1
|
Bonzanini V, Haddad Momeni M, Olofsson K, Olsson L, Geijer C. Impact of glucose and propionic acid on even and odd chain fatty acid profiles of oleaginous yeasts. BMC Microbiol 2025; 25:79. [PMID: 39966733 PMCID: PMC11834278 DOI: 10.1186/s12866-025-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Odd chain fatty acids (OCFAs) are gaining attention for their valuable medical and nutritional applications. Microbial fermentation offers a sustainable and environmentally friendly alternative for OCFA production compared to traditional extraction or chemical synthesis methods. To achieve an economically feasible OCFA production process, it is essential to identify and develop microbial cell factories capable of producing OCFAs with high titers and yields. RESULTS We selected 19 yeast species, including both oleaginous yeasts and representatives from the Ascomycota and Basidiomycota phyla, based on their known or potential ability to produce OCFAs. These species were screened under various growth conditions to evaluate their OCFA production potential. In glucose-based, nitrogen-limited media, the strains produced fatty acids to varying extents, with OCFAs comprising 0.5-5% of the total fatty acids. When using the OCFAs precursor propionic acid as the sole carbon source, only eight strains exhibited growth, with tolerance to propionic acid concentrations between 5 and 29 g/L. The strains also displayed varying efficiencies in converting propionic acid into fatty acids, yielding between 0.16 and 1.22 g/L of fatty acids, with OCFAs constituting 37-89% of total fatty acids. Among the top performing strains, Cutaneotrichosporon oleaginosus produced the highest OCFA titers and yields (0.94 g/L, 0.07 g/g), Yarrowia lipolytica demonstrated superior growth rates even at elevated propionic acid concentrations, and Rhodotorula toruloides achieved the highest proportion of OCFAs relative to total fatty acids (89%). CONCLUSIONS Our findings highlight the diverse capacities of the selected yeast species for OCFA production, identifying several promising strains for further optimization as microbial cell factories in sustainable OCFA production processes.
Collapse
Affiliation(s)
- Veronica Bonzanini
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Chalmersplatsen 4, Gothenburg, 412 96, Sweden
- AAK AB, Pulpetgatan 20, Malmö, 215 37, Sweden
| | | | | | - Lisbeth Olsson
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Chalmersplatsen 4, Gothenburg, 412 96, Sweden
| | - Cecilia Geijer
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Chalmersplatsen 4, Gothenburg, 412 96, Sweden.
| |
Collapse
|
2
|
Escamilla-Ruiz M, Zarzoza-Medina MG, Ríos-Ramírez M, Hernández-Adame PL, Ruiz-García J. Spontaneous Formation of Micelles and Vesicles in Langmuir Monolayers of Heneicosanoic Acid. ACS OMEGA 2025; 10:4224-4232. [PMID: 39959046 PMCID: PMC11822483 DOI: 10.1021/acsomega.4c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 02/18/2025]
Abstract
In Langmuir monolayers of heneicosanoic acid (C21H42O2), at low temperature, in the L'2 and CS crystalline phases, a blinking phenomenon occurs at the same positions of the monolayer, which is called localized oscillations (LO), but its origin has not been clarified. In this study, the LO phenomenon was correlated with the ejection of material out of the monolayer which was analyzed to understand this phenomenon. The techniques used for this purpose were pressure-area isotherms on a Langmuir balance and simultaneous observation of the monolayer by Brewster angle microscopy (BAM). Subsequently, using the Langmuir-Blodgett technique, the monolayers were transferred using freshly cleaved mica substrates for analysis by atomic force microscopy (AFM). Our results showed that the origin of the LO is related to a spontaneous formation of micelles and vesicles, since in AFM images these structures were observed in a size range from 4 to 16 nm. In addition, the AFM images showed that the difference between the heights of the L'2 and CS crystalline phases ranges from 13 to 15 Å.
Collapse
Affiliation(s)
- Martha
I. Escamilla-Ruiz
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| | - Moises G. Zarzoza-Medina
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| | - Maricarmen Ríos-Ramírez
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| | - Pablo L. Hernández-Adame
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| | - Jaime Ruiz-García
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| |
Collapse
|
3
|
Ciesielski V, Legrand P, Blat S, Rioux V. New insights on pentadecanoic acid with special focus on its controversial essentiality: A mini-review. Biochimie 2024; 227:123-129. [PMID: 39395658 DOI: 10.1016/j.biochi.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Pentadecanoic acid (C15:0, PDA) is an odd and minor fatty acid that has been neglected in the literature until the last decade. Indeed, as a specific fatty acid of dairy fat, PDA was only used as a biomarker of dairy fat consumption. Lately, PDA was first correlated negatively with the incidence of metabolic syndrome disorder, then its physiological effects have been investigated as a protective fatty acid. PDA supplementation has been demonstrated as negatively correlated with elevated levels of leptin, plasminogen activator inhibitor-1 and insulin, and has been shown to exhibit sensitizing insulin effects with activation of AMPK pathway. PDA also reduced the severity of metabolic dysfunction-associated steatohepatitis (MASH), notably through reduced alanine transaminase and pro-inflammatory cytokines levels. The final effect described for PDA is its ability to display anti-inflammatory properties in several pathology models. Hence, considering these multiple effects, the presence of PDA could be associated with a healthier physiological state, this raises the question of whether the presence of PDA in the body, in adequate quantities, is needed to participate to health maintenance. PDA is not synthesized in sufficient quantities endogenously, so it must be provided by the diet, mainly through dairy fat, although other types of food can also contribute to the dietary intake of PDA. Essential fatty acids are described as not being endogenously synthesized in sufficient and required quantities to maintain physiological health. Thus, PDA might gather both conditions to be described as essential, yet further investigations on both criteria are needed to enhance knowledge on this odd chain fatty acid with promising impact as potential protective supplement nutrient.
Collapse
Affiliation(s)
- Vincent Ciesielski
- Institut Agro Rennes Angers, Rennes, France; Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Philippe Legrand
- Institut Agro Rennes Angers, Rennes, France; Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Sophie Blat
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Vincent Rioux
- Institut Agro Rennes Angers, Rennes, France; Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France.
| |
Collapse
|
4
|
Chen XY, Yang MT, Huang SY, Qiu YZ, Wei W, Jiang CY, Song S, Zhu HL, Lan QY. Concentration and composition of odd-chain fatty acids in phospholipids and triacylglycerols in Chinese human milk throughout lactation. Food Funct 2024; 15:5352-5363. [PMID: 38635214 DOI: 10.1039/d4fo00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Human milk represents the gold standard for infant nutrition, with approximately 50% of the energy in human milk derived from lipids. Odd-chain fatty acids (OCFAs) have been recognized as a category of bioactive milk fatty acids in recent research; however, limited data exist on OCFAs in human milk. This study collected human milk samples spanning the postpartum period from 0 to 400 days. Phospholipids containing OCFAs (PL-OCFAs) were determined in 486 human milk samples using hydrophilic liquid chromatography-electrospray ionization-triquadrupole-mass spectrometry. Triacylglycerols containing OCFAs (TAG-OCFAs) were analyzed in 296 human milk samples using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The average total concentration of PL-OCFA ranged from 30.89 ± 14.27 mg L-1 to 93.48 ± 36.55 mg L-1 during lactation, and the average total TAG-OCFA content ranged from 103.1 ± 147.15 mg L-1 to 965.41 ± 651.67 mg L-1. Despite the lower absolute concentration of PL-OCFA, its relative concentration (8.75%-11.75%) was significantly higher than that of TAG-OCFA (0.37%-1.85%) throughout lactation. PC-OCFA, SM-OCFA and PE-OCFA are major sub-classes of PL-OCFA. Furthermore, C17:0 was the major chain length in both PL-OCFA and TAG-OCFA, followed by C15:0. C17:1 was characteristic of TAG-OCFA, while long-chain fatty acids C19:0, C21:0 and C23:0 were characteristic of PL-OCFA. Our findings highlighted the importance of bioactive lipids in human milk, suggesting that OCFAs could be targeted in future studies in relation to the health and development of infants.
Collapse
Affiliation(s)
- Xiao-Yan Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Meng-Tao Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ying-Zhen Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chen-Yu Jiang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Qiu-Ye Lan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Huang H, Li J, Shen J, Zhao T, Xiao R, Ma W. Dietary Inflammatory Index and Cognitive Function: Findings from a Cross-Sectional Study in Obese Chinese Township Population from 45 to 75 Years. J Inflamm Res 2024; 17:2365-2382. [PMID: 38651005 PMCID: PMC11034566 DOI: 10.2147/jir.s447300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Background and Objective Cognitive dysfunction is highly prevalent in obese people, and food is a key factor in obesity, and dietary inflammatory index (DII) can reflect whether diet has anti-inflammatory or pro-inflammatory potential. In addition, dietary fatty acid consumption is linked to inflammation, obesity, and cognitive impairment. Erythrocyte membrane fatty acids can reflect dietary fatty acid intake. Our hypothesis was that erythrocyte membrane fatty acids might have a significant impact on the relationship between DII and cognition in obese individuals, and we designed experiments to test the hypothesis. Methods In three villages in Beijing, we collected 579 respondents from individuals 45 to 75 years old and categorized them by body mass index. The Montreal Cognitive Assessment (MoCA) score and DII score was calculated and gas chromatography was used to measure the proportion of erythrocyte membrane fatty acids. The relationship between the DII score and cognition was examined using multiple linear regression and binary logistic regression. Mediation analysis can help to understand the causal chain between variables, deeply explore the internal relationship and mechanism of action between variables. So a multiple chain mediation model was developed to investigate the mediating factors between the DII score and cognitive association. Results According to adjusted linear regression, higher DII scores were linked to lower MoCA scores in the obese group. The negative correlation between DII score and cognitive function score remains in binary linear regression. We discovered through mediation analysis that erythrocyte membrane fatty acids mediate the detrimental link between DII and cognitive function in obese individuals. Conclusion We propose that higher DII scores in obese people are associated with a decline in cognitive function. In addition, this effect might be mediated via the fatty acids in the erythrocyte membrane.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
6
|
Sato M, Hishinuma E, Matsukawa N, Shima Y, Saigusa D, Motoike IN, Kogure M, Nakaya N, Hozawa A, Kuriyama S, Yamamoto M, Koshiba S, Kinoshita K. Dietary habits and plasma lipid concentrations in a general Japanese population. Metabolomics 2024; 20:34. [PMID: 38441752 PMCID: PMC10914877 DOI: 10.1007/s11306-024-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Accumulating data on the associations between food consumption and lipid composition in the body is essential for understanding the effects of dietary habits on health. OBJECTIVES As part of omics research in the Tohoku Medical Megabank Community-Based Cohort Study, this study sought to reveal the dietary impact on plasma lipid concentration in a Japanese population. METHODS We conducted a correlation analysis of food consumption and plasma lipid concentrations measured using mass spectrometry, for 4032 participants in Miyagi Prefecture, Japan. RESULTS Our analysis revealed 83 marked correlations between six food categories and the concentrations of plasma lipids in nine subclasses. Previously reported associations, including those between seafood consumption and omega-3 fatty acids, were validated, while those between dairy product consumption and odd-carbon-number fatty acids (odd-FAs) were validated for the first time in an Asian population. Further analysis suggested that dairy product consumption is associated with odd-FAs via sphingomyelin (SM), which suggests that SM is a carrier of odd-FAs. These results are important for understanding odd-FA metabolism with regards to dairy product consumption. CONCLUSION This study provides insight into the dietary impact on plasma lipid concentration in a Japanese population.
Collapse
Affiliation(s)
- Mitsuharu Sato
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Eiji Hishinuma
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Yoshiko Shima
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mana Kogure
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Naoki Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- International Research Institute of Disaster Science, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
7
|
Yi W, Liu Y, Fu S, Zhuo J, Wang J, Shan T. Dietary novel alkaline protease from Bacillus licheniformis improves broiler meat nutritional value and modulates intestinal microbiota and metabolites. Anim Microbiome 2024; 6:1. [PMID: 38184648 PMCID: PMC10770948 DOI: 10.1186/s42523-023-00287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Different types of exogenous protease supplements have a positive impact on animal performance, but their effects on the nutritional value of meat and the gut microbial community of broilers have not been extensively studied. The objective of this investigation was to determine the impact of supplementation with a novel alkaline protease derived from Bacillus licheniformis (at doses of 0, 100, 200, 300, and 400 g/t) on the fatty acid and amino acid profiles, inosine monophosphate (IMP) levels, total volatile basic nitrogen (TVB-N) content found within the breast muscle, as well as the impact on the cecal microbiota and metabolites. RESULTS Supplementation with 200-400 g/t of the novel protease resulted in a significant elevation in the concentration of essential amino acids (P < 0.001), flavor amino acids (P < 0.001), and total protein (P = 0.013) within the breast muscle. Results derived from the 16S rRNA sequencing and untargeted metabolomics analysis of the cecal content revealed that the novel protease reshaped the cecal microbial and metabolite profiles. In particular, it led to increased relative abundances of Bacteroides, Lactobacillus, Alistipes, and Eubacterium, while simultaneously causing a reduction in the metabolites of D-lactic acid and malonic acid. Moreover, correlation analyses unveiled significant relationships between distinct microbes and metabolites with the contents of IMP, fatty acids, and amino acids in the broiler's breast muscle. CONCLUSION In summary, the novel protease regulated the intestinal microbial community and metabolism, thereby inducing changes in the compositions of fatty acids and amino acids profiles, as well as IMP levels in broiler meat. These alterations significantly contributed to the enhancement of the nutritional value and flavor of the meat.
Collapse
Affiliation(s)
- Wuzhou Yi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yanjie Liu
- Jinan Bestzyme Bio-Engineering Co., Ltd, Jinan, China
| | - Shijun Fu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jianshu Zhuo
- Jinan Bestzyme Bio-Engineering Co., Ltd, Jinan, China
| | | | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
8
|
Zhang L, Yuan Q, Hu C, Sun X, Gong Y, Xu N. Characterization of monogalactosyldiacylglycerol synthases in Gracilariopsis lemaneiformis and their potential roles in the fading of the thallus. JOURNAL OF PHYCOLOGY 2023; 59:1258-1271. [PMID: 37688517 DOI: 10.1111/jpy.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 09/11/2023]
Abstract
Membrane lipids play essential roles in regulating physiological properties in higher plants and algae. Monogalactosyldiacylglycerol (MGDG) is a major thylakoid membrane lipid, and it is an important source of polyunsaturated fatty acids for cells, plays a key role in the biogenesis of plastids, and maintains the function of the photosynthetic machinery. Several studies have indicated that the knockdown of MGDG synthase results in membrane lipid remodeling, albino seedlings, and changes in photosynthetic performance. However, the effects of MGDG synthase (MGD) inhibitors on lipids in macroalgae have not yet been clarified. Here, we characterized the effects of MGD inhibitors (ortho-phenanthroline and N-ethylmaleimide) on the composition of the fatty acids observed in MGDG and digalactosyldiacylglycerol (DGDG) in Gracilariopsis lemaneiformis using electrospray ionization-mass spectrometry. The most abundant MGDG species contained 16:0/18:1 (sn-1/sn-2) fatty acids, and the most dominant DGDG species contained 20:5/16:0 (sn-1/sn-2) fatty acids. Measurements of photosynthetic pigments and photosynthetic parameters revealed that photosynthesis of G. lemaneiformis was impaired. Principal component analysis and Spearman's correlation analysis revealed interactions between specific MGDG structural composition patterns and key metabolites involved in photosynthesis, indicating that 20:4/16:0 (sn-1/sn-2) MGDG and 16:0/18:1 (sn-1/sn-2) MGDG affect the structure and function of phycobilisomes and thus the color of G. lemaneiformis. Three genes (GlMGD1, GlMGD2, and GlMGD3) were cloned and identified. The addition of N-ethylmaleimide to G. lemaneiformis did not affect the abundance of GlMGD mRNA, and the abundance of transcripts was significantly decreased by ortho-phenanthroline.
Collapse
Affiliation(s)
- Li Zhang
- School of Marine Sciences, Ningbo University, Zhejiang, China
| | - Quan Yuan
- Institute of Plant Virology, Ningbo University, Zhejiang, China
| | - Chaoyang Hu
- School of Marine Sciences, Ningbo University, Zhejiang, China
| | - Xue Sun
- School of Marine Sciences, Ningbo University, Zhejiang, China
| | - Yifu Gong
- School of Marine Sciences, Ningbo University, Zhejiang, China
| | - Nianjun Xu
- School of Marine Sciences, Ningbo University, Zhejiang, China
| |
Collapse
|
9
|
Torres-Gonzalez M, Rice Bradley BH. Whole-Milk Dairy Foods: Biological Mechanisms Underlying Beneficial Effects on Risk Markers for Cardiometabolic Health. Adv Nutr 2023; 14:1523-1537. [PMID: 37684008 PMCID: PMC10721525 DOI: 10.1016/j.advnut.2023.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Lifestyle modifications that include adherence to healthy dietary patterns that are low in saturated fat have been associated with reduced risk for cardiovascular disease, the leading cause of death globally. Whole-milk dairy foods, including milk, cheese, and yogurt, are leading sources of saturated fat in the diet. Dietary guidelines around the world recommend the consumption of low-fat and fat-free dairy foods to obtain overall healthy dietary patterns that help meet nutrient recommendations while keeping within recommended calorie and saturated fat limitations. A body of observational and clinical evidence indicates, however, that whole-milk dairy food consumption, despite saturated fat content, does not increase the risk for cardiovascular disease. This review describes the proposed biological mechanisms underlying inverse associations between whole-milk dairy food consumption and risk markers for cardiometabolic health, such as altered lipid digestion, absorption, and metabolism; influence on the gut microflora; and regulation of oxidative stress and inflammatory responses. The dairy food matrix, a term used to describe how the macronutrients and micronutrients and other bioactive components of dairy foods are differentially packaged and compartmentalized among fluid milk, cheese, and yogurt, may dictate how each affects cardiovascular risk. Current evidence indicates consideration of dairy foods as complex food matrices, rather than delivery systems for isolated nutrients, such as saturated fatty acids, is warranted.
Collapse
Affiliation(s)
| | - Beth H Rice Bradley
- Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
10
|
Ushio M, Ishikawa T, Matsuura T, Mori IC, Kawai-Yamada M, Fukao Y, Nagano M. MHP1 and MHL generate odd-chain fatty acids from 2-hydroxy fatty acids in sphingolipids and are related to immunity in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111840. [PMID: 37619867 DOI: 10.1016/j.plantsci.2023.111840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In plants, the 2-hydroxy fatty acids (HFAs) of sphingolipids are important for plant growth and stress responses. Although the synthetic pathway of HFAs is well understood, their degradation has not yet been elucidated. In Saccharomyces cerevisiae, Mpo1 has been identified as a dioxygenase that degrades HFAs. This study examined the functions of two homologs of yeast Mpo1, MHP1 and MHL, in Arabidopsis thaliana. The mhp1 and mhp1mhl mutants showed a dwarf phenotype compared to that of the wild type. Lipid analysis of the mutants revealed the involvement of MHP1 and MHL in synthesizing odd-chain fatty acids (OCFAs), possibly by the degradation of HFAs. OCFAs are present in trace amounts in plants; however, their physiological significance is largely unknown. RNA sequence analysis of the mhp1mhl mutant revealed that growth-related genes decreased, whereas genes involved in stress response increased. Additionally, the mhp1mhl mutant had increased expression of defense-related genes and increased resistance to infection by Pseudomonas syringae pv. tomato DC3000 (Pto), and Pto carrying the effector AvrRpt2. Phytohormone analysis demonstrated that jasmonic acid in mhp1mhl was higher than that in the wild type. These results indicate that MHP1 and MHL are involved in synthesizing OCFAs and immunity in Arabidopsis.
Collapse
Affiliation(s)
- Marina Ushio
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Yoichiro Fukao
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
11
|
Venn-Watson S, Schork NJ. Pentadecanoic Acid (C15:0), an Essential Fatty Acid, Shares Clinically Relevant Cell-Based Activities with Leading Longevity-Enhancing Compounds. Nutrients 2023; 15:4607. [PMID: 37960259 PMCID: PMC10649853 DOI: 10.3390/nu15214607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Pentadecanoic acid (C15:0) is an essential odd-chain saturated fatty acid with broad activities relevant to protecting cardiometabolic, immune, and liver health. C15:0 activates AMPK and inhibits mTOR, both of which are core components of the human longevity pathway. To assess the potential for C15:0 to enhance processes associated with longevity and healthspan, we used human cell-based molecular phenotyping assays to compare C15:0 with three longevity-enhancing candidates: acarbose, metformin, and rapamycin. C15:0 (n = 36 activities in 10 of 12 cell systems) and rapamycin (n = 32 activities in 12 of 12 systems) had the most clinically relevant, dose-dependent activities. At their optimal doses, C15:0 (17 µM) and rapamycin (9 µM) shared 24 activities across 10 cell systems, including anti-inflammatory (e.g., lowered MCP-1, TNFα, IL-10, IL-17A/F), antifibrotic, and anticancer activities, which are further supported by previously published in vitro and in vivo studies. Paired with prior demonstrated abilities for C15:0 to target longevity pathways, hallmarks of aging, aging rate biomarkers, and core components of type 2 diabetes, heart disease, cancer, and nonalcoholic fatty liver disease, our results support C15:0 as an essential nutrient with activities equivalent to, or surpassing, leading longevity-enhancing candidate compounds.
Collapse
Affiliation(s)
- Stephanie Venn-Watson
- Epitracker Inc., San Diego, CA 92106, USA
- Seraphina Therapeutics, Inc., San Diego, CA 92106, USA;
| | - Nicholas J. Schork
- Seraphina Therapeutics, Inc., San Diego, CA 92106, USA;
- Translational Genomics Research Institute (TGen), City of Hope, Phoenix, AZ 85004, USA
| |
Collapse
|
12
|
Lampousi AM, Carlsson S, Löfvenborg JE, Cabrera-Castro N, Chirlaque MD, Fagherazzi G, Franks PW, Hampe CS, Jakszyn P, Koulman A, Kyrø C, Moreno-Iribas C, Nilsson PM, Panico S, Papier K, van der Schouw YT, Schulze MB, Weiderpass E, Zamora-Ros R, Forouhi NG, Sharp SJ, Rolandsson O, Wareham NJ. Interaction between plasma phospholipid odd-chain fatty acids and GAD65 autoantibodies on the incidence of adult-onset diabetes: the EPIC-InterAct case-cohort study. Diabetologia 2023; 66:1460-1471. [PMID: 37301794 PMCID: PMC10317878 DOI: 10.1007/s00125-023-05948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023]
Abstract
AIMS/HYPOTHESIS Islet autoimmunity may progress to adult-onset diabetes. We investigated whether circulating odd-chain fatty acids (OCFA) 15:0 and 17:0, which are inversely associated with type 2 diabetes, interact with autoantibodies against GAD65 (GAD65Ab) on the incidence of adult-onset diabetes. METHODS We used the European EPIC-InterAct case-cohort study including 11,124 incident adult-onset diabetes cases and a subcohort of 14,866 randomly selected individuals. Adjusted Prentice-weighted Cox regression estimated HRs and 95% CIs of diabetes in relation to 1 SD lower plasma phospholipid 15:0 and/or 17:0 concentrations or their main contributor, dairy intake, among GAD65Ab-negative and -positive individuals. Interactions between tertiles of OCFA and GAD65Ab status were estimated by proportion attributable to interaction (AP). RESULTS Low concentrations of OCFA, particularly 17:0, were associated with a higher incidence of adult-onset diabetes in both GAD65Ab-negative (HR 1.55 [95% CI 1.48, 1.64]) and GAD65Ab-positive (HR 1.69 [95% CI 1.34, 2.13]) individuals. The combination of low 17:0 and high GAD65Ab positivity vs high 17:0 and GAD65Ab negativity conferred an HR of 7.51 (95% CI 4.83, 11.69), with evidence of additive interaction (AP 0.25 [95% CI 0.05, 0.45]). Low dairy intake was not associated with diabetes incidence in either GAD65Ab-negative (HR 0.98 [95% CI 0.94, 1.02]) or GAD65Ab-positive individuals (HR 0.97 [95% CI 0.79, 1.18]). CONCLUSIONS/INTERPRETATION Low plasma phospholipid 17:0 concentrations may promote the progression from GAD65Ab positivity to adult-onset diabetes.
Collapse
Affiliation(s)
- Anna-Maria Lampousi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefin E Löfvenborg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | | | - María-Dolores Chirlaque
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Health and Social Sciences, Murcia University, Murcia, Spain
| | - Guy Fagherazzi
- Deep Digital Phenotyping Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Paul W Franks
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Christiane S Hampe
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Albert Koulman
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- National Institute for Health Research Biomedical Research Centre Core Nutritional Biomarker Laboratory, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Cecilie Kyrø
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Conchi Moreno-Iribas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Peter M Nilsson
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Nita G Forouhi
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen J Sharp
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
13
|
Taaifi Y, Belhaj K, Mansouri F, Rbah Y, Melhaoui R, Houmy N, Ben moumen A, Azeroual E, Addi M, Elamrani A, Serghini-Caid H. The Effect of Feeding Laying Hens with Nonindustrial Hemp Seed on the Fatty Acid Profile, Cholesterol Level, and Tocopherol Composition of Egg Yolk. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:1360276. [PMID: 37273530 PMCID: PMC10239304 DOI: 10.1155/2023/1360276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to evaluate how cannabis-derived nonindustrial hemp seed (HS) inclusion in laying hen diets, as well as treatment duration, affected the fatty acid (FA) profile, cholesterol level, and tocopherol composition of egg yolks. Ninety-six (n = 96) Lohmann Brown classic laying hens were randomly assigned to one of the four groups: control (standard diet) and HS-containing diets (10% HS, 20% HS, and 30% HS). The study was conducted for a period of 4 months. The findings demonstrated that the FA profile and the tocopherol composition are strongly impacted by the addition of HS to the diet of laying hens (p < 0.05), but the cholesterol content remained unaffected. The increase in the dose of cannabis incorporated into the hen's diet (HS-30% group) led to a significant increase in the amounts of the polyunsaturated fatty acids n-3 and n-6 content of egg yolk. This enrichment was accompanied by a considerable decrease in the n-6/n-3 ratio (p < 0.001) from 8.19 to 4.88, on day 84 of the experiment. The total tocopherol content significantly increased (p < 0.05) from 281.44 (control) to 327.02 μg/g yolk (HS-30%) on day 84. Finally, in the context of warfare, these seeds might be used as a feed additive for laying hens to produce higher nutritive value eggs with affordable prices.
Collapse
Affiliation(s)
- Yassine Taaifi
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
| | - Kamal Belhaj
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, University Chouaib Doukkali, Street Jabran Khalil Jabran BP, 299-24000 El Jadida, Morocco
| | - Farid Mansouri
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
- Higher School of Education and Training, Mohammed I University, BP-410, 60000 Oujda, Morocco
| | - Youssef Rbah
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
| | - Reda Melhaoui
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
| | - Nadia Houmy
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
| | - Abdesammad Ben moumen
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
| | | | - Mohamed Addi
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
| | - Ahmed Elamrani
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
| | - Hana Serghini-Caid
- Laboratory for Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed I University, BP-717, 60000 Oujda, Morocco
| |
Collapse
|
14
|
Kim HY, Moon JY, Cho SK. Heptadecanoic Acid, an Odd-Chain Fatty Acid, Induces Apoptosis and Enhances Gemcitabine Chemosensitivity in Pancreatic Cancer Cells. J Med Food 2023; 26:201-210. [PMID: 36716276 DOI: 10.1089/jmf.2022.k.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Odd-chain saturated fatty acids generally serve as specific biomarkers of dietary components and dairy intake, some of which have anticancer properties. This study was performed to assess the anticancer effects of heptadecanoic acid (HDNA) in human pancreatic carcinoma cells. MTT (thiazolyl blue tetrazolium bromide) assay showed that HDNA exerted stronger cytotoxic effects than pentadecanoic acid, palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2) on both Panc-1 and MIA PaCa-2 pancreatic cancer cells. In addition, HDNA reduced colony formation and induced apoptosis in these pancreatic cancer cells as indicated by Hoechst 33342 staining, Annexin V/propidium iodide staining, cell cycle analysis, and Western blotting analysis in a dose-dependent manner. Moreover, HDNA synergistically reduced cell viability and promoted apoptosis when combined with gemcitabine (GEM), a chemotherapeutic agent commonly used in the treatment of pancreatic cancer. GEM-resistant MIA PaCa-2 (GR-MIA PaCa-2) cells with a resistance indices (RI) value of 215.09 [RI = half-maximal inhibitory concentration (IC50) of GR-MIA PaCa-2 cells/IC50 of MIA PaCa-2 cells] were established, and the efficacy of HDNA on GEM chemosensitivity was confirmed. Surprisingly, HDNA exhibited even higher antiproliferative efficacy against GR-MIA PaCa-2 cells (IC50 = 71.45 ± 6.37 μM) than parental MIA PaCa-2 cells (IC50 = 77.47 ± 2.10 μM). Finally, HDNA treatment inhibited the Hippo pathway and induced apoptosis of GR-MIA PaCa-2 cells. These findings suggest the beneficial effects of a HDNA-rich diet during pancreatic cancer treatments.
Collapse
Affiliation(s)
- Hee Young Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea
| | - Jeong Yong Moon
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea.,Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, Korea
| |
Collapse
|
15
|
Taya N, Katakami N, Omori K, Hosoe S, Watanabe H, Takahara M, Miyashita K, Nishizawa H, Konya Y, Obara S, Hidaka A, Nakao M, Takahashi M, Izumi Y, Shimomura I, Bamba T. Change in fatty acid composition of plasma triglyceride caused by a 2 week comprehensive risk management for diabetes: A prospective observational study of type 2 diabetes patients with supercritical fluid chromatography/mass spectrometry-based semi-target lipidomic analysis. J Diabetes Investig 2022; 14:102-110. [PMID: 36208067 PMCID: PMC9807157 DOI: 10.1111/jdi.13924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION Hypertriglyceridemia is common in patients with diabetes. Although the fatty acid (FA) composition of triglycerides (TGs) is suggested to be related to the pathology of diabetes and its complications, changes in the fatty acid composition caused by diabetes treatment remain unclear. This study aimed to identify short-term changes in the fatty acid composition of plasma triglycerides after diabetes treatment. MATERIALS AND METHODS This study was a sub-analysis of a prospective observational study of patients with type 2 diabetes aged between 20 and 75 years who were hospitalized to improve glycemic control (n = 31). A lipidomic analysis of plasma samples on the 2nd and 16th hospital days was conducted by supercritical fluid chromatography coupled with mass spectrometry. RESULTS In total, 104 types of triglycerides with different compositions were identified. Most of them tended to decrease after treatment. In particular, triglycerides with a lower carbon number and fewer double bonds showed a relatively larger reduction. The inclusion of FA 14:0 (myristic acid), as a constituent of triglyceride, was significantly associated with a more than 50%, and statistically significant, reduction (odds ratio 39.0; P < 0.001). The total amount of FA 14:0 as a constituent of triglycerides also decreased significantly, and its rate of decrease was the greatest of all the fatty acid constituents. CONCLUSIONS A 2 week comprehensive risk management for diabetes resulted in decreased levels of plasma triglycerides and a change in the fatty acid composition of triglycerides, characterized by a relatively large reduction in FA 14:0 as a constituent of triglycerides.
Collapse
Affiliation(s)
- Naohiro Taya
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Naoto Katakami
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuo Omori
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Shigero Hosoe
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Hirotaka Watanabe
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Mitsuyoshi Takahara
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan,Department of Diabetes Care Medicine, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kazuyuki Miyashita
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Hitoshi Nishizawa
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Yutaka Konya
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Sachiko Obara
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Ayako Hidaka
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Motonao Nakao
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Masatomo Takahashi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Iichiro Shimomura
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
16
|
Ribeiro HC, Sen P, Dickens A, Santa Cruz EC, Orešič M, Sussulini A. Metabolomic and proteomic profiling in bipolar disorder patients revealed potential molecular signatures related to hemostasis. Metabolomics 2022; 18:65. [PMID: 35922643 DOI: 10.1007/s11306-022-01924-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a mood disorder characterized by the occurrence of depressive episodes alternating with episodes of elevated mood (known as mania). There is also an increased risk of other medical comorbidities. OBJECTIVES This work uses a systems biology approach to compare BD treated patients with healthy controls (HCs), integrating proteomics and metabolomics data using partial correlation analysis in order to observe the interactions between altered proteins and metabolites, as well as proposing a potential metabolic signature panel for the disease. METHODS Data integration between proteomics and metabolomics was performed using GC-MS data and label-free proteomics from the same individuals (N = 13; 5 BD, 8 HC) using generalized canonical correlation analysis and partial correlation analysis, and then building a correlation network between metabolites and proteins. Ridge-logistic regression models were developed to stratify between BD and HC groups using an extended metabolomics dataset (N = 28; 14 BD, 14 HC), applying a recursive feature elimination for the optimal selection of the metabolites. RESULTS Network analysis demonstrated links between proteins and metabolites, pointing to possible alterations in hemostasis of BD patients. Ridge-logistic regression model indicated a molecular signature comprising 9 metabolites, with an area under the receiver operating characteristic curve (AUROC) of 0.833 (95% CI 0.817-0.914). CONCLUSION From our results, we conclude that several metabolic processes are related to BD, which can be considered as a multi-system disorder. We also demonstrate the feasibility of partial correlation analysis for integration of proteomics and metabolomics data in a case-control study setting.
Collapse
Affiliation(s)
- Henrique Caracho Ribeiro
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
| | - Alex Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- Department of Chemistry, University of Turku, 20520, Turku, Finland
| | - Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
17
|
Valorization of Low-Cost Substrates for the Production of Odd Chain Fatty Acids by the Oleaginous Yeast Yarrowia lipolytica. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Odd-chain fatty acids (OCFAs) have recently gained interest as target compounds in microbial production due to their diverse applications in the medical, pharmaceutical and chemical industries for the production of biofuels. Yarrowia lipolytica is a promising oleaginous yeast that has the ability to accumulate high quantities of fatty acids. However, the use of Y. lipolytica oils is still under research, in order to decrease the production costs related to the fermentation process and improve economic feasibility. In this work, sugar beet molasses (10–50 g/L) and crude glycerol (30 g/L) were used as the main carbon sources to reduce the processing costs of oil production from a genetically engineered Y. lipolytica strain. The effects of medium composition were studied on biomass production, lipid content, and OCFAs profile. Lipid production by yeast growing on molasses (20 g/L sucrose) and crude glycerol reached 4.63 ± 0.95 g/L of culture medium. OCFAs content represented 58% of the total fatty acids in lipids, which corresponds to ≈2.69 ± 0.03 g/L of culture medium. The fermentation was upscaled to 5 L bioreactors and fed-batch co-feeding increased OCFA accumulation in Y. lipolytica by 56% compared to batch cultures.
Collapse
|
18
|
Venn-Watson SK, Butterworth CN. Broader and safer clinically-relevant activities of pentadecanoic acid compared to omega-3: Evaluation of an emerging essential fatty acid across twelve primary human cell-based disease systems. PLoS One 2022; 17:e0268778. [PMID: 35617322 PMCID: PMC9135213 DOI: 10.1371/journal.pone.0268778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
A growing body of evidence supports that pentadecanoic acid (C15:0), an odd-chain saturated fat found in butter, is an essential fatty acid that is necessary in the diet to support long-term metabolic and heart health. Here, dose dependent and clinically relevant cell-based activities of pure C15:0 (FA15TM) were compared to eicosapentaenoic acid (EPA), a leading omega-3 fatty acid, as well as to an additional 4,500 compounds. These studies included 148 clinically relevant biomarkers measured across 12 primary human cell systems, mimicking various disease states, that were treated with C15:0 at four different concentrations (1.9 to 50 μM) and compared to non-treated control systems. C15:0 was non-cytotoxic at all concentrations and had dose dependent, broad anti-inflammatory and antiproliferative activities involving 36 biomarkers across 10 systems. In contrast, EPA was cytotoxic to four cell systems at 50 μM. While 12 clinically relevant activities were shared between C15:0 and EPA at 17 μM, C15:0 had an additional 28 clinically relevant activities, especially anti-inflammatory, that were not present in EPA. Further, at 1.9 and 5.6 μM, C15:0 had cell-based properties similar to bupropion (Pearson’s scores of 0.78), a compound commonly used to treat depression and other mood disorders. At 5.6 μM, C15:0 mimicked two antimicrobials, climabazole and clarithromycin (Pearson’s scores of 0.76 and 0.75, respectively), and at 50 μM, C15:0 activities matched that of two common anti-cancer therapeutics, gemcitabine and paclitaxel (Pearson’s scores of 0.77 and 0.74, respectively). In summary, C15:0 had dose-dependent and clinically relevant activities across numerous human cell-based systems that were broader and safer than EPA, and C15:0 activities paralleled common therapeutics for mood disorders, microbial infections, and cancer. These studies further support the emerging role of C15:0 as an essential fatty acid.
Collapse
Affiliation(s)
- Stephanie K. Venn-Watson
- Epitracker, Inc., San Diego, California, United States of America
- Seraphina Therapeutics, Inc., San Diego, California, United States of America
- * E-mail:
| | | |
Collapse
|
19
|
Rothwell JA, Murphy N, Bešević J, Kliemann N, Jenab M, Ferrari P, Achaintre D, Gicquiau A, Vozar B, Scalbert A, Huybrechts I, Freisling H, Prehn C, Adamski J, Cross AJ, Pala VM, Boutron-Ruault MC, Dahm CC, Overvad K, Gram IT, Sandanger TM, Skeie G, Jakszyn P, Tsilidis KK, Aleksandrova K, Schulze MB, Hughes DJ, van Guelpen B, Bodén S, Sánchez MJ, Schmidt JA, Katzke V, Kühn T, Colorado-Yohar S, Tumino R, Bueno-de-Mesquita B, Vineis P, Masala G, Panico S, Eriksen AK, Tjønneland A, Aune D, Weiderpass E, Severi G, Chajès V, Gunter MJ. Metabolic Signatures of Healthy Lifestyle Patterns and Colorectal Cancer Risk in a European Cohort. Clin Gastroenterol Hepatol 2022; 20:e1061-e1082. [PMID: 33279777 PMCID: PMC9049188 DOI: 10.1016/j.cgh.2020.11.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic signatures of adherence to these guidelines and tested their associations with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. METHODS Scores reflecting adherence to the WCRF/AICR recommendations (scale, 1-5) were calculated from participant data on weight maintenance, physical activity, diet, and alcohol among a discovery set of 5738 cancer-free European Prospective Investigation into Cancer and Nutrition participants with metabolomics data. Partial least-squares regression was used to derive fatty acid and endogenous metabolite signatures of the WCRF/AICR score in this group. In an independent set of 1608 colorectal cancer cases and matched controls, odds ratios (ORs) and 95% CIs were calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corresponding change in metabolic signatures using multivariable conditional logistic regression. RESULTS Higher WCRF/AICR scores were characterized by metabolic signatures of increased odd-chain fatty acids, serine, glycine, and specific phosphatidylcholines. Signatures were inversely associated more strongly with colorectal cancer risk (fatty acids: OR, 0.51 per unit increase; 95% CI, 0.29-0.90; endogenous metabolites: OR, 0.62 per unit change; 95% CI, 0.50-0.78) than the WCRF/AICR score (OR, 0.93 per unit change; 95% CI, 0.86-1.00) overall. Signature associations were stronger in male compared with female participants. CONCLUSIONS Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or biological risk factors were associated with colorectal cancer. Measuring a specific panel of metabolites representative of a healthy or unhealthy lifestyle may identify strata of the population at higher risk of colorectal cancer.
Collapse
Affiliation(s)
- Joseph A Rothwell
- Centre for Epidemiology and Population Health, U1018, Generations and Health Team, Faculté de Médecine, Université Paris-Saclay, INSERM, Villejuif, France; Gustave Roussy, Villejuif, France; International Agency for Research on Cancer, Lyon, France.
| | - Neil Murphy
- International Agency for Research on Cancer, Lyon, France
| | - Jelena Bešević
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Mazda Jenab
- International Agency for Research on Cancer, Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer, Lyon, France
| | | | | | - Béatrice Vozar
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | - Cornelia Prehn
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Jerzy Adamski
- Research Unit, Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Neuherberg, Germany
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Valeria Maria Pala
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marie-Christine Boutron-Ruault
- Centre for Epidemiology and Population Health, U1018, Generations and Health Team, Faculté de Médecine, Université Paris-Saclay, INSERM, Villejuif, France; Gustave Roussy, Villejuif, France
| | - Christina C Dahm
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Inger Torhild Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Guri Skeie
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Barcelona, Spain; Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Krasimira Aleksandrova
- Nutrition, Immunity and Metabolism Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Matthias B Schulze
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany; Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - David J Hughes
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umea University, Umea, Sweden
| | - Stina Bodén
- Department of Radiation Sciences, Oncology Unit, Umea University, Umea, Sweden
| | - Maria-José Sánchez
- CIBER Epidemiología y Salud Pública, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Verena Katzke
- Division of Cancer Epidemiology, Deutsches Krebsforschungszentrum, Stiftung des Öffentlichen Rechts, Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, Deutsches Krebsforschungszentrum, Stiftung des Öffentlichen Rechts, Heidelberg, Germany
| | - Sandra Colorado-Yohar
- Department of Epidemiology, Murcia Regional Health Council, Instituto Murciano de Investigatión Biomédica (IMIB)-Arrixaca, Murcia, Spain; CIBER Epidemiología y Salud Pública, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority, Ragusa, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, BA Bilthoven, The Netherlands
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Italian Institute of Technology, Genova, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Anne Kirstine Eriksen
- Danish Cancer Society Research Center, Diet, Genes and Environment, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Genes and Environment, Copenhagen, Denmark
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Nutrition, Bjørknes University College, Oslo, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Gianluca Severi
- Centre for Epidemiology and Population Health, U1018, Generations and Health Team, Faculté de Médecine, Université Paris-Saclay, INSERM, Villejuif, France; Gustave Roussy, Villejuif, France
| | | | - Marc J Gunter
- International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
20
|
Production of Docosahexaenoic Acid and Odd-Chain Fatty Acids by Microalgae Schizochytrium limacinum Grown on Waste-Derived Volatile Fatty Acids. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterotrophic microalgae are recognized as a source of bioactive compounds. However, there are still some drawbacks for their use at an industrial scale associated with the high cost of glucose, the main carbon source in heterotrophic cultures. In recent years, significant efforts have been made to investigate more sustainable carbon sources to produce biomass. In this study, the capacity of Schizochytrium limacinum to grow on waste-derived volatile fatty acids and the effect that their use produces on biomass and fatty acids profiles were investigated. Acetic, propionic, butyric, valeric and caproic acid were evaluated independently, as well as in a synthetic mixture (VFA). The use of acetic and butyric resulted in a good biomass productivity, while the use of valeric and propionic acid resulted in higher content of odd-chain fatty acids (OCFA), increasingly investigated due to their potential benefits for human health. The use of industrial waste-derived VFA as a potential carbon source was validated through the utilization of biowaste derived effluents from a volatile fatty acid platform. The biomass produced was of 18.5 g/L, 54.0% lipids, 46.3% docosahexaenoic acid (DHA) and 25.0% OCFA, concluding that waste derived VFA can produce DHA and OCFA in a suitable ratio of DHA/OCFA with potential industrial applications.
Collapse
|
21
|
The Bioactive Compounds and Fatty Acid Profile of Bitter Apple Seed Oil Obtained in Hot, Arid Environments. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bitter apple or tumba (Citrullus colocynthis L.) is a prostrate annual herb belonging to the Cucurbitaceae family. It is highly tolerant against multiple abiotic stresses like drought, heat, and soil salinity and can easily grow on very marginal soil, even on sand dunes in hot, arid regions. Tumba fruit is a fleshy berry 5–10 cm in diameter and of a pale yellow color at ripening. The tumba fruit used in this research was harvested from the ICAR-CIAH, Bikaner research farm. The seeds were separated, and their oil was extracted to analyze its physical characteristics and composition (phytochemical compounds, fatty acid profile, etc.). The seeds of the tumba fruit contained 23–25% golden-yellow-colored oil with a specific gravity of 0.92 g/mL. The extracted oil contained appreciable amounts of phytochemical (bioactive) compounds like phenolics (5.39 mg GAE/100 g), flavonoids (938 mg catechin eq./100 g), carotenoids (79.5 mg/kg), oryzanol (0.066%), and lignans (0.012%), along with 70–122 mg AAE/100 g total antioxidant activity (depending on the determination method). The results of fatty acid profiling carried out by GC-MS/MS demonstrated that tumba seed oil contained about 70% unsaturated fatty acids with more than 51% polyunsaturated fatty acids. It mainly contained linoleic acid (C18:2n6; 50.3%), followed by oleic acid (C18:1n9; 18.0%), stearic acid (C18:0; 15.2%), and palmitic acid (C16:0; 12.4%). Therefore, this oil can be considered as a very good source of essential fatty acids like omega-6 fatty acid (linoleic acid), whereas it contains a lower concentration of omega-3 fatty acids (α-linolenic acid) and hydroxy polyunsaturated fatty acids. In addition, it also contains some odd chain fatty acids like pentadecanoic and heptadecanoic acid (C15:0 and C17:0, respectively), which have recently been demonstrated to be bioactive compounds in reducing the risk of cardiometabolic diseases. The results of this study suggest that tumba seed oil contains several health-promoting bioactive compounds with nutraceutical properties; hence, it can be an excellent dietary source.
Collapse
|
22
|
Stander Z, Luies L, van Reenen M, Howatson G, Keane KM, Clifford T, Stevenson EJ, Loots DT. Beetroot juice - a suitable post-marathon metabolic recovery supplement? J Int Soc Sports Nutr 2021; 18:72. [PMID: 34861868 PMCID: PMC8642879 DOI: 10.1186/s12970-021-00468-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Red beetroot (Beta vulgaris L.) is a multifunctional functional food that reportedly exhibits potent anti-inflammatory, antioxidant, vasodilation, and cellular regulatory properties. This vegetable has gained a fair amount of scientific attention as a possible cost-effective supplement to enhance performance and expedite recovery after physical exercise. To date, no study has investigated the effects of incremental beetroot juice ingestion on the metabolic recovery of athletes after an endurance race. Considering this, as well as the beneficial glucose and insulin regulatory roles of beetroot, this study investigated the effects of beetroot juice supplementation on the metabolic recovery trend of athletes within 48 h after completing a marathon. METHODS By employing an untargeted two-dimensional gas chromatography time-of-flight mass spectrometry approach, serum samples (collected pre-, post-, 24 h post-, and 48 h post-marathon) of 31 marathon athletes that ingested a series (n = 7; 250 ml) of either beetroot juice (n = 15 athletes) or isocaloric placebo (n = 16 athletes) supplements within 48 h post-marathon, were analysed and statistically compared. RESULTS The metabolic profiles of the beetroot-ingesting cohort recovered to a pre-marathon-related state within 48 h post-marathon, mimicking the metabolic recovery trend observed in the placebo cohort. Since random inter-individual variation was observed immediately post-marathon, only metabolites with large practical significance (p-value ≤0.05 and d-value ≥0.5) within 24 h and 48 h post-marathon were considered representative of the effects of beetroot juice on metabolic recovery. These (n = 4) mainly included carbohydrates (arabitol and xylose) and odd-chain fatty acids (nonanoate and undecanoate). The majority of these were attributed to beetroot content and possible microbial fermentation thereof. CONCLUSION Apart from the global metabolic recovery trends of the two opposing cohorts, it appears that beetroot ingestion did not expedite metabolic recovery in athletes within 48 h post-marathon.
Collapse
Affiliation(s)
- Zinandré Stander
- Human Metabolomics, North-West University, Potchefstroom, 2531 South Africa
- North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, 2520 South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Potchefstroom, 2531 South Africa
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, 2531 South Africa
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, 2531 South Africa
| | - Karen M. Keane
- School of Science and computing, Department of Sport Exercise and Nutrition, Galway Mayo Institute of Technology, Galway, Republic of Ireland
| | - Tom Clifford
- Human Nutrition Research Centre, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, England
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emma J. Stevenson
- School of Science and computing, Department of Sport Exercise and Nutrition, Galway Mayo Institute of Technology, Galway, Republic of Ireland
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, 2531 South Africa
| |
Collapse
|
23
|
Abdoul-Aziz SKA, Zhang Y, Wang J. Milk Odd and Branched Chain Fatty Acids in Dairy Cows: A Review on Dietary Factors and Its Consequences on Human Health. Animals (Basel) 2021; 11:3210. [PMID: 34827941 PMCID: PMC8614267 DOI: 10.3390/ani11113210] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
This review highlights the importance of odd and branched chain fatty acids (OBCFAs) and dietary factors that may affect the content of milk OBCFAs in dairy cows. Historically, OBCFAs in cow milk had little significance due to their low concentrations compared to other milk fatty acids (FAs). The primary source of OBCFAs is ruminal bacteria. In general, FAs and OBCFAs profile in milk is mainly affected by dietary FAs and FAs metabolism in the rumen. Additionally, lipid mobilization in the body and FAs metabolism in mammary glands affect the milk OBCFAs profile. In cows, supplementation with fat rich in linoleic acid and α-linolenic acid decrease milk OBCFAs content, whereas supplementation with marine algae or fish oil increase milk OBCFAs content. Feeding more forage rather than concentrate increases the yield of some OBCFAs in milk. A high grass silage rate in the diet may increase milk total OBCFAs. In contrast to saturated FAs, OBCFAs have beneficial effects on cardiovascular diseases and type II diabetes. Furthermore, OBCFAs may have anti-cancer properties and prevent Alzheimer's disease and metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (S.K.A.A.-A.); (Y.Z.)
| |
Collapse
|
24
|
Lee YF, Sim XY, Teh YH, Ismail MN, Greimel P, Murugaiyah V, Ibrahim B, Gam LH. The effects of high-fat diet and metformin on urinary metabolites in diabetes and prediabetes rat models. Biotechnol Appl Biochem 2021; 68:1014-1026. [PMID: 32931602 DOI: 10.1002/bab.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
High-fat diet (HFD) interferes with the dietary plan of patients with type 2 diabetes mellitus (T2DM). However, many diabetes patients consume food with higher fat content for a better taste bud experience. In this study, we examined the effect of HFD on rats at the early onset of diabetes and prediabetes by supplementing their feed with palm olein oil to provide a fat content representing 39% of total calorie intake. Urinary profile generated from liquid chromatography-mass spectrometry analysis was used to construct the orthogonal partial least squares discriminant analysis (OPLS-DA) score plots. The data provide insights into the physiological state of an organism. Healthy rats fed with normal chow (NC) and HFD cannot be distinguished by their urinary metabolite profiles, whereas diabetic and prediabetic rats showed a clear separation in OPLS-DA profile between the two diets, indicating a change in their physiological state. Metformin treatment altered the metabolomics profiles of diabetic rats and lowered their blood sugar levels. For prediabetic rats, metformin treatment on both NC- and HFD-fed rats not only reduced their blood sugar levels to normal but also altered the urinary metabolite profile to be more like healthy rats. The use of metformin is therefore beneficial at the prediabetes stage.
Collapse
Affiliation(s)
- Yan-Fen Lee
- USM-RIKEN International Centre of Aging Science, USM, Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Xuan-Yi Sim
- USM-RIKEN International Centre of Aging Science, USM, Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Ying-Hui Teh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre (ABrC), USM, Minden, Penang, Malaysia
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Centre for Brain Sciences, Wako, Saitama, Japan
| | | | - Baharudin Ibrahim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Lay-Harn Gam
- USM-RIKEN International Centre of Aging Science, USM, Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
25
|
Antoniak K, Hansdorfer-Korzon R, Mrugacz M, Zorena K. Adipose Tissue and Biological Factors. Possible Link between Lymphatic System Dysfunction and Obesity. Metabolites 2021; 11:metabo11090617. [PMID: 34564433 PMCID: PMC8464765 DOI: 10.3390/metabo11090617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
The World Health Organization (WHO) has recognised obesity as one of the top ten threats to human health. Obesity is not only a state of abnormally increased adipose tissue in the body, but also of an increased release of biologically active metabolites. Moreover, obesity predisposes the development of metabolic syndrome and increases the incidence of type 2 diabetes (T2DM), increases the risk of developing insulin resistance, atherosclerosis, ischemic heart disease, polycystic ovary syndrome, hypertension and cancer. The lymphatic system is a one-directional network of thin-walled capillaries and larger vessels covered by a continuous layer of endothelial cells that provides a unidirectional conduit to return filtered arterial and tissue metabolites towards the venous circulation. Recent studies have shown that obesity can markedly impair lymphatic function. Conversely, dysfunction in the lymphatic system may also be involved in the pathogenesis of obesity. This review highlights the important findings regarding obesity related to lymphatic system dysfunction, including clinical implications and experimental studies. Moreover, we present the role of biological factors in the pathophysiology of the lymphatic system and we propose the possibility of a therapy supporting the function of the lymphatic system in the course of obesity.
Collapse
Affiliation(s)
- Klaudia Antoniak
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Rita Hansdorfer-Korzon
- Department of Physical Therapy, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
- Correspondence: ; Tel./Fax: +48-583491765
| |
Collapse
|
26
|
Dornan K, Gunenc A, Oomah BD, Hosseinian F. Odd chain fatty acids and odd chain phenolic lipids (alkylresorcinols) are essential for diet. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kelly Dornan
- Food Science, Chemistry Department Carleton University Ottawa Ontario Canada
| | - Aynur Gunenc
- Food Science, Chemistry Department Carleton University Ottawa Ontario Canada
| | - B. Dave Oomah
- (Retired) Formerly with Summerland Research and Development Centre, Agriculture and Agri‐Food Canada Summerland British Columbia Canada
| | - Farah Hosseinian
- Food Science, Chemistry Department Carleton University Ottawa Ontario Canada
- Institute of Biochemistry Carleton University Ottawa Ontario Canada
| |
Collapse
|
27
|
Matulka RA, Howell LA, Pratyusha Chennupati B, Teresa Bock J. Safety evaluation of odd-chain fatty acid algal oil. Food Chem Toxicol 2021; 156:112444. [PMID: 34332011 DOI: 10.1016/j.fct.2021.112444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
In the food industry, most fatty acid-rich oils are primarily composed of saturated even-chain fatty acids. However, saturated odd-chain fatty acids are potentially a beneficial alternative to other saturated fatty acid-containing oils. In this communication, we examine the safety of odd-chain fatty acid (OCFA) algal oil, a microalgal-sourced oil composed primarily of the saturated odd-chain fatty acids pentadecanoic acid and heptadecanoic acid. OCFA algal oil was assessed for toxicity in a 14-day palatability study and comprehensive 13-week dietary study at inclusion levels of 5%, 10%, and 15% in the diet, utilizing a DHA-rich algal oil as a comparator control. No adverse effects attributed to the consumption of OCFA algal oil were observed in either study. Therefore, we report a No Observable Adverse Effect Level (NOAEL) of 150,000 ppm (15% in the diet), equivalent to an OCFA algal oil intake of 7553.9 and 8387.7 mg/kg bw/day for male and female rats, respectively. The genotoxic potential of OCFA algal oil was also examined in an in vitro bacterial reverse mutation assay and in vivo mammalian bone marrow chromosome aberration test. OCFA algal oil was non-mutagenic in Salmonella typhimurium and Escherichia coli test strains and did not exhibit clastogenicity in vivo.
Collapse
|
28
|
Oxovanadium(IV) complexes with tetradentate thiosemicarbazones. Synthesis, characterization, anticancer enzyme inhibition and in vitro cytotoxicity on breast cancer cells. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Izar MCDO, Lottenberg AM, Giraldez VZR, Santos Filho RDD, Machado RM, Bertolami A, Assad MHV, Saraiva JFK, Faludi AA, Moreira ASB, Geloneze B, Magnoni CD, Scherr C, Amaral CK, Araújo DBD, Cintra DEC, Nakandakare ER, Fonseca FAH, Mota ICP, Santos JED, Kato JT, Beda LMM, Vieira LP, Bertolami MC, Rogero MM, Lavrador MSF, Nakasato M, Damasceno NRT, Alves RJ, Lara RS, Costa RP, Machado VA. Position Statement on Fat Consumption and Cardiovascular Health - 2021. Arq Bras Cardiol 2021; 116:160-212. [PMID: 33566983 PMCID: PMC8159504 DOI: 10.36660/abc.20201340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Ana Maria Lottenberg
- Hospital Israelita Albert Einstein (HIAE) - Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, SP - Brasil
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Viviane Zorzanelli Rocha Giraldez
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Raul Dias Dos Santos Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Roberta Marcondes Machado
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Adriana Bertolami
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | | | - André Arpad Faludi
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | - Bruno Geloneze
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | | | | | | | | | | | | | | | | | | | | | - Lis Mie Misuzawa Beda
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | | | | | | | | | - Miyoko Nakasato
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | | | - Renato Jorge Alves
- Santa Casa de Misericórdia de São Paulo, São Paulo, São Paulo, SP - Brasil
| | - Roberta Soares Lara
- Núcleo de Alimentação e Nutrição da Sociedade Brasileira de Cardiologia, Rio de Janeiro, RJ - Brasil
| | | | | |
Collapse
|
30
|
Madrigal C, Soto-Méndez MJ, Leis R, Hernández-Ruiz Á, Valero T, Lara Villoslada F, Martínez de Victoria E, Moreno JM, Ortega RM, Ruiz-López MD, Varela-Moreiras G, Gil Á. Dietary Intake, Nutritional Adequacy and Food Sources of Total Fat and Fatty Acids, and Relationships with Personal and Family Factors in Spanish Children Aged One to <10 Years: Results of the EsNuPI Study. Nutrients 2020; 12:E2467. [PMID: 32824377 PMCID: PMC7468841 DOI: 10.3390/nu12082467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
We aimed to determine the usual intake of total fat, fatty acids (FAs), and their main food sources in a representative cohort of the Spanish pediatric population aged 1 to <10 years (n = 707) who consumed all types of milk and an age-matched cohort who consumed adapted milk over the last year (including follow-on formula, toddler's milk, growing-up milk, and fortified and enriched milks) (n = 741) who were participants in the EsNuPI study (in English, Nutritional Study in the Spanish Pediatric Population). Dietary intake, measured through two 24 h dietary recalls, was compared to the European Food Safety Authority (EFSA) and the Food and Agriculture Organization of the United Nations (UN-FAO) recommendations. Both cohorts showed a high intake of saturated fatty acids (SFAs), according to FAO recommendations, as there are no numerical recommendations for SFAs at EFSA. Also, low intake of essential fatty acids (EFAs; linoleic acid (LA) and α-linolenic acid (ALA)) and long-chain polyunsaturated fatty acids (LC-PUFA) of the n-3 series, mainly docosahexaenoic acid (DHA) were observed according to EFSA and FAO recommendations. The three main sources of total fat and different FAs were milk and dairy products, oils and fats, and meat and meat products. The consumption of adapted milk was one of the main factors associated with better adherence to the nutritional recommendations of total fat, SFAs, EFAs, PUFAs; and resulted as the main factor associated with better adherence to n-3 fatty acids intake recommendations. Knowledge of the dietary intake and food sources of total fat and FAs in children could help in designing and promoting effective and practical age-targeted guidelines to promote the consumption of EFA- and n-3 PUFA-rich foods in this stage of life.
Collapse
Affiliation(s)
- Casandra Madrigal
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja, s.n, 18071 Granada, Spain; (C.M.); (M.D.R.-L.)
- Iberoamerican Nutrition Foundation (FINUT), Av. del Conocimiento 12, 3 ª pta, Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
| | - María José Soto-Méndez
- Iberoamerican Nutrition Foundation (FINUT), Av. del Conocimiento 12, 3 ª pta, Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
| | - Rosaura Leis
- Department of Pediatrics, Unit of Pediatric Gastroenterology, Hepatology and Nutrition University Clinical Hospital of Santiago, 15706 Santiago de Compostela, Spain;
- Instituto de Investigación Sanitaria de Santiago, IDIS, Santiago de Compostela, University Clinical Hospital of Santiago, 15706 Santiago de Compostela, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ángela Hernández-Ruiz
- Iberoamerican Nutrition Foundation (FINUT), Av. del Conocimiento 12, 3 ª pta, Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
| | - Teresa Valero
- Spanish Nutrition Foundation (FEN), c/General Álvarez de Castro 20, 1ªpta, 28010 Madrid, Spain;
| | | | - Emilio Martínez de Victoria
- Department of Physiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja, s.n, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - José Manuel Moreno
- Pediatric Department, University of Navarra Clinic, Calle Marquesado de Sta. Marta, 1, 28027 Madrid, Spain;
| | - Rosa M. Ortega
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - María Dolores Ruiz-López
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja, s.n, 18071 Granada, Spain; (C.M.); (M.D.R.-L.)
- Iberoamerican Nutrition Foundation (FINUT), Av. del Conocimiento 12, 3 ª pta, Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Gregorio Varela-Moreiras
- Department of Pediatrics, Unit of Pediatric Gastroenterology, Hepatology and Nutrition University Clinical Hospital of Santiago, 15706 Santiago de Compostela, Spain;
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, Urb. Montepríncipe, crta. Boadilla km. 5.3, Boadilla del Monte, 28668 Madrid, Spain
| | - Ángel Gil
- Iberoamerican Nutrition Foundation (FINUT), Av. del Conocimiento 12, 3 ª pta, Armilla, 18016 Granada, Spain; (M.J.S.-M.); (Á.H.-R.); (Á.G.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain
- Department of Biochemistry and Molecular Biology II University of Granada, University of Granada, Campus de Cartuja, s.n, 18071 Granada, Spain
| |
Collapse
|
31
|
Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: could it be essential? Sci Rep 2020; 10:8161. [PMID: 32424181 PMCID: PMC7235264 DOI: 10.1038/s41598-020-64960-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary odd-chain saturated fatty acids (OCFAs) are present in trace levels in dairy fat and some fish and plants. Higher circulating concentrations of OCFAs, pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0), are associated with lower risks of cardiometabolic diseases, and higher dietary intake of OCFAs is associated with lower mortality. Population-wide circulating OCFA levels, however, have been declining over recent years. Here, we show C15:0 as an active dietary fatty acid that attenuates inflammation, anemia, dyslipidemia, and fibrosis in vivo, potentially by binding to key metabolic regulators and repairing mitochondrial function. This is the first demonstration of C15:0's direct role in attenuating multiple comorbidities using relevant physiological mechanisms at established circulating concentrations. Pairing our findings with evidence that (1) C15:0 is not readily made endogenously, (2) lower C15:0 dietary intake and blood concentrations are associated with higher mortality and a poorer physiological state, and (3) C15:0 has demonstrated activities and efficacy that parallel associated health benefits in humans, we propose C15:0 as a potential essential fatty acid. Further studies are needed to evaluate the potential impact of decades of reduced intake of OCFA-containing foods as contributors to C15:0 deficiencies and susceptibilities to chronic disease.
Collapse
|
32
|
Meshginfar N, Tavakoli H, Dornan K, Hosseinian F. Phenolic lipids as unique bioactive compounds: a comprehensive review on their multifunctional activity toward the prevention of Alzheimer's disease. Crit Rev Food Sci Nutr 2020; 61:1394-1403. [PMID: 32363900 DOI: 10.1080/10408398.2020.1759024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phenolic lipids are multifunctional compounds which play an important biological role in the body. Their unique biologic functionality stems from their strong amphiphilic character which allows them to be incorporated in erythrocytes. Through membrane incorporation, these compounds exert their biological effects on neurons which are not modulated by hydrophilic compounds. These bioactive compounds are present in nature as secondary plant metabolites, and consequently their availability is limited, for dietary and medical purposes. In this review, the pathways and mechanisms associated with the pathogenesis of Alzheimer's disease will be described. In addition, the modulatory effects of phenolic lipids on these pathways and a list of several synthetic, semi synthetic and natural sources of phenolic lipids will be examined as having the potential to prevent or combat Alzheimer's disease.
Collapse
Affiliation(s)
- Nasim Meshginfar
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada
| | - Hamed Tavakoli
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada
| | - Kelly Dornan
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada
| | - Farah Hosseinian
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada.,Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Venn-Watson S, Baird M, Novick B, Parry C, Jensen ED. Modified fish diet shifted serum metabolome and alleviated chronic anemia in bottlenose dolphins (Tursiops truncatus): Potential role of odd-chain saturated fatty acids. PLoS One 2020; 15:e0230769. [PMID: 32259832 PMCID: PMC7138614 DOI: 10.1371/journal.pone.0230769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/06/2020] [Indexed: 11/18/2022] Open
Abstract
Bottlenose dolphins (Tursiops truncatus) are long-lived mammals that can develop chronic aging-associated conditions similar to humans, including metabolic syndrome. Initial studies suggest that these conditions may be attenuated in dolphins using a modified fish diet. Serum metabolomics, fatty acid panels, and blood-based health indices were compared between 20 dolphins on a modified, 50% wild-type diet (50% mullet, 25% capelin, and 25% squid and/or herring) and 10 dolphins on a baseline diet (75% capelin and 25% squid and/or herring). Blood samples were collected at Months 0, 1, 3 and 6. Dolphins on the modified diet had lower insulin (7.5 ± 4.0 and 14.8 ± 14.0 μIU/ml, P = 0.039), lower cholesterol (160 ± 26 and 186 ± 24 mg/dl, P = 0.015) and higher hematocrit (46 ± 3 and 44 ± 3%, P = 0.043) by Month 1 compared to controls. Dolphins with anemia (hemoglobin ≤ 12.5 g/dl, n = 6) or low-normal hemoglobin (12.5-13.5 g/dl, n = 3) before placed on the modified diet had normal hemoglobin concentrations (> 13.5 g/dl) by Month 3. The modified diet caused a significant shift in the metabolome, which included 664 known metabolites. Thirty prioritized metabolites at Months 1 and 3 were 100% predictive of dolphins on the modified diet. Among 25 prioritized lipids, 10 (40%) contained odd-chain saturated fatty acids (OCFAs); C15:0 was the highest-prioritized OCFA. Increased dietary intake of C15:0 (from 1.3 ± 0.4 to 4.5 ± 1.1 g/day) resulted in increased erythrocyte C15:0 concentrations (from 1.5 ± 0.3 to 5.8 ± 0.8 μg/ml, P < 0.0001), which independently predicted raised hemoglobin. Further, increasing age was associated with declining serum C15:0 (R2 = 0.14, P = 0.04). While higher circulating OCFAs have been previously associated with lower risks of cardiometabolic diseases in humans, further studies are warranted to assess potential active roles of OCFAs, including C15:0, in attenuating anemia.
Collapse
Affiliation(s)
- Stephanie Venn-Watson
- Translational Medicine and Research Program, National Marine Mammal Foundation, San Diego, California, United States of America
- * E-mail:
| | - Mark Baird
- Translational Medicine and Research Program, National Marine Mammal Foundation, San Diego, California, United States of America
| | - Brittany Novick
- Translational Medicine and Research Program, National Marine Mammal Foundation, San Diego, California, United States of America
| | - Celeste Parry
- Translational Medicine and Research Program, National Marine Mammal Foundation, San Diego, California, United States of America
| | - Eric D. Jensen
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California, United States of America
| |
Collapse
|
34
|
de Diego I, Peleg S, Fuchs B. The role of lipids in aging-related metabolic changes. Chem Phys Lipids 2019; 222:59-69. [DOI: 10.1016/j.chemphyslip.2019.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
|
35
|
Retention time bracketing for targeted sphingolipidomics by liquid chromatography-tandem mass spectrometry. Bioanalysis 2019; 11:185-201. [PMID: 30661375 DOI: 10.4155/bio-2018-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: In complex biological matrixes, many sphingolipids are present with multiple reaction monitoring traces or lack of standard for verification, potentially leading to inaccurate identification and quantitation. Results/methodology: Based on these retention times of available standards, we devised a retention time bracketing approach to identify and predict sphingolipids of the same homologous series. Excellent concordance of predicted and observed retention times (<0.1 min) of sphingolipids were demonstrated. We also showed that many odd- and/or short-chain sphingolipids, commonly used as internal standards, are present in biological matrices including human serum, peritoneal fluid and cells. Conclusion: A retention time table, and a list of appropriate standards are presented, which are expected to be useful resources in targeted sphingolipidomics.
Collapse
|
36
|
In Vitro Antithrombotic Properties of Salmon ( Salmo salar) Phospholipids in a Novel Food-Grade Extract. Mar Drugs 2019; 17:md17010062. [PMID: 30669323 PMCID: PMC6357043 DOI: 10.3390/md17010062] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Marine and salmon polar lipids (PLs) extracted by conventional extractions with non-food-grade solvents (CE-salmon-PLs) possess antithrombotic bioactivities against platelet-activating factor (PAF) and thrombin. Similar effects of food-grade-extracted (FGE) marine PLs have not yet been reported. In this study, food-grade solvents were used to extract PLs from Irish organic farmed salmon (Salmo salar) fillets (FGE-salmon-PLs), while their antithrombotic bioactivities were assessed in human platelets induced by platelet aggregation agonists (PAF/thrombin). FGE-salmon-PLs were further separated by thin layer chromatography (TLC) into lipid subclasses, and the antithrombotic bioactivities of each subclass were also assessed. LC-MS was utilized to elucidate the structure-activity relationships. FGE-salmon-PLs strongly inhibited PAF-induced platelet aggregation, while their relevant anti-thrombin effects were at least three times more potent than the previously reported activities of CE-salmon-PLs. TLC-derived lipid fractions corresponding to phosphatidylcholines (PC) and phosphatidylethanolamines (PE) were the most bioactive lipid subclasses obtained, especially against thrombin. Their LC-MS analysis elucidated that they are diacyl- or alkyl-acyl- PC and PE moieties baring ω3 polyunsaturated fatty acids (PUFA) at their sn-2 position, such as eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). Our results concerning the potent antithrombotic effects of FGE-salmon-PLs against both PAF and thrombin pathways strongly suggest that such food-grade extracts are putative candidates for the development of novel cardioprotective supplements and nutraceuticals.
Collapse
|