1
|
Krishnan M, Kumaresan M, Ravi S, Martin LC, Duraisamy P, Manikandan B, Munusamy A, Ramar M. Therapeutic potential of monoterpene molecules acts against 7KCh-mediated oxidative stress and neuroinflammatory amyloidogenic signalling pathways. Prostaglandins Other Lipid Mediat 2024; 175:106910. [PMID: 39343044 DOI: 10.1016/j.prostaglandins.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disorder characterised by amyloid-beta aggregates activated by the accumulation of lipid molecules and their derivatives, especially 7-ketocholesterol (7KCh), an oxidised lipid that plays a great part in the progression of AD. The current therapeutics need bio-potential molecules and their biomedical application preventing 7KCh-induced cytotoxicity. In this study, bornyl acetate (BA) and menthol (ME), the natural monoterpenes were investigated for their neuroprotective effects against 7KCh-induced SH-SY5Y cells and their effects were compared to the standard drug galantamine (GA). 7KCh-induced changes like lipid accumulation, amyloid generation, free radical generation, acetylcholinesterase levels, calcium accumulation and mitochondrial membrane integrity were analysed in SH-SY5Y cells with or without BA and ME treatment. Furthermore, various mediators involved in the amyloidogenic, inflammatory and apoptotic pathways were studied. In our results, the cells induced with 7KCh upon co-treatment with BA and ME significantly reduced lipid accumulation and amyloid generation through toll-like receptor (TLR) 4 suppression and enhanced ATP binding cassette (ABCA) 1-mediated clearance. Co-treatment with BA and ME concurrently regulated oxidative stress, acetylcholinesterase activity, mitochondrial membrane potential and intracellular calcification altered by 7KCh-induced SH-SY5Y cells. Moreover, 7KCh-induced cells showed elevated mRNA levels of misfolded protein markers and apoptotic mediators which were significantly downregulated by BA and ME co-treatment. In addition, the protein expression of amyloidogenic, proinflammatory as well as pro-apoptotic markers was decreased by BA and ME co-treatment in 7KCh-induced cells. Overall, BA and ME mediated inhibition of amyloidogenic activation and cell survival against 7KCh-induced inflammation, thereby preventing the onset and progression of AD in comparison to GA.
Collapse
Affiliation(s)
- Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Arumugam Munusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
2
|
Singh NAK, Prasad S. Ellagic Acid Reverses Alterations in the Expression of AMPA Receptor and Its Scaffolding Proteins in the Cerebral Cortex and Memory Decline in STZ-sporadic Alzheimer' s Disease Mouse Model. Psychopharmacology (Berl) 2024; 241:2117-2131. [PMID: 38842699 DOI: 10.1007/s00213-024-06622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/18/2024] [Indexed: 06/07/2024]
Abstract
RATIONALE Alzheimer's disease (AD), an age-dependent devastating neuropsychiatric disorder, is a leading cause of learning, memory and intellectual disabilities. Current therapeutic approaches for the amelioration of the anomalies of AD are not effective. OBJECTIVE In the present study, the molecular mechanisms underlying sporadic AD (sAD), the memory related behavioral analysis and neuroprotective effects of Ellagic acid (EA) were investigated. METHOD sAD mouse model was developed by intracerebroventricular (ICV) injection of Streptozotocin (STZ). The efficacy of EA, a naturally occurring polyphenol, in amelioration of anomalies associated with sAD was assessed. EA was administered once daily for 28 days at a dose of 75 mg/kg body weight followed by neurobehavioral, biochemical, molecular and neuronal count analysis to delineate the mode of action of EA. RESULT The ICV injection of STZ in mice significantly increased the expression of AD biomarkers in addition to enhanced oxidative stress. A decline in the discrimination index in Novel Object Recognition Test was observed indicating the compromise of recognition memory in AD. Studies on the expression of genes involved in synaptic plasticity reveal the dysregulation of the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of the glutamate and its scaffolding proteins in the postsynaptic density and thereby synaptic plasticity in AD. ICV-STZ led to significant upregulation of apoptotic markers which led to decrease in neuronal density of the cerebral cortex. EA significantly reversed the above and improved anomalies of sAD. CONCLUSION EA was observed to profoundly modulate the genes involved in AD pathophysiology, restored antioxidant enzymes activity, reduced lipid peroxidation and neuronal loss in the sAD brain. Further, EA was observed to effectively modulate the genes involved in apoptosis and synaptic plasticity. Therefore, EA possesses promising anti-AD properties, which may improve AD-associated anomalies by modulating synaptic plasticity via AMPAR signaling.
Collapse
Affiliation(s)
- Nidhi Anand K Singh
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi, 211005, Uttar Pradesh, India
| | - S Prasad
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi, 211005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Pan J, Yao Q, Wang Y, Chang S, Li C, Wu Y, Shen J, Yang R. The role of PI3K signaling pathway in Alzheimer's disease. Front Aging Neurosci 2024; 16:1459025. [PMID: 39399315 PMCID: PMC11466886 DOI: 10.3389/fnagi.2024.1459025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating progressively neurodegenerative disease. The best-characterized hallmark of AD, which is marked by behavioral alterations and cognitive deficits, is the aggregation of deposition of amyloid-beta (Aβ) and hyper-phosphorylated microtubule-associated protein Tau. Despite decades of experimental progress, the control rate of AD remains poor, and more precise deciphering is needed for potential therapeutic targets and signaling pathways involved. In recent years, phosphoinositide 3-kinase (PI3K) and Akt have been recognized for their role in the neuroprotective effect of various agents, and glycogen synthase kinase 3 (GSK3), a downstream enzyme, is also crucial in the tau phosphorylation and Aβ deposition. An overview of the function of PI3K/Akt pathway in the pathophysiology of AD is provided in this review, along with a discussion of recent developments in the pharmaceuticals and herbal remedies that target the PI3K/Akt signaling pathway. In conclusion, despite the challenges and hurdles, cumulative findings of novel targets and agents in the PI3K/Akt signaling axis are expected to hold promise for advancing AD prevention and treatment.
Collapse
Affiliation(s)
- Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yankai Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Suyan Chang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Chenlong Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongjiang Wu
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Tang Z, Peng Y, Jiang Y, Wang L, Guo M, Chen Z, Luo C, Zhang T, Xiao Y, Ni R, Qi X. Gastrodin ameliorates synaptic impairment, mitochondrial dysfunction and oxidative stress in N2a/APP cells. Biochem Biophys Res Commun 2024; 719:150127. [PMID: 38761634 DOI: 10.1016/j.bbrc.2024.150127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease is characterized by abnormal β-amyloid and tau accumulation, mitochondrial dysfunction, oxidative stress, and synaptic dysfunction. Here, we aimed to assess the mechanisms and signalling pathways in the neuroprotective effect of gastrodin, a phenolic glycoside, on murine neuroblastoma N2a cells expressing human Swedish mutant APP (N2a/APP). We found that gastrodin increased the levels of presynaptic-SNAP, synaptophysin, and postsynaptic-PSD95 and reduced phospho-tau Ser396, APP and Aβ1-42 levels in N2a/APP cells. Gastrodin treatment reduced reactive oxygen species generation, lipid peroxidation, mitochondrial fragmentation and DNA oxidation; restored mitochondrial membrane potential and intracellular ATP production. Upregulated phospho-GSK-3β and reduced phospho-ERK and phospho-JNK were involved in the protective effect of gastrodin. In conclusion, we demonstrated the neuroprotective effect of gastrodin in the N2a/APP cell line by ameliorating the impairment on synaptic and mitochondrial function, reducing tau phosphorylation, Aβ1-42 levels as well as reactive oxygen species generation. These results provide new mechanistic insights into the potential effect of gastrodin in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yi Jiang
- Department of Pathology, Affiliated Hospital of Traditional Chinese Medicine of Guangzhou Medical University, Guangzhou, China
| | - Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Min Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Zhuyi Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Chao Luo
- Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Coaviche-Yoval A, Tovar-Miranda R, Rodríguez JE, Lagos-Cruz JA, Luna H, Andrade-Jorge E, Trujillo-Ferrara JG. Benzofurans as Acetylcholinesterase Inhibitors for Treating Alzheimer's Disease: Synthesis, in vitro Testing, and in silico Analysis. ChemMedChem 2024; 19:e202300615. [PMID: 38554286 DOI: 10.1002/cmdc.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia worldwide. It is characterized by a progressive decline in cholinergic neurotransmission. During the development of AD, acetylcholinesterase (AChE) binds to β-amyloid peptides to form amyloid fibrils, which aggregate into plaque deposits. Meanwhile, tau proteins are hyperphosphorylated, forming neurofibrillary tangles (NFTs) that aggregate into inclusions. These complexes are cytotoxic for the brain, causing impairment of memory, attention, and cognition. AChE inhibitors are the main treatment for AD, but their effect is only palliative. This study aimed to design and synthesize novel benzofuran derivatives and evaluate their inhibition of AChE in vitro and in silico. Results: The seven synthesized benzofuran derivatives inhibited AChE in vitro. Benzofurans hydroxy ester 4, amino ester 5, and amido ester (±)-7 had the lowest inhibition constant (Ki) values and displayed good affinity for EeAChE in molecular docking. Six derivatives showed competitive inhibition, while the best compound (5: Ki=36.53 μM) exhibited uncompetitive inhibition. The amino, hydroxyl, amide, and ester groups of the ligands favored interaction with the enzyme by hydrogen bonds. Conclusion: Three benzofurans were promising AChE inhibitors with excellent Ki values. In future research on their their application to AD, 5 will be considered as the base structure.
Collapse
Affiliation(s)
- Arturo Coaviche-Yoval
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás, 11340, Mexico City, México
- Facultad de Química Farmacéutica Biológica, Universidad Veracruza, Circuito Gonzalo Aguirre Beltrán Esq. Calle de la Pérgola Zona Universitaria, 91090, Xalapa, Veracruz, México
| | - Ricardo Tovar-Miranda
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Col. Industrial Ánimas, 91190, Xalapa, Veracruz, México
| | - Jessica E Rodríguez
- Bioquímica Clínica, Carrera de Químico Farmacéutico Biólogo, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Av. Guelatao con Av. Exploradores, Ejército de Oriente, Iztapalapa, 09230, Mexico City, México
| | - Jesus A Lagos-Cruz
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás, 11340, Mexico City, México
| | - Héctor Luna
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Unidad Xochimilco, Calzada del Hueso1100, Col. Villa Quietud, Coyoacan, 04960, Mexico City, México
| | - Erik Andrade-Jorge
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás, 11340, Mexico City, México
| | - José G Trujillo-Ferrara
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás, 11340, Mexico City, México
| |
Collapse
|
6
|
Olloquequi J, Díaz-Peña R, Verdaguer E, Ettcheto M, Auladell C, Camins A. From Inhalation to Neurodegeneration: Air Pollution as a Modifiable Risk Factor for Alzheimer's Disease. Int J Mol Sci 2024; 25:6928. [PMID: 39000036 PMCID: PMC11241587 DOI: 10.3390/ijms25136928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Air pollution, a growing concern for public health, has been linked to various respiratory and cardiovascular diseases. Emerging evidence also suggests a link between exposure to air pollutants and neurodegenerative diseases, particularly Alzheimer's disease (AD). This review explores the composition and sources of air pollutants, including particulate matter, gases, persistent organic pollutants, and heavy metals. The pathophysiology of AD is briefly discussed, highlighting the role of beta-amyloid plaques, neurofibrillary tangles, and genetic factors. This article also examines how air pollutants reach the brain and exert their detrimental effects, delving into the neurotoxicity of air pollutants. The molecular mechanisms linking air pollution to neurodegeneration are explored in detail, focusing on oxidative stress, neuroinflammation, and protein aggregation. Preclinical studies, including in vitro experiments and animal models, provide evidence for the direct effects of pollutants on neuronal cells, glial cells, and the blood-brain barrier. Epidemiological studies have reported associations between exposure to air pollution and an increased risk of AD and cognitive decline. The growing body of evidence supporting air pollution as a modifiable risk factor for AD underscores the importance of considering environmental factors in the etiology and progression of neurodegenerative diseases, in the face of worsening global air quality.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Roberto Díaz-Peña
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Ester Verdaguer
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Miren Ettcheto
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carme Auladell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Antoni Camins
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Shang NY, Huang LJ, Lan JQ, Kang YY, Tang JS, Wang HY, Li XN, Sun Z, Chen QY, Liu MY, Wen ZP, Feng XH, Wu L, Peng Y. PHPB ameliorates memory deficits and reduces oxidative injury in Alzheimer's disease mouse model by activating Nrf2 signaling pathway. Acta Pharmacol Sin 2024; 45:1142-1159. [PMID: 38409216 PMCID: PMC11130211 DOI: 10.1038/s41401-024-01240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in elderly people and substantially affects patient quality of life. Oxidative stress is considered a key factor in the development of AD. Nrf2 plays a vital role in maintaining redox homeostasis and regulating neuroinflammatory responses in AD. Previous studies show that potassium 2-(1-hydroxypentyl)-benzoate (PHPB) exerts neuroprotective effects against cognitive impairment in a variety of dementia animal models such as APP/PS1 transgenic mice. In this study we investigated whether PHPB ameriorated the progression of AD by reducing oxidative stress (OS) damage. Both 5- and 13-month-old APP/PS1 mice were administered PHPB (100 mg·kg-1·d-1, i.g.) for 10 weeks. After the cognition assessment, the mice were euthanized, and the left hemisphere of the brain was harvested for analyses. We showed that 5-month-old APP/PS1 mice already exhibited impaired performance in the step-down test, and knockdown of Nrf2 gene only slightly increased the impairment, while knockdown of Nrf2 gene in 13-month-old APP/PS1 mice resulted in greatly worse performance. PHPB administration significantly ameliorated the cognition impairments and enhanced antioxidative capacity in APP/PS1 mice. In addition, PHPB administration significantly increased the p-AKT/AKT and p-GSK3β/GSK3β ratios and the expression levels of Nrf2, HO-1 and NQO-1 in APP/PS1 mice, but these changes were abolished by knockdown of Nrf2 gene. In SK-N-SH APPwt cells and primary mouse neurons, PHPB (10 μM) significantly increased the p-AKT/AKT and p-GSK3β/GSK3β ratios and the level of Nrf2, which were blocked by knockdown of Nrf2 gene. In summary, this study demonstrates that PHPB exerts a protective effect via the Akt/GSK3β/Nrf2 pathway and it might be a promising neuroprotective agent for the treatment of AD.
Collapse
Affiliation(s)
- Nian-Ying Shang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Long-Jian Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jia-Qi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu-Ying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jing-Shu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Yue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xin-Nan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuo Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qiu-Yu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Meng-Yao Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zi-Peng Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xin-Hong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
8
|
Holubiec MI, Alloatti M, Bianchelli J, Greloni F, Arnaiz C, Gonzalez Prinz M, Fernandez Bessone I, Pozo Devoto V, Falzone TL. Mitochondrial vulnerability to oxidation in human brain organoids modelling Alzheimer's disease. Free Radic Biol Med 2023; 208:394-401. [PMID: 37657763 DOI: 10.1016/j.freeradbiomed.2023.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Reactive Oxygen Species (ROS) and mitochondrial dysfunction are implicated in the pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disorder characterized by abnormal metabolism of the amyloid precursor protein (APP) in brain tissue. However, the exact mechanism by which abnormal APP leads to oxidative distress remains unclear. Damage to mitochondrial membrane and inhibition of mitochondrial respiration are thought to contribute to the progression of the disease. However, the lack of suitable human models that replicate pathological features, together with impaired cellular pathways, constitutes a major challenge in AD studies. In this work, we induced pluripotency in patient-derived skin fibroblasts carrying the Swedish mutation in App (APPswe), to generate human brain organoids that model AD, and studied redox regulation and mitochondrial homeostasis. We found time-dependent increases in AD-related pathological hallmarks in APPswe brain organoids, including elevated Aβ levels, increased extracellular amyloid deposits, and enhanced tau phosphorylation. Interestingly, using live-imaging spinning-disk confocal microscopy, we found an increase in mitochondrial fragmentation and a significant loss of mitochondrial membrane potential in APPswe brain organoids when subjected to oxidative conditions. Moreover, ratiometric dyes in a live imaging setting revealed a selective increase in mitochondrial superoxide anion and hydrogen peroxide levels in APPswe brain organoids that were coupled to impairments in cytosolic and mitochondrial redoxin protein expression. Our results suggest a selective increase in mitochondrial vulnerability to oxidative conditions in APPswe organoids, indicating that the abnormal metabolism of APP leads to specific changes in mitochondrial homeostasis that enhance the vulnerability to oxidation in AD.
Collapse
Affiliation(s)
- Mariana I Holubiec
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Matias Alloatti
- Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Julieta Bianchelli
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina
| | - Francisco Greloni
- Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Cayetana Arnaiz
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina
| | - Melina Gonzalez Prinz
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina
| | - Ivan Fernandez Bessone
- Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Victorio Pozo Devoto
- Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina
| | - Tomas L Falzone
- Instituto de Investigación en Biomedicina de Buenos Aires IBioBA (MPSP-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, CABA, 1425, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
10
|
Dakterzada F, Jové M, Cantero JL, Pamplona R, Piñoll-Ripoll G. Plasma and cerebrospinal fluid nonenzymatic protein damage is sustained in Alzheimer's disease. Redox Biol 2023; 64:102772. [PMID: 37339560 DOI: 10.1016/j.redox.2023.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Oxidative stress is considered to play an important role in the pathogenesis of Alzheimer's disease (AD). It has been observed that oxidative damage to specific protein targets affecting particular functional networks is one of the mechanisms by which oxidative stress contributes to neuronal failure and consequently loss of cognition and AD progression. Studies are lacking in which oxidative damage is measured at both systemic and central fluid levels and in the same cohort of patients. We aimed to determine the levels of both plasma and cerebrospinal fluid (CSF) nonenzymatic protein damage in patients in the continuum of AD and to evaluate the relation of this damage with clinical progression from mild cognitive impairment (MCI) to AD. METHODS Different markers of nonenzymatic post-translational protein modification, mostly from oxidative processes, were detected and quantified in plasma and CSF by isotope dilution gas chromatography‒mass spectrometry using selected ion monitoring (SIM-GC/MS) for 289 subjects: 103 AD, 92 MCI, and 94 control subjects. Characteristics of the study population such as age, sex, Mini-mental state examination, CSF AD biomarkers, and APOE ϵ4, were also considered. RESULTS Forty-seven (52.8%) MCI patients progressed to AD during follow-up (58 ± 12.5 months). After controlling for age, sex, and APOE ϵ4 allele, plasma and CSF concentrations of protein damage markers were not associated with either diagnosis of AD or MCI. The CSF levels of nonenzymatic protein damage markers were associated with none of the CSF AD biomarkers. In addition, neither in CSF nor in plasma were the levels of protein damage associated with the MCI to AD progression. CONCLUSION The lack of association between both CSF and plasma concentrations of nonenzymatic protein damage markers and AD diagnosis and progression suggests that oxidative damage in AD is a pathogenic mechanism specifically expressed at the cell-tissue level, not in extracellular fluids.
Collapse
Affiliation(s)
- Farida Dakterzada
- Cognitive Disorders Unit, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - José Luís Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Gerard Piñoll-Ripoll
- Cognitive Disorders Unit, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain.
| |
Collapse
|
11
|
Sadeghi L, Marefat A. Investigation of the Iron Oxide Nanoparticle Effects on Amyloid Precursor Protein Processing in Hippocampal Cells. Basic Clin Neurosci 2023; 14:203-212. [PMID: 38107528 PMCID: PMC10719978 DOI: 10.32598/bcn.2021.2005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 05/25/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2023] Open
Abstract
Introduction Iron oxide nanoparticles (Fe2O3-NPs) are small magnetic particles that are widely used in different aspects of biology and medicine in modern life. Fe2O3-NP accumulated in the living cells due to the absence of an active system to excrete the iron ions and damages cellular organelles by high reactivity. Methods Herein cytotoxic effects of Fe2O3-NP with a size of 50 nm on the primary culture of neonatal rat hippocampus were investigated using 2,5-diphenyltetrazolium bromide (MTT) assay. Pathophysiological signs of Alzheimer's disease such as amyloid precursor protein (APP) expression, Aβ aggregation, soluble APPα, and APPβ secretion were also investigated in hippocampal cells treated with various concentrations of nanoparticle (NP) for different exposure times. Results Our results revealed that Fe2O3-NP treatment causes oxidative stress in cells which is accompanied by upregulation of the APP and Aβ in a concentration-dependent manner. NP exposure also leads to more secretion of sAPPβ rather than sAPPα, leading to increased activation of β-secretase in NP-received cells. All the harmful effects accumulate in neurons that cannot be renovated, leading to neurodegeneration in Alzheimer's disease. Conclusion This study approved iron-based NPs could help to develop Alzheimer's and related neurological disorders and explained why some of the iron chelators have therapeutic potential in Alzheimer's disease. Highlights Fe2O3-NP induced oxidative stress in hippocampal cells in a concentration dependent manner.Fe2O3-NP imposed up-regulation of APP in hippocampal cells.Fe2O3-NP activated β-secretase and elevated sAPPβ/sAPPα ratio.Cumulative effects of Fe2O3-NP damages increased cell death in neurons. Plain Language Summary The most common type of dementia is Alzheimer's disease (AD), which is characterized by chronic neurodegeneration, impairment of memory, and disturbed planning, language, and thinking ability. In recent years, the use of nanoparticles has been increased in all aspects of life. Among these nanoparticles, iron oxide nanoparticles (Fe2O3-NP) are vital in biological sciences, medicine, magnetic resonance imaging, ultrasound, and optical imaging. Considering the general application and high reactivity of iron, growing concerns exist about the Fe2O3-NP application harms, especially in the central nervous system. Hippocampus tissue is one of the affected tissues in AD, which is widely investigated in recent years. This study aimed to investigate the cytotoxic effects of Fe2O3-NP on the primary culture of the hippocampus as one of the main tissues damaged in patients with AD. Our results revealed that treatment with different concentrations of Fe2O3-NP caused cellular damage in hippocampal cells. Exposure to Fe2O3-NP also caused oxidative stress. Our results showed a close association between oxidative stress and AD's pathological symptoms. The Fe2O3-NP application in medicine and biology should be limited.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arezu Marefat
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
12
|
Tchekalarova J, Tzoneva R. Oxidative Stress and Aging as Risk Factors for Alzheimer's Disease and Parkinson's Disease: The Role of the Antioxidant Melatonin. Int J Mol Sci 2023; 24:3022. [PMID: 36769340 PMCID: PMC9917989 DOI: 10.3390/ijms24033022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Aging and neurodegenerative diseases share common hallmarks, including mitochondrial dysfunction and protein aggregation. Moreover, one of the major issues of the demographic crisis today is related to the progressive rise in costs for care and maintenance of the standard living condition of aged patients with neurodegenerative diseases. There is a divergence in the etiology of neurodegenerative diseases. Still, a disturbed endogenous pro-oxidants/antioxidants balance is considered the crucial detrimental factor that makes the brain vulnerable to aging and progressive neurodegeneration. The present review focuses on the complex relationships between oxidative stress, autophagy, and the two of the most frequent neurodegenerative diseases associated with aging, Alzheimer's disease (AD) and Parkinson's disease (PD). Most of the available data support the hypothesis that a disturbed antioxidant defense system is a prerequisite for developing pathogenesis and clinical symptoms of ADs and PD. Furthermore, the release of the endogenous hormone melatonin from the pineal gland progressively diminishes with aging, and people's susceptibility to these diseases increases with age. Elucidation of the underlying mechanisms involved in deleterious conditions predisposing to neurodegeneration in aging, including the diminished role of melatonin, is important for elaborating precise treatment strategies for the pathogenesis of AD and PD.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria
| |
Collapse
|
13
|
Amyloid β-Peptide Causes the Permanent Activation of CaMKIIα through Its Oxidation. Int J Mol Sci 2022; 23:ijms232315169. [PMID: 36499491 PMCID: PMC9740806 DOI: 10.3390/ijms232315169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by the presence of extracellular amyloid plaques in the brain. They are composed of aggregated amyloid beta-peptide (Aβ) misfolded into beta-sheets which are the cause of the AD memory impairment and dementia. Memory depends on the hippocampal formation and maintenance of synapses by long-term potentiation (LTP), whose main steps are the activation of NMDA receptors, the phosphorylation of CaMKIIα and the nuclear translocation of the transcription factor CREB. It is known that Aβ oligomers (oAβ) induce synaptic loss and impair the formation of new synapses. Here, we have studied the effects of oAβ on CaMKIIα. We found that oAβ produce reactive oxygen species (ROS), that induce CaMKIIα oxidation in human neuroblastoma cells as we assayed by western blot and immunofluorescence. Moreover, this oxidized isoform is significantly present in brain samples from AD patients. We found that the oxidized CaMKIIα is active independently of the binding to calcium/calmodulin, and that CaMKIIα phosphorylation is mutually exclusive with CaMKIIα oxidation as revealed by immunoprecipitation and western blot. An in silico modelling of the enzyme was also performed to demonstrate that oxidation induces an activated state of CaMKIIα. In brains from AD transgenic models of mice and in primary cultures of murine hippocampal neurons, we demonstrated that the oxidation of CaMKIIα induces the phosphorylation of CREB and its translocation to the nucleus to promote the transcription of ARC and BDNF. Our data suggests that CaMKIIα oxidation would be a pro-survival mechanism that is triggered when a noxious stimulus challenges neurons as do oAβ.
Collapse
|
14
|
Wang H, Wu S, Wang L, Gou X, Guo X, Liu Z, Li P. Association between serum total bilirubin and Alzheimer's disease: A bidirectional Mendelian randomization study. Arch Gerontol Geriatr 2022; 103:104786. [PMID: 35961107 DOI: 10.1016/j.archger.2022.104786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of Alzheimer's disease (AD). As a potent antioxidant, serum bilirubin is decreased in AD and may be related to its pathogenesis, but the causal association between serum bilirubin and AD has not been reported. This was investigated in the present study by bidirectional two-sample Mendelian randomization (MR) analysis. Genetic instruments at the genome-wide significance level (P < 5 × 10-8) were selected from the United Kingdom Biobank (n = 342,829). Summary-level AD data were obtained from a large-scale genome-wide association study (n = 63,926). Causal estimates were evaluated using the inverse variance weighted (IVW) approach and other five complementary methods. MR-Egger, IVW and MR pleiotropy residual sum and outlier (MR-PRESSO) methods were used for sensitivity analyses. The results showed that there was no significant association between serum total bilirubin and AD (odds ratio=1.003, 95% confidence interval: 0.967-1.041, P = 0.865). Inverse MR revealed that serum total bilirubin was increased in AD (beta = 0.009, SE = 0.003, P = 0.010). These results indicate that serum total bilirubin is not causally associated with AD and cannot be used for screening or diagnosis, but can potentially serve as a biomarker of disease severity, and it needs further clinical studies.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Biobank, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Shuzhen Wu
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China
| | - Lijuan Wang
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China
| | - Xiaoyan Gou
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Biobank, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xiaoling Guo
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China
| | - Zhengping Liu
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Pengsheng Li
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China.
| |
Collapse
|
15
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
16
|
Hamid M, Mansoor S, Amber S, Zahid S. A quantitative meta-analysis of vitamin C in the pathophysiology of Alzheimer’s disease. Front Aging Neurosci 2022; 14:970263. [PMID: 36158537 PMCID: PMC9490219 DOI: 10.3389/fnagi.2022.970263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder with many complex pathways feeding into its pathogenesis and progression. Vitamin C, an essential dietary antioxidant, is vital for proper neurological development and maintenance. This meta-analysis and systematic review attempted to define the relationship between vitamin C plasma levels and AD while highlighting the importance and involvement of vitamin C in the pathogenesis of AD. Materials and methods PRISMA guidelines were used to obtain studies quantifying the plasma levels of vitamin C in AD and control subjects. The literature was searched in the online databases PubMed, Google Scholar, and Web of Science. A total of 12 studies were included (n = 1,100) and analyzed using Comprehensive Meta-Analysis 3.0. Results The results show that there is a significant decrease in the plasma vitamin C levels of AD patients as compared to healthy controls (pooled SMD with random-effect model: −1.164, with 95%CI: −1.720 to −0.608, Z = −4.102, p = 0.00) with significant heterogeneity (I2 = 93.218). The sensitivity analysis showed directionally similar results. Egger’s regression test (p = 0.11) and visual inspection of the funnel plot showed no publication bias. Conclusion Based on these studies, it can be deduced that the deficiency of vitamin C is involved in disease progression and supplementation is a plausible preventive and treatment strategy. However, clinical studies are warranted to elucidate its exact mechanistic role in AD pathophysiology and prevention.
Collapse
|
17
|
Elsworthy RJ, Dunleavy C, Whitham M, Aldred S. Exercise for the prevention of Alzheimer's disease: Multiple pathways to promote non-amyloidogenic AβPP processing. AGING AND HEALTH RESEARCH 2022. [DOI: 10.1016/j.ahr.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
18
|
Wasp Venom Ameliorates Scopolamine-Induced Learning and Memory Impairment in Mice. Toxins (Basel) 2022; 14:toxins14040256. [PMID: 35448865 PMCID: PMC9029392 DOI: 10.3390/toxins14040256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
This study investigated the effects of wasp venom (WV) from the yellow-legged hornet, Vespa velutina, on scopolamine (SCO)-induced memory deficits in mice, as well as the antioxidant activity in HT22 murine hippocampal neuronal cells in parallel comparison with bee venom (BV). The WV was collected from the venom sac, freeze-dried. Both venoms exhibited free radical scavenging capabilities in a concentration-dependent manner. In addition, the venom treatment enhanced cell viability at the concentrations of ≤40 µg/mL of WV and ≤4 µg/mL of BV in glutamate-treated HT22 cells, and increased the transcriptional activity of the antioxidant response element (ARE), a cis-acting enhancer which regulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-downstream antioxidant enzymes. Concurrently, WV at 20 µg/mL significantly increased the expression of a key antioxidant enzyme heme oxygenase 1 (HO-1) in HT22 cells despite no significant changes observed in the nuclear level of Nrf2. Furthermore, the intraperitoneal administration of WV to SCO-treated mice at doses ranged from 250 to 500 µg/kg body weight ameliorated memory impairment behavior, reduced histological injury in the hippocampal region, and reduced oxidative stress biomarkers in the brain and blood of SCO-treated mice. Our findings demonstrate that WV possess the potential to improve learning and memory deficit in vivo while further study is needed for the proper dose and safety measures and clinical effectiveness.
Collapse
|
19
|
Botchway BOA, Okoye FC, Chen Y, Arthur WE, Fang M. Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. Aging Dis 2022; 13:87-102. [PMID: 35111364 PMCID: PMC8782546 DOI: 10.14336/ad.2021.0616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a current public health challenge and will remain until the development of an effective intervention. However, developing an effective treatment for the disease requires a thorough understanding of its etiology, which is currently lacking. Although several studies have shown the association between oxidative damage and AD, only a few have clarified the specific mechanisms involved. Herein, we reviewed recent preclinical and clinical studies that indicated the significance of oxidative damage in AD, as well as potential antioxidants. Although several factors regulate oxidative stress in AD, we centered our investigation on apolipoprotein E and the gut microbiome. Apolipoprotein E, particularly apolipoprotein E-ε4, can impair the structural facets of the mitochondria. This, in turn, can minimize the mitochondrial functionality and result in the progressive build-up of free radicals, eventually leading to oxidative stress. Similarly, the gut microbiome can influence oxidative stress to a significant degree via its metabolite, trimethylamine N-oxide. Given the various roles of these two factors in modulating oxidative stress, we also discuss the possible relationship between them and provide future research directions.
Collapse
Affiliation(s)
- Benson OA Botchway
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| | - Favour C Okoye
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Yili Chen
- Neurosurgery Department, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - William E Arthur
- Department of Internal Medicine, Eastern Regional Hospital, Koforidua, Ghana
| | - Marong Fang
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Ntsapi CM, Loos B. Neurons die with heightened but functional macro- and chaperone mediated autophagy upon increased amyloid-ß induced toxicity with region-specific protection in prolonged intermittent fasting. Exp Cell Res 2021; 408:112840. [PMID: 34624324 DOI: 10.1016/j.yexcr.2021.112840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition with significant socio-economic impact that is exacerbated by the rapid increase in population aging, particularly impacting already burdened health care systems of poorly resourced countries. Accumulation of the amyloid-β (Aβ) peptide, generated through amyloid precursor protein (APP) processing, manifesting in senile plaques, is a well-established neuropathological feature. Aβ plays a key role in driving synaptic dysfunction, neuronal cell loss, glial cell activation and oxidative stress associated with the pathogenesis of AD. Thus, the enhanced clearance of Aβ peptide though modulation of the mechanisms that regulate intracellular Aβ metabolism and clearance during AD progression have received major attention. Autophagy, a lysosome-based major proteolytic pathway, plays a crucial role in intracellular protein quality control and has been shown to contribute to the clearance of Aβ peptide. However, to what extent autophagy activity remains upregulated and functional in the process of increasing Aβ neurotoxicity is largely unclear. Here, we investigated the extent of neuronal toxicity in vitro by characterising autophagic flux, the expression profile of key amyloidogenic proteins, and proteins associated with prominent subtypes of the autophagy pathway to dissect the interplay between the engagement of proteolytic pathways and cell death onset in the context of APP overexpression. Moreover, we assessed the neuroprotective effects of a caloric restriction regime in vivo on the modulation of autophagy in specific brain regions. Our results reveal that autophagy is upregulated in the presence of high levels of APP and Aβ and remains heightened and functional despite concomitant apoptosis induction, suggestive of a mismatch between autophagy cargo generation and clearance capacity. These findings were confirmed when implementing a prolonged intermittent fasting (IF) intervention in a model of paraquat-induced neuronal toxicity, where markers of autophagic activity were increased, while apoptosis onset and lipid peroxidation were robustly decreased in brain regions associated with neurodegeneration. This work highlights that especially caloric restriction mimetics and controlled prolonged IF may indeed be a highly promising therapeutic strategy at all stages of AD-associated pathology progression, for a cell-inherent and cell specific augmentation of Aβ clearance through the powerful engagement of autophagy and thereby robustly contributing to neuronal protection.
Collapse
Affiliation(s)
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
21
|
Thonda S, Puttapaka SN, Kona SV, Kalivendi SV. Extracellular-Signal-Regulated Kinase Inhibition Switches APP Processing from β- to α-Secretase under Oxidative Stress: Modulation of ADAM10 by SIRT1/NF-κB Signaling. ACS Chem Neurosci 2021; 12:4175-4186. [PMID: 34647720 DOI: 10.1021/acschemneuro.1c00582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The sequential cleavage of full-length amyloid precursor protein (APP) by secretases has been at the center of efforts for understanding the onset of Alzheimer's disease (AD). A decrease in α-secretase activity was observed during the progression of AD; however, the precise molecular mechanism involved in the downregulation of α-secretase under oxidative stress is not fully understood. In the present study, we have demonstrated that pharmacological inhibition of mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) by mitogen-activated protein kinase kinase-1 (MEK-1) inhibitor (PD98059) restored the expression of a disintegrin and metalloproteinase 10 (ADAM10) with a concomitant decrease in β-site APP cleavage enzyme 1 (BACE1) under oxidative stress. Silent mating-type information regulation 2 homologue 1 (SIRT1) activation by resveratrol also mitigated alterations in secretase levels through MAPK/ERK signaling. Intracerebroventricular (ICV) administration of streptozotocin in rats showed amyloidogenic processing of APP and altered the SIRT1/ERK axis in the hippocampus. We also observed that the ADAM10 expression is controlled at the transcriptional level by oxidative stress. Using the luciferase reporter activity of ADAM10 promoter deletion constructs, we have identified the region 290 bp upstream of the transcription start site (TSS) possessing regulatory elements responsible for ADAM10 downregulation with hydrogen peroxide (H2O2) treatment. Further, bioinformatics analysis revealed the presence of putative nuclear factor kappa B (NF-κB) binding sites in the ADAM10 promoter region. Treatment of cortical neurons with the NF-κB inhibitor (Bay 11-7082) mitigated the transcriptional upregulation of ADAM10 by PD98059. Overall, our findings suggest that SIRT1/ERK/NF-κB axis contributes to the downregulation of ADAM10, resulting in the shift from nonamyloidogenic to amyloidogenic processing of APP under oxidative stress.
Collapse
Affiliation(s)
- Swaroop Thonda
- Department of Applied Biology, CSIR─Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srinivas N. Puttapaka
- Department of Applied Biology, CSIR─Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swathi V. Kona
- Department of Applied Biology, CSIR─Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shasi V. Kalivendi
- Department of Applied Biology, CSIR─Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Prasad KN, Bondy SC. Can a Micronutrient Mixture Delay the Onset and Progression of Symptoms of Single-Point Mutation Diseases? J Am Coll Nutr 2021; 41:489-498. [PMID: 34227926 DOI: 10.1080/07315724.2021.1910592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Single-point mutation diseases in which substitution of one nucleotide with another in a gene occurs include familial Alzheimer's disease (fAD), familial Parkinson's disease (fPD), and familial Creutzfeldt-Jacob disease (fCJD) as well as Huntington's disease (HD), sickle cell anemia, and hemophilia. Inevitability of occurrence of these diseases is certain. However, the time of appearance of symptoms could be influenced by the diet, environment, and possibly other genetic factors. There are no effective approaches to delay the onset or progression of symptoms of these diseases. The fact that increased oxidative stress and inflammation significantly contribute to the initiation and progression of these point mutation diseases shows that antioxidants could be useful. The major objectives are (a) to present evidence that increased oxidative stress and chronic inflammation are associated with selected single-point mutation diseases, such as fAD, fPD, and fCJD, HD, sickle cell anemia, and hemophilia; (b) to describe limited studies on the role of individual antioxidants in experimental models of some of these diseases; and (c) to discuss a rationale for utilizing a comprehensive mixture of micronutrients, which may delay the development and progression of symptoms of above diseases by simultaneously reducing oxidative and inflammatory damages.Key teaching pointsSelected single-point mutation diseases and their pattern of inheritanceCharacteristics of each selected single-point mutation diseaseEvidence for increased oxidative stress and inflammation in each diseasePotential reasons for failure of single antioxidants in human studiesRationale for using a comprehensive mixture of micronutrients in delaying the onset and progression of single-point mutation diseases.
Collapse
Affiliation(s)
| | - Stephen C Bondy
- Department of Occupational and Environmental Medicine and Department of Medicine, University of California Irvine, Irvine, California, USA
| |
Collapse
|
23
|
Marcovecchio GE, Ferrua F, Fontana E, Beretta S, Genua M, Bortolomai I, Conti A, Montin D, Cascarano MT, Bergante S, D’Oria V, Giamberti A, Amodio D, Cancrini C, Carotti A, Di Micco R, Merelli I, Bosticardo M, Villa A. Premature Senescence and Increased Oxidative Stress in the Thymus of Down Syndrome Patients. Front Immunol 2021; 12:669893. [PMID: 34140950 PMCID: PMC8204718 DOI: 10.3389/fimmu.2021.669893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Down syndrome (DS) patients prematurely show clinical manifestations usually associated with aging. Their immune system declines earlier than healthy individuals, leading to increased susceptibility to infections and higher incidence of autoimmune phenomena. Clinical features of accelerated aging indicate that trisomy 21 increases the biological age of tissues. Based on previous studies suggesting immune senescence in DS, we hypothesized that induction of cellular senescence may contribute to early thymic involution and immune dysregulation. Immunohistochemical analysis of thymic tissue showed signs of accelerated thymic aging in DS patients, normally seen in older healthy subjects. Moreover, our whole transcriptomic analysis on human Epcam-enriched thymic epithelial cells (hTEC), isolated from three DS children, which revealed disease-specific transcriptomic alterations. Gene set enrichment analysis (GSEA) of DS TEC revealed an enrichment in genes involved in cellular response to stress, epigenetic histone DNA modifications and senescence. Analysis of senescent markers and oxidative stress in hTEC and thymocytes confirmed these findings. We detected senescence features in DS TEC, thymocytes and peripheral T cells, such as increased β-galactosidase activity, increased levels of the cell cycle inhibitor p16, telomere length and integrity markers and increased levels of reactive oxygen species (ROS), all factors contributing to cellular damage. In conclusion, our findings support the key role of cellular senescence in the pathogenesis of immune defect in DS while adding new players, such as epigenetic regulation and increased oxidative stress, to the pathogenesis of immune dysregulation.
Collapse
Affiliation(s)
- Genni Enza Marcovecchio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Fontana
- Humanitas Clinical and Research Center, Rozzano, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ileana Bortolomai
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino, Turin, Italy
- Regina Margherita Children’s Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maria Teresa Cascarano
- Cardiochirurgia Pediatrica Ospedale Infantile Regina Margherita (OIRM), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Sonia Bergante
- Laboratory of Stem Cells for Tissue Engineering, Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San Donato, Milan, Italy
| | - Veronica D’Oria
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, Italy
| | - Alessandro Giamberti
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Donato Amodio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Adriano Carotti
- Department of Pediatric Cardiac Surgery, IRCCS Bambino Gesú Children’s Hospital, Rome, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies-National Research Council, Segrate, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| |
Collapse
|
24
|
Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med 2021; 169:382-396. [PMID: 33933601 PMCID: PMC8145782 DOI: 10.1016/j.freeradbiomed.2021.04.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly population and has worldwide impact. The etiology of the disease is complex and results from the confluence of multiple mechanisms ultimately leading to neuronal loss and cognitive decline. Among risk factors, aging is the most relevant and accounts for several pathogenic events that contribute to disease-specific toxic mechanisms. Accumulating evidence linked the alterations of the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase playing a key role in the regulation of protein synthesis and degradation, to age-dependent cognitive decline and pathogenesis of AD. To date, growing studies demonstrated that aberrant mTOR signaling in the brain affects several pathways involved in energy metabolism, cell growth, mitochondrial function and proteostasis. Recent advances associated alterations of the mTOR pathway with the increased oxidative stress. Disruption of all these events strongly contribute to age-related cognitive decline including AD. The current review discusses the main regulatory roles of mTOR signaling network in the brain, focusing on its role in autophagy, oxidative stress and energy metabolism. Collectively, experimental data suggest that targeting mTOR in the CNS can be a valuable strategy to prevent/slow the progression of AD.
Collapse
Affiliation(s)
- M Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - F Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - E Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D A Butterfield
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy; Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
25
|
A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders. Neurochem Res 2021; 46:1043-1057. [PMID: 33547615 DOI: 10.1007/s11064-021-03257-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Ferulic acid is being screened in preclinical settings to combat various neurological disorders. It is a naturally occurring dietary flavonoid commonly found in grains, fruits, and vegetables such as rice, wheat, oats, tomatoes, sweet corn etc., which exhibits protective effects against a number of neurological diseases such as epilepsy, depression, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease. Ferulic acid prevents and treats different neurological diseases pertaining to its potent anti-oxidative and anti-inflammatory effects, beside modulating unique neuro-signaling pathways. It stays in the bloodstream for longer periods than other dietary polyphenols and antioxidants and easily crosses blood brain barrier. The use of novel drug delivery systems such as solid-lipid nanoparticles (SLNs) or its salt forms (sodium ferulate, ethyl ferulate, and isopentyl ferulate) further enhance its bioavailability and cerebral penetration. Based on reported studies, ferulic acid appears to be a promising molecule for treatment of neurological disorders; however, more preclinical (in vitro and in vivo) mechanism-based studies should be planned and conceived followed by its testing in clinical settings.
Collapse
|
26
|
Jia J, Zeng X, Xu G, Wang Z. The Potential Roles of Redox Enzymes in Alzheimer's Disease: Focus on Thioredoxin. ASN Neuro 2021; 13:1759091421994351. [PMID: 33557592 PMCID: PMC7876756 DOI: 10.1177/1759091421994351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative diseases. Increasing studies have demonstrated the critical importance for redox proteins mediating neuronal protection in models of AD. This review briefly describes some of the risk factors contributing to AD, specifically highlighting the important roles of oxidative stress in the pathology of AD. Then this article concisely introduces the dysregulation and functions of two main redox enzymes, peroxiredoxins and glutaredoxins, in AD models. This review emphasizes the neuroprotective role of the third redox enzyme thioredoxin (Trx), an important multifunctional protein regulating cellular redox status. This commentary not only summarizes the alterations of Trx expression in AD patients and models, but also reviews the potential effects and mechanisms of Trx, Trx-related molecules and Trx-inducing compounds against AD. In conclusion, Trx has a potential neuroprotection in AD and may be very promising for clinical therapy of AD in the future.
Collapse
Affiliation(s)
- Jinjing Jia
- Department of Physiology, Jiaxing University Medical
College, Jiaxing, China
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
| | - Xiansi Zeng
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
- Department of Biochemistry, Jiaxing University Medical
College, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
| | - Zhanqi Wang
- College of Life Sciences, Huzhou University, Huzhou,
China
| |
Collapse
|
27
|
Jia J, Zeng X, Xu G, Wang Z. The Potential Roles of Redox Enzymes in Alzheimer's Disease: Focus on Thioredoxin. ASN Neuro 2021; 13:1759091421994351. [PMID: 33557592 DOI: 10.1177/1759091421994351if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative diseases. Increasing studies have demonstrated the critical importance for redox proteins mediating neuronal protection in models of AD. This review briefly describes some of the risk factors contributing to AD, specifically highlighting the important roles of oxidative stress in the pathology of AD. Then this article concisely introduces the dysregulation and functions of two main redox enzymes, peroxiredoxins and glutaredoxins, in AD models. This review emphasizes the neuroprotective role of the third redox enzyme thioredoxin (Trx), an important multifunctional protein regulating cellular redox status. This commentary not only summarizes the alterations of Trx expression in AD patients and models, but also reviews the potential effects and mechanisms of Trx, Trx-related molecules and Trx-inducing compounds against AD. In conclusion, Trx has a potential neuroprotection in AD and may be very promising for clinical therapy of AD in the future.
Collapse
Affiliation(s)
- Jinjing Jia
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, China
- Department of Biochemistry, Jiaxing University Medical College, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Jiaxing University Medical College, Jiaxing, China
| | - Zhanqi Wang
- College of Life Sciences, Huzhou University, Huzhou, China
| |
Collapse
|
28
|
Sharma A, Sethi G, Tambuwala MM, Aljabali AAA, Chellappan DK, Dua K, Goyal R. Circadian Rhythm Disruption and Alzheimer's Disease: The Dynamics of a Vicious Cycle. Curr Neuropharmacol 2020; 19:248-264. [PMID: 32348224 PMCID: PMC8033974 DOI: 10.2174/1570159x18666200429013041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
All mammalian cells exhibit circadian rhythm in cellular metabolism and energetics. Autonomous cellular clocks are modulated by various pathways that are essential for robust time keeping. In addition to the canonical transcriptional translational feedback loop, several new pathways of circadian timekeeping - non-transcriptional oscillations, post-translational modifications, epigenetics and cellular signaling in the circadian clock - have been identified. The physiology of circadian rhythm is expansive, and its link to the neurodegeneration is multifactorial. Circadian rhythm disruption is prevelant in contamporary society where light-noise, shift-work, and transmeridian travel are commonplace, and is also reported from the early stages of Alzheimer's disease (AD). Circadian alignment by bright light therapy in conjunction with chronobiotics is beneficial for treating sundowning syndrome and other cognitive symptoms in advanced AD patients. We performed a comprehensive analysis of the clinical and translational reports to review the physiology of the circadian clock, delineate its dysfunction in AD, and unravel the dynamics of the vicious cycle between two pathologies. The review delineates the role of putative targets like clock proteins PER, CLOCK, BMAL1, ROR, and clock-controlled proteins like AVP, SIRT1, FOXO, and PK2 towards future approaches for management of AD. Furthermore, the role of circadian rhythm disruption in aging is delineated.
Collapse
Affiliation(s)
- Ashish Sharma
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive, 117 600, Singapore
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County, Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| |
Collapse
|
29
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
30
|
Abstract
OBJECTIVES Growing evidence suggested that antiretroviral (ARV) drugs may promote amyloid beta (Aβ) accumulation in HIV-1-infected brain and the persistence of HIV-associated neurocognitive disorders (HANDs). It has also been shown that lipid peroxidation upregulates β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) expression and subsequently promotes Aβ peptide production. In the present study, we examined whether chronic exposure to the anti-HIV drugs tenofovir disoproxil fumarate (TDF) and nevirapine induces lipid peroxidation thereby promoting BACE1 and Aβ generation and consequently impair cognitive function in mice. METHODS TDF or nevirapine was orally administered to female BALB/c mice once a day for 8 weeks. On the 7th week of treatment, spatial learning and memory were assessed using the Morris water maze test. The levels of lipid peroxidation, BACE1, amyloid β 1-42 (Aβ1-42) and Aβ deposits were measured in the hippocampal tissue upon completion of treatment. RESULTS Chronic administration of nevirapine induced spatial learning and memory impairment in the Morris water maze test, whereas TDF did not have an effect. TDF and nevirapine administration increased hippocampal lipid peroxidation and Aβ1-42 concentration. Nevirapine further upregulated BACE1 expression and Aβ deposits. CONCLUSION Our results suggest that chronic exposure to TDF and nevirapine contributes to hippocampal lipid peroxidation and Aβ accumulation, respectively, as well as spatial learning and memory deficits in mice even in the absence of HIV infection. These findings further support a possible link between ARV drug toxicity, Aβ accumulation and the persistence of HANDs.
Collapse
|
31
|
Verstegen RHJ, Kusters MAA. Inborn Errors of Adaptive Immunity in Down Syndrome. J Clin Immunol 2020; 40:791-806. [PMID: 32638194 DOI: 10.1007/s10875-020-00805-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Down syndrome fits an immunophenotype of combined immunodeficiency with immunodysregulation, manifesting with increased susceptibility to infections, autoimmunity, autoinflammatory diseases, and hematologic malignancies. Qualitative and quantitative alterations in innate and adaptive immunity are found in most individuals with Down syndrome. However, there is substantial heterogeneity and no correlation between immunophenotype and clinical presentation. Previously, it was thought that the immunological changes in Down syndrome were caused by precocious aging. We emphasize in this review that the immune system in Down syndrome is intrinsically different from the very beginning. The overexpression of specific genes located on chromosome 21 contributes to immunodeficiency and immunodysregulation, but gene expression differs between genes located on chromosome 21 and depends on tissue and cell type. In addition, trisomy 21 results in gene dysregulation of the whole genome, reflecting the complex nature of this syndrome in comparison to well-known inborn errors of immunity that result from monogenic germline mutations. In this review, we provide an updated overview focusing on inborn errors of adaptive immunity in Down syndrome.
Collapse
Affiliation(s)
- Ruud H J Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Maaike A A Kusters
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
32
|
Torres-Ávila JF, Espitia-Pérez L, Bonatto D, Silva FRD, Oliveira IMD, Silva LFO, Corrêa DS, Dias JF, Silva JD, Henriques JAP. Systems chemo-biology analysis of DNA damage response and cell cycle effects induced by coal exposure. Genet Mol Biol 2020; 43:e20190134. [PMID: 32609278 PMCID: PMC7315349 DOI: 10.1590/1678-4685-gmb-2019-0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022] Open
Abstract
Cell cycle alterations are among the principle hallmarks of cancer. Consequently, the study of cell cycle regulators has emerged as an important topic in cancer research, particularly in relation to environmental exposure. Particulate matter and coal dust around coal mines have the potential to induce cell cycle alterations. Therefore, in the present study, we performed chemical analyses to identify the main compounds present in two mineral coal samples from Colombian mines and performed systems chemo-biology analysis to elucidate the interactions between these chemical compounds and proteins associated with the cell cycle. Our results highlight the role of oxidative stress generated by the exposure to the residues of coal extraction, such as major inorganic oxides (MIOs), inorganic elements (IEs) and polycyclic aromatic hydrocarbons (PAH) on DNA damage and alterations in the progression of the cell cycle (blockage and/or delay), as well as structural dysfunction in several proteins. In particular, IEs such as Cr, Ni, and S and PAHs such as benzo[a]pyrene may have influential roles in the regulation of the cell cycle through DNA damage and oxidative stress. In this process, cyclins, cyclin-dependent kinases, zinc finger proteins such as TP53, and protein kinases may play a central role.
Collapse
Affiliation(s)
- Jose F Torres-Ávila
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Departamento de Biofísica, Porto Alegre, RS, Brazil.,Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Lyda Espitia-Pérez
- Universidad del Sinú, Grupo de Investigación Biomédica y Biología Molecular, Montería, Córdoba, Colombia
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Porto Alegre, RS, Brazil
| | | | - Iuri Marques de Oliveira
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Departamento de Biofísica, Porto Alegre, RS, Brazil
| | - Luís F O Silva
- Universidad de la Costa, Civil and Environmental Department, Barranquilla, Colombia
| | - Dione Silva Corrêa
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Centro de Pesquisa de Produtos e Desenvolvimento, Canoas, RS, Brazil
| | - Johnny Ferraz Dias
- Universidade Federal do Rio Grande do Sul, Instituto de Física, Laboratório de Implantação de Íons, Porto Alegre, RS, Brazil
| | - Juliana da Silva
- Universidade Luterana do Brasil, Laboratório de Toxicologia Genética, Canoas, RS, Brazil.,Universidade La Salle, Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Departamento de Biofísica, Porto Alegre, RS, Brazil.,Universidade de Caxias do Sul, Instituto de Biotecnologia, Laboratório de Genômica, Proteômica e Reparo de DNA, RS, Brazil
| |
Collapse
|
33
|
Jiang Y, Zhang Y, Su L. MiR-539-5p Decreases amyloid β-protein production, hyperphosphorylation of Tau and Memory Impairment by Regulating PI3K/Akt/GSK-3β Pathways in APP/PS1 Double Transgenic Mice. Neurotox Res 2020; 38:524-535. [PMID: 32415525 DOI: 10.1007/s12640-020-00217-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
The production of amyloid β (Aβ) and tau hyperphosphorylation have been identified as key processes in Alzheimer's disease (AD) pathogenesis. MiR-539-5p has been found to be abnormally expressed in brain tissue; however, the functional role of miR-539-5p in the pathogenesis of AD remains unclear. In our study, we found that the expression of miR-539-5p was significantly downregulated in humans and mice with AD and was negatively correlated with expression of APP, caveolin 1, and GSK-3β. Moreover, upregulation of miR-539-5p inhibited Aβ accumulation, tau phosphorylation, oxidative stress, and apoptosis and improved memory ability in AD mice. Furthermore, by using bioinformatics tool and dual-luciferase reporter assay, APP, Caveolin 1, and GSK-3β were confirmed as direct targets of miR-539-5p. In addition, the PI3K/AKT/GSK-3β signaling pathway can be regulated by miR-539-5p. In conclusion, this study provided a novel insight into the pathologic mechanism of AD by identifying that miR-539-5p plays a neuroprotective role in AD.
Collapse
Affiliation(s)
- Yushu Jiang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou City, 450000, Henan Province, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The Central Laboratory, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, No.3002 Sungang West Road, Futian District, Shenzhen City, 518035, Guangdong Province, China.
| | - Li Su
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen City, 518055, Guangdong Province, China
| |
Collapse
|
34
|
Syeda T, Foguth RM, Llewellyn E, Cannon JR. PhIP exposure in rodents produces neuropathology potentially relevant to Alzheimer's disease. Toxicology 2020; 437:152436. [PMID: 32169473 PMCID: PMC7218929 DOI: 10.1016/j.tox.2020.152436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a public health crisis due to debilitating cognitive symptoms and lack of curative treatments, in the context of increasing prevalence. Thus, it is critical to identify modifiable risk factors. High levels of meat consumption may increase AD risk. Many toxins are formed during meat cooking such as heterocyclic aromatic amines (HAAs). Our prior studies have shown that HAAs produce dopaminergic neurotoxicity. Given the mechanistic and pathological overlap between AD and dopaminergic disorders we investigated whether exposure to 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a prevalent dietary HAA formed during high-temperature meat cooking, may produce AD-relevant neurotoxicity. Here, C57BL/6 mice were treated with 100 or 200 mg/kg PhIP for 8 h or 75 mg/kg for 4 weeks and 16 weeks. PhIP exposure for 8 h produced oxidative damage, and AD-relevant alterations in hippocampal synaptic proteins, Amyloid-beta precursor protein (APP), and β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). PhIP exposure for 4 weeks resulted in an increase in BACE1. PhIP exposure for 16 weeks resulted in increased hippocampal oxidative damage, APP, BACE1, Aβ aggregation, and tau phosphorylation. Quantification of intracellular nitrotyrosine revealed oxidative damage in cholinergic neurons after 8 h, 4 weeks and 16 weeks of PhIP exposure. Our study demonstrates that increase in oxidative damage, APP and BACE1 might be a possible mechanism by which PhIP promotes Aβ aggregation. Given many patients with AD or PD exhibit neuropathological overlap, our study suggests that HAA exposure should be further studied for roles in mediating pathogenic overlap.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Rachel M Foguth
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Emily Llewellyn
- Summer Research Opportunities Program, Purdue, University, West Lafayette, IN, 47907, United States; Department of Biology, Utah Valley University, Orem, Utah, 84058, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
35
|
Inhibitory effects of curcumin on H 2O 2-induced cell damage and APP expression and processing in SH-SY5Y cells transfected with APP gene with Swedish mutation. Mol Biol Rep 2020; 47:2047-2059. [PMID: 32036572 DOI: 10.1007/s11033-020-05305-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, and the pathological mechanism of the disease is still far to understand. According to the amyloid cascade hypothesis in AD, Amyloid-β (Aβ) is considered as a key substance that contributes AD development. Aβ is a β-cleaving product from Amyloid-β protein precursor (APP). Mutations of APP including APPKM670/671670NL (Swedish mutation) result in Aβ overproduction and the development of early-onset familial AD. Increase of oxidative stress and damage also occurs in early stage of AD. In this study, we used a SH-SY5Y cell line that stably expresses APP gene with Swedish mutation (SH-SY5Y-APPswe), and the inhibitory effects of curcumin on H2O2-induced cell damage and APP processing were investigated. Cells were treated with curcumin (0 ~ 5 μM) for 4 h before hydrogen peroxide (H2O2). Cell growth was detected with CCK-8 assay, and cell damage was determined through the evaluation of release of lactate dehydrogenase (LDH) from the cytosol to the culture medium and the morphological change of nucleus. The ability of mitochondrial stress and the depolarization of mitochondrial membrane potential were assayed through the measuring the oxygen consumption rate (OCR) and the green/red fluorescence ratio of JC-1 dye respectively. The protein levels of APP, sAPPα, sAPPβ, and BACE1 were analyzed with Western blot assay. Aβ production was measured with enzyme-linked immunosorbent assay (ELISA). The results indicated that curcumin inhibits H2O2-induced decrease of cell growth and cell damage. Curcumin attenuates H2O2-induced damage on the ability to mitochondrial oxidative phosphorylation and membrane potential. Curcumin inhibits H2O2-induced increase of APP cleavage through β-cleavage pathway and of intracellular Aβ production. These results imply that curcumin can be used to treat AD through inhibiting oxidative damage-induced APP β-cleavage and intracellular Aβ generation.
Collapse
|
36
|
Srivastava AK, Roy Choudhury S, Karmakar S. Near-Infrared Responsive Dopamine/Melatonin-Derived Nanocomposites Abrogating in Situ Amyloid β Nucleation, Propagation, and Ameliorate Neuronal Functions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5658-5670. [PMID: 31986005 DOI: 10.1021/acsami.9b22214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is one of the common causes of dementia and mild cognitive impairments, which is progressively expanding among the elderly population worldwide. A short Amyloid-β (Aβ) peptide generated after amyloidogenic processing of amyloid precursor protein exist as intermolecular β-sheet rich oligomeric, protofibriler, and fibrillar structures and believe to be toxic species which instigate neuronal pathobiology in the brain and deposits as senile plaque. Enormous efforts are being made to develop an effective anti-AD therapy that can target Aβ processing, aggregation, and propagation and provide a synergistic neuroprotective effect. However, a nanodrug prepared from natural origin can confer a multimodal synergistic chemo/photothermal inhibition of Aβ pathobiology is not yet demonstrated. In the present work, we report a dopamine-melatonin nanocomposite (DM-NC), which possesses a synergistic near-infrared (NIR) responsive photothermal and pharmacological modality. The noncovalent interaction-mediated self-assembly of melatonin and dopamine oxidative intermediates leads to the evolution of DM-NCs that can withstand variable pH and peroxide environment. NIR-activated melatonin release and photothermal effect collectively inhibit Aβ nucleation, self-seeding, and propagation and can also disrupt the preformed Aβ fibers examined using in vitro Aβ aggregation and Aβ-misfolding cyclic amplification assays. The DM-NCs display a higher biocompatibility to neuroblastoma cells, suppress the AD-associated generation of intracellular reactive oxygen species, and are devoid of any negative impact on the axonal growth process. In okadaic acid-induced neuroblastoma and ex vivo midbrain slice culture-based AD model, DM-NCs exposure suppresses the intracellular Aβ production, aggregation, and accumulation. Therefore, this nature-derived nanocomposite demonstrates a multimodal NIR-responsive synergistic photothermal and pharmacological modality for effective AD therapy.
Collapse
Affiliation(s)
- Anup K Srivastava
- Habitat Centre , Institute of Nano Science and Technology , Phase-10 , Mohali 160062 , Punjab , India
| | - Subhasree Roy Choudhury
- Habitat Centre , Institute of Nano Science and Technology , Phase-10 , Mohali 160062 , Punjab , India
| | - Surajit Karmakar
- Habitat Centre , Institute of Nano Science and Technology , Phase-10 , Mohali 160062 , Punjab , India
| |
Collapse
|
37
|
Llanos-González E, Henares-Chavarino ÁA, Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Sancho-Bielsa FJ, Alcain FJ, Peinado JR, Rabanal-Ruíz Y, Durán-Prado M. Interplay Between Mitochondrial Oxidative Disorders and Proteostasis in Alzheimer's Disease. Front Neurosci 2020; 13:1444. [PMID: 32063825 PMCID: PMC7000623 DOI: 10.3389/fnins.2019.01444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Although the basis of Alzheimer’s disease (AD) etiology remains unknown, oxidative stress (OS) has been recognized as a prodromal factor associated to its progression. OS refers to an imbalance between oxidant and antioxidant systems, which usually consist in an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which overwhelms the intrinsic antioxidant defenses. Due to this increased production of ROS and RNS, several biological functions such as glucose metabolism or synaptic activity are impaired. In AD, growing evidence links the ROS-mediated damages with molecular targets including mitochondrial dynamics and function, protein quality control system, and autophagic pathways, affecting the proteostasis balance. In this scenario, OS should be considered as not only a major feature in the pathophysiology of AD but also a potential target to combat the progression of the disease. In this review, we will discuss the role of OS in mitochondrial dysfunction, protein quality control systems, and autophagy associated to AD and suggest innovative therapeutic strategies based on a better understanding of the role of OS and proteostasis.
Collapse
Affiliation(s)
- Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | | | - Cristina María Pedrero-Prieto
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Sancho-Bielsa
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan Ramón Peinado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruíz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
38
|
Current status and future prospects of pathophysiology-based neuroprotective drugs for the treatment of vascular dementia. Drug Discov Today 2020; 25:793-799. [PMID: 31981482 DOI: 10.1016/j.drudis.2020.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
Vascular dementia (VaD) is a progressive neurocognitive clinical syndrome that is caused by a decrease in cerebral blood flow and damage to the neurovascular unit. Given increasing life expectancy, VaD is emerging as one of the leading health problems in society. Despite the high global prevalence of cognitive impairment associated with VaD, diagnosis and treatment still remain limited because of the complexity of mechanisms of neuronal loss. Therefore, advances in our understanding of the pathophysiological mechanisms involved is crucial for the development of new therapeutic strategies. In this review, we highlight the pathophysiology, current pharmacology-based primary and secondary prevention strategies and emerging treatment options for VaD.
Collapse
|
39
|
Wallin C, Friedemann M, Sholts SB, Noormägi A, Svantesson T, Jarvet J, Roos PM, Palumaa P, Gräslund A, Wärmländer SKTS. Mercury and Alzheimer's Disease: Hg(II) Ions Display Specific Binding to the Amyloid-β Peptide and Hinder Its Fibrillization. Biomolecules 2019; 10:E44. [PMID: 31892131 PMCID: PMC7022868 DOI: 10.3390/biom10010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brains and blood of Alzheimer's disease (AD) patients have shown elevated mercury concentrations, but potential involvement of mercury exposure in AD pathogenesis has not been studied at the molecular level. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils. Aβ peptide fibrillization is known to be modulated by metal ions such as Cu(II) and Zn(II). Here, we study in vitro the interactions between Aβ peptides and Hg(II) ions by multiple biophysical techniques. Fluorescence spectroscopy and atomic force microscopy (AFM) show that Hg(II) ions have a concentration-dependent inhibiting effect on Aβ fibrillization: at a 1:1 Aβ·Hg(II) ratio only non-fibrillar Aβ aggregates are formed. NMR spectroscopy shows that Hg(II) ions interact with the N-terminal region of Aβ(1-40) with a micromolar affinity, likely via a binding mode similar to that for Cu(II) and Zn(II) ions, i.e., mainly via the histidine residues His6, His13, and His14. Thus, together with Cu(II), Fe(II), Mn(II), Pb(IV), and Zn(II) ions, Hg(II) belongs to a family of metal ions that display residue-specific binding interactions with Aβ peptides and modulate their aggregation processes.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Merlin Friedemann
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Sabrina B. Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| | - Andra Noormägi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 16765 Stockholm, Sweden;
- Department of Clinical Physiology, Capio St. Göran Hospital, 11219 Stockholm, Sweden
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| |
Collapse
|
40
|
Cao Y, Li Z, Ma L, Yang N, Guo X. Isoflurane-Induced Postoperative Neurovascular and Cognitive Dysfunction Is Associated with VEGF Overexpression in Aged Rats. J Mol Neurosci 2019; 69:215-223. [PMID: 31250275 DOI: 10.1007/s12031-019-01350-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in older adults; however, its aetiology remains unclear. Although vascular endothelial growth factor (VEGF) is associated with blood-brain barrier (BBB) disorders and neurological disease, its role in POCD is unknown. Here, we investigated the effect of brain VEGF inhibition on isoflurane-induced cognitive impairment in an aged rat model of POCD. VEGF protein expression was increased in the hippocampus after isoflurane exposure, suggesting that inhalation anaesthesia induces hippocampal VEGF protein overexpression in aged rats. Pretreatment with 2 mg/kg RB-222, an anti-VEGF neutralizing antibody, may partially abolish the degradation of occludin protein in cerebral capillaries, thereby maintaining the ultrastructural and functional integrity of the hippocampal BBB. Inhibition of VEGF also significantly attenuated the isoflurane-induced cognitive deficits in the Morris water maze task. Together, our findings show, for the first time, that elevated expression of brain VEGF after isoflurane exposure contributes to POCD in aged rats. Therefore, therapeutic strategies involving VEGF should take into consideration its role in the pathogenesis of POCD.
Collapse
Affiliation(s)
- Yiyun Cao
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 200233, China.,Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Lijun Ma
- Department of Medical Imaging, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
41
|
Methamphetamine regulates βAPP processing in human neuroblastoma cells. Neurosci Lett 2019; 701:20-25. [PMID: 30771376 DOI: 10.1016/j.neulet.2019.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Methamphetamine is a potent and highly addictive psychostimulant whose abuse has turned out to be a global health hazard. The multitudinous effects it exerts at the cellular level induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Strikingly, brain changes, tissue damage and neuropsychological symptoms due to Meth exposure compels and necessitates to link the probability of risk of developing premature Alzheimer's disease, a progressive neurodegenerative disorder characterized by amyloid plaques composed of amyloid-β peptides and clinical dementia. These peptides are derived from sequential cleavages of the β-amyloid precursor protein by β- and γ-secretases. Previous studies reveals evidence for both positive and negative effects of Meth pertaining to cognitive functioning based on the dosage paradigm and duration of exposure revealing a beneficial psychotropic profile under some conditions and deleterious cognitive deficits under some others. In this context, we proposed to examine the effect of Meth on βAPP metabolism and βAPP-cleaving secretases in the human neuroblastoma SH-SY5Y cell line. Our results showed that Meth dose-dependently increases BACE1 expression and catalytic activity, while its effect on the α-cleavage of βAPP and on the expression and catalytic activity of the main α-secretase ADAM10 display a bell-curve shape. To our knowledge, the present study is the first to demonstrate that Meth can control βAPP-cleaving secretases. Moreover, we propose from these findings that the deleterious effect of Meth on cognitive decline might be an outcome of high dosage paradigm whereas acute and short-term drug use which stimulated sAPPα might produce improvements in cognition in disorders such as AD.
Collapse
|
42
|
Osipova ED, Komleva YK, Morgun AV, Lopatina OL, Panina YA, Olovyannikova RY, Vais EF, Salmin VV, Salmina AB. Designing in vitro Blood-Brain Barrier Models Reproducing Alterations in Brain Aging. Front Aging Neurosci 2018; 10:234. [PMID: 30127733 PMCID: PMC6088457 DOI: 10.3389/fnagi.2018.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Blood-brain barrier (BBB) modeling in vitro is a huge area of research covering study of intercellular communications and development of BBB, establishment of specific properties that provide controlled permeability of the barrier. Current approaches in designing new BBB models include development of new (bio) scaffolds supporting barriergenesis/angiogenesis and BBB integrity; use of methods enabling modulation of BBB permeability; application of modern analytical techniques for screening the transfer of metabolites, bio-macromolecules, selected drug candidates and drug delivery systems; establishment of 3D models; application of microfluidic technologies; reconstruction of microphysiological systems with the barrier constituents. Acceptance of idea that BBB in vitro models should resemble real functional activity of the barrier in different periods of ontogenesis and in different (patho) physiological conditions leads to proposal that establishment of BBB in vitro model with alterations specific for aging brain is one of current challenges in neurosciences and bioengineering. Vascular dysfunction in the aging brain often associates with leaky BBB, alterations in perivascular microenvironment, neuroinflammation, perturbed neuronal and astroglial activity within the neurovascular unit, impairments in neurogenic niches where microvascular scaffold plays a key regulatory role. The review article is focused on aging-related alterations in BBB and current approaches to development of “aging” BBB models in vitro.
Collapse
Affiliation(s)
- Elena D Osipova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia A Panina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Raissa Ya Olovyannikova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Elizaveta F Vais
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
43
|
Kamalashiran C, Pattaraarchachai J, Muengtaweepongsa S. Feasibility and Safety of Perilla Seed Oil as an Additional Antioxidative Therapy in Patients with Mild to Moderate Dementia. J Aging Res 2018; 2018:5302105. [PMID: 29973990 PMCID: PMC6008684 DOI: 10.1155/2018/5302105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 11/22/2022] Open
Abstract
Dementia is a broad-spectrum terminology for a degenerate in cognitive function severe enough to intervene in activities of daily living. Oxidative stress plays a major role in the neurodegenerative cascade, leading to the irreversible mechanism in dementia. Perilla seed oil is extracted from its seeds and contains a high source of antioxidative substances such as omega-3 fatty acid. With its prominent antioxidative property, perilla seed oil demonstrates neuroprotective effects against dementia in preclinical studies. We aim to prove the feasibility and safety of perilla seed oil as an additional antioxidative therapy in patients with dementia. This single-centered, double-blinded, placebo-controlled trial randomized 239 patients with clinical diagnosis of mild to moderate dementia according to the Thai Mini-Mental State Examination (TMSE) score of 10 to 23 or the Thai Montreal Cognitive Assessment score of 12 to 25. Either two capsules containing 500 milligrams of perilla seed oil or similarly appearing two capsules containing 500 milligrams of olive oil (placebo) four times daily was added to conventional standard treatment of dementia for six months. Clinical side effects and routine laboratory results at baseline and after treatment were compared between both groups. Nausea and vomiting were the most common clinical side effects (3%) found equally in both groups. Three patients in the placebo group prematurely discontinued the medication, while only one patient in the treatment group quit the medication early. However, about 5% of patients in both groups could not comply with the regimen of the treatment. The routine laboratory results, including complete blood counts, kidney function tests, and liver function panels, at baseline and after treatment, were not significantly different in both groups. In conclusion, perilla seed oil was feasible and safe to add on with standard treatment in patients with mild to moderate dementia. Further study is needed to confirm its benefit to use as additional antioxidative therapy in patients with dementia.
Collapse
Affiliation(s)
- Chuntida Kamalashiran
- Chulabhron International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Junya Pattaraarchachai
- Chulabhron International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | | |
Collapse
|
44
|
Ayaz A, Agarwal A, Sharma R, Kothandaraman N, Cakar Z, Sikka S. Proteomic analysis of sperm proteins in infertile men with high levels of reactive oxygen species. Andrologia 2018; 50:e13015. [PMID: 29656391 DOI: 10.1111/and.13015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a significant risk factor for male infertility. A pro-oxidant testicular environment may alter the expression profile of functional sperm proteins and result in poor sperm quality. Patients and donors were divided into ROS (-) and ROS (+) groups. Using computational studies, and data mining of available literature on spermatozoa, oxidative stress and proteomics, we identified three core regulatory proteins angiotensin-converting enzyme (ACE), heat-shock protein (Hsp70) family A member 2 (HSPA2) and ribosomal protein subunit 27A (RPS27A) and seven interlink proteins NOS2, SUMO2, UBL4A, FBXO25, MAP3K3, APP and UBC. HSPA2 was validated by Western Blot, while the localisation of ACE, RPS27A, MAP3K3 and APP was identified by immunocytochemistry. The obtained results showed that HSPA2 was 1.2 (ROS+) and 2.1 (ROS-) fold downregulated in spermatozoa from patients with high levels of reactive oxygen species (ROS). ACE and APP were localised in the post-acrosomal region of spermatozoa, whereas RPS27A and MAP3K3 were localised either in the tail or sperm neck area. Our data show that these proteins may play a role in ROS-induced male infertility.
Collapse
Affiliation(s)
- A Ayaz
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Urology, Tulane Medical Center, New Orleans, LA, USA
| | - A Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - R Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - N Kothandaraman
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Z Cakar
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - S Sikka
- Department of Urology, Tulane Medical Center, New Orleans, LA, USA
| |
Collapse
|
45
|
Nanotherapy for Alzheimer's disease and vascular dementia: Targeting senile endothelium. Adv Colloid Interface Sci 2018; 251:44-54. [PMID: 29274774 DOI: 10.1016/j.cis.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022]
Abstract
Due to the complexity of Alzheimer's disease, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted lipid nanoemulsion) are available. Versatile small molecule drug(s) targeting multiple pathways of Alzheimer's disease pathogenesis are known. By incorporating such drug(s) into the targeted "lipid-coated microbubble" [LCM]/"nanoparticle-derived" [ND] (or LCM/ND) nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly class B type I), or SR-BI, making possible for various Alzheimer's-related cell types to be simultaneously searched out for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble [LCM] subpopulation (i.e., a stable LCM suspension); such film-stabilized microbubbles are well known to substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer's patient.
Collapse
|