers are classified as threatened. Hence, nesting strategy significantly affects the probability of a species being threatened, and constitutes a response trait. Effect traits varied with the ecological function investigated: density-specific dung removal was influenced by both nesting strategy and body mass, whereas methane emissions varied with body mass and nutrient recycling with nesting strategy. Our findings suggest that among Scandinavian dung beetles, nesting strategy is both a response and an effect trait, with tunnelers being more efficient in providing several ecological functions and also being more sensitive to extinction. Consequently, functionally important tunneler species have suffered disproportionate declines, and species not threatened today may be at risk of becoming so in the near future. This linkage between effect and response traits aggravates the consequences of ongoing biodiversity loss.
Collapse
Affiliation(s)
- Irene Piccini
- University of Turin, Department of Life Science and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy; SLU, Swedish University of Agricultural Sciences, Department of Ecology, Ulls väg 16, 756 51 Uppsala, Sweden.
| | - Beatrice Nervo
- University of Turin, Department of Life Science and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Mattias Forshage
- Swedish Museum of Natural History, PO Box 50007, 104 05 Stockholm, Sweden
| | - Luisella Celi
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Claudia Palestrini
- University of Turin, Department of Life Science and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Antonio Rolando
- University of Turin, Department of Life Science and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Tomas Roslin
- SLU, Swedish University of Agricultural Sciences, Department of Ecology, Ulls väg 16, 756 51 Uppsala, Sweden
| |
Collapse
|