1
|
Choi H, Yu OH, Eyun SI. Evolutionary insights into adaptation of hemocyanins from deep-sea hydrothermal vent shrimps. MARINE POLLUTION BULLETIN 2025; 215:117872. [PMID: 40199006 DOI: 10.1016/j.marpolbul.2025.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025]
Abstract
Deep-sea hydrothermal vent shrimps inhabit environments with low oxygen levels and may even be exposed to hypoxic conditions. In response, their respiratory pigment, hemocyanin (Hc) may undergo molecular adaptations to enable them to survive in such extreme ecosystems. Therefore, we sampled four Alvinocarididae species from hydrothermal vents in the northern Central Indian Ridge and two types of Hc genes (α and γ) were observed. Employing the branch model, we detected positive selection for the deep-sea hydrothermal vent lineage, including 11 Decapoda species. Furthermore, using the branch-site model, we identified a putative mutant residue (Leu226, Ser377, and Ile390) close to the active site of Hc. Moreover, our results suggested potential molecular docking between two α-type Hc proteins. Thus, this study provides valuable and novel perspectives on the functional significance of the Hc gene in deep-sea hydrothermal vent shrimps, laying the foundation for future investigations in this intriguing area of research.
Collapse
Affiliation(s)
- Hyeongwoo Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; Research Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 47122, Korea.
| | - Ok-Hwan Yu
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
2
|
Zhang H, Zhou Y, Yang Z. Genetic adaptations of marine invertebrates to hydrothermal vent habitats. Trends Genet 2024; 40:1047-1059. [PMID: 39277449 DOI: 10.1016/j.tig.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.
Collapse
Affiliation(s)
- Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zhuo Yang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Lee Y, Byeon E, Kim DH, Maszczyk P, Wang M, Wu RSS, Jeung HD, Hwang UK, Lee JS. Hypoxia in aquatic invertebrates: Occurrence and phenotypic and molecular responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106685. [PMID: 37690363 DOI: 10.1016/j.aquatox.2023.106685] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Global deoxygenation in aquatic systems is an increasing environmental problem, and substantial oxygen loss has been reported. Aquatic animals have been continuously exposed to hypoxic environments, so-called "dead zones," in which severe die-offs among organisms are driven by low-oxygen events. Multiple studies of hypoxia exposure have focused on in vivo endpoints, metabolism, oxidative stress, and immune responses in aquatic invertebrates such as molluscs, crustaceans, echinoderms, and cnidarians. They have shown that acute and chronic exposure to hypoxia induces significant decreases in locomotion, respiration, feeding, growth, and reproduction rates. Also, several studies have examined the molecular responses of aquatic invertebrates, such as anaerobic metabolism, reactive oxygen species induction, increased antioxidant enzymes, immune response mechanisms, regulation of hypoxia-inducible factor 1-alpha (HIF-1α) genes, and differently expressed hemoglobin/hemocyanin. The genetic basis of those molecular responses involves HIF-1α pathway genes, which are highly expressed in hypoxic conditions. However, the identification of HIF-1α-related genes and understanding of their applications in some aquatic invertebrates remain inadequate. Also, some species of crustaceans, rotifers, sponges, and ctenophores that lack HIF-1α are thought to have alternative defense mechanisms to cope with hypoxia, but those factors are still unclear. This review covers the formation of hypoxia in aquatic environments and the various adverse effects of hypoxia on aquatic invertebrates. The limitations of current hypoxia research and genetic information about the HIF-1α pathway are also discussed. Finally, this paper explains the underlying processes of the hypoxia response and presents an integrated program for research about the molecular mechanisms of hypoxic stresses in aquatic invertebrates.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Rudolf Shiu Sun Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hee-Do Jeung
- Tidal Flat Research Center, National Institute of Fisheries Science, Gunsan 54001, South Korea
| | - Un-Ki Hwang
- Tidal Flat Research Center, National Institute of Fisheries Science, Gunsan 54001, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Wierzbicki A, Wolfgring E, Wagreich M, Kędzierski M, Mertz-Kraus R. Astronomically controlled deep-sea life in the Late Cretaceous reconstructed from ultra-high-resolution inoceramid shell archives. GEOBIOLOGY 2023; 21:474-490. [PMID: 36757065 DOI: 10.1111/gbi.12548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/13/2023]
Abstract
The periodicity of the mutual position of celestial bodies in the Earth-Moon-Sun system is crucial to the functioning of life on Earth. Biological rhythms affect most of the processes inside organisms, and some can be recorded in skeletal remains, allowing one to reconstruct the cycles that occur in nature deep in time. In the present study, we have used ultra-high-resolution elemental ratio scans of Mg/Ca, Sr/Ca and Mn/Ca from the fossil, ca. 70 Ma old inoceramid bivalve Inoceramus (Platyceramus) salisburgensis from deep aphotic water and identified a clear regularity of repetition of the geochemical signal every of ~0.006 mm. We estimate that the shell accretion rate is on average ~0.4 cm of shell thickness per lunar year. Visible light-dark lamination, interpreted as a seasonal signal corresponding to the semilunar-related cycle, gives a rough shell age estimate and growth rate for this large bivalve species supported by a dual feeding strategy. We recognize a biological clock that follows either a semilunar (model A) or a tidal (model B) cycle. This cycle of tidal dominance seems to fit better considering the biological behaviour of I. (P.) salisburgensis, including the estimated age and growth rate of the studied specimens. We interpret that the major control in such deep-sea environment, well below the photic zone and storm wave base, was due to barotropic tidal forces, thus changing the water pressure.
Collapse
Affiliation(s)
- Adam Wierzbicki
- Institute of Geological Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Erik Wolfgring
- Department of Earth Sciences "Ardito Desio", University of Milan, Milan, Italy
- Department of Geology, University of Vienna, Vienna, Austria
| | | | - Mariusz Kędzierski
- Institute of Geological Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | | |
Collapse
|
5
|
Häfker NS, Andreatta G, Manzotti A, Falciatore A, Raible F, Tessmar-Raible K. Rhythms and Clocks in Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:509-538. [PMID: 36028229 DOI: 10.1146/annurev-marine-030422-113038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
Collapse
Affiliation(s)
- N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Alessandro Manzotti
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Angela Falciatore
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Full-Length Transcriptome Comparison Provides Novel Insights into the Molecular Basis of Adaptation to Different Ecological Niches of the Deep-Sea Hydrothermal Vent in Alvinocaridid Shrimps. DIVERSITY 2022. [DOI: 10.3390/d14050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The deep-sea hydrothermal vent ecosystem is one of the extreme chemoautotrophic environments. Shinkaicaris leurokolos Kikuchi and Hashimoto, 2000, and Alvinocaris longirostris Kikuchi and Ohta, 1995, are typically co-distributed and closely related alvinocaridid shrimps in hydrothermal vent areas with different ecological niches, providing an excellent model for studying the adaptive evolution mechanism of animals in the extreme deep-sea hydrothermal vent environment. The shrimp S. leurokolos lives in close proximity to the chimney vent discharging high-temperature fluid, while A. longirostris inhabits the peripheral areas of hydrothermal vents. In this study, full-length transcriptomes of S. leurokolos and A. longirostris were generated using a combination of single-molecule real-time (SMRT) and Illumina RNA-seq technology. Expression analyses of the transcriptomes showed that among the top 30% of highly expressed genes of each species, more genes related to sulfide and heavy metal metabolism (sulfide: quinone oxidoreductase, SQR; persulfide dioxygenase, ETHE1; thiosulfate sulfurtransferase, TST, and ferritin, FRI) were specifically highly expressed in S. leurokolos, while genes involved in maintaining epibiotic bacteria or pathogen resistance (beta-1,3-glucan-binding protein, BGBP; endochitinase, CHIT; acidic mammalian chitinase, CHIA, and anti-lipopolysaccharide factors, ALPS) were highly expressed in A. longirostris. Gene family expansion analysis revealed that genes related to anti-oxidant metabolism (cytosolic manganese superoxide dismutase, SODM; glutathione S-transferase, GST, and glutathione peroxidase, GPX) and heat stress (heat shock cognate 70 kDa protein, HSP70 and heat shock 70 kDa protein cognate 4, HSP7D) underwent significant expansion in S. leurokolos, while CHIA and CHIT involved in pathogen resistance significantly expanded in A. longirostris. Finally, 66 positively selected genes (PSGs) were identified in the vent shrimp S. leurokolos. Most of the PSGs were involved in DNA repair, antioxidation, immune defense, and heat stress response, suggesting their function in the adaptive evolution of species inhabiting the extreme vent microhabitat. This study provides abundant genetic resources for deep-sea invertebrates, and is expected to lay the foundation for deep decipherment of the adaptive evolution mechanism of shrimps in a deep-sea chemosynthetic ecosystem based on further whole-genome comparison.
Collapse
|
7
|
New Record of Hydrothermal Vent Squat Lobster (Munidopsis lauensis) Provides Evidence of a Dispersal Corridor between the Pacific and Indian Oceans. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrothermal vents are chemosynthetically driven ecosystems and one of the most extreme environments on Earth. Vent communities exhibit remarkable taxonomic novelty at the species and supra-species levels, and over 80% of vent species are endemic. Here, we used mitochondrial DNA to identify the biogeographic distribution of Munidopsis lauensis and the heme-binding regions of A1-type COX1 from six species (including M. lauensis) to investigate whether genetic variation in the protein structure affects oxygen-binding ability. We verified the identity of Indian Ocean specimens by comparing sequences from the barcoding gene mitochondrial cytochrome oxidase subunit 1 (COI) with known M. lauensis sequences from the NCBI database. The data show that these are the first recorded specimens of M. lauensis in the Indian Ocean; previously, this species had been reported only in the southwest Pacific. Our findings support the hypothesis that vent fauna in the Pacific and Indian Oceans can interact via active ridges. In the case of the mitochondrial DNA-binding site, the arrangement of heme-binding ligands and type A1 motif of M. lauensis was identical to that in other species. Moreover, our findings suggest that the mechanism of oxygen binding is well conserved among species from terrestrial organisms to hydrothermal extremophiles. Overall, dispersal of the same species to geologically separated hydrothermal vents and conserved heme-binding regions in mitochondrial proteins suggest that hydrothermal species might have evolved from shallow sea organisms and became distributed geographically using a dispersion corridor.
Collapse
|
8
|
Yu C, Zhang B, Zhang Z, Wang S, Wei T, Li L, Zhao Y, Wei H, Li Y. Comparative transcriptome analysis reveals the impact of the daily rhythm on the hemolymph of the Chinese mitten crab ( Eriocheir sinensis). Chronobiol Int 2022; 39:805-817. [PMID: 35144513 DOI: 10.1080/07420528.2022.2035744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The daily rhythm affects a series of physiological functions in crustaceans. To study its effect on the physiological function in Eriocheir sinensis, a crustacean species of high economic value, we analyzed the hemolymph transcriptome during the daily rhythm by high-throughput sequencing. We sampled the hemolymph from crabs at four time points in a single day (06:00, 12:00, 18:00, and 24:00 h) and identified 3,01,661 and 1,03,998 transcripts and unigenes, respectively; some of the unigenes were annotated as core clock genes. Moreover, 15,564 differentially expressed genes (DEGs) were divided into nine different clusters. Functional enrichment analysis of DEGs indicated that the molting, metabolism, and immunity processes in E. sinensis were impacted by its daily rhythm. In addition, we mapped the DEGs involved in the daily entrainment pathway. To the best of our knowledge, this is the first comparative transcriptome analysis of crustacean hemolymph during the day-night cycle, and provides multi-level information for unraveling the finer regulatory effects of the daily cycle in crustaceans.
Collapse
Affiliation(s)
- Changyue Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhiyuan Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Simiao Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Tingyu Wei
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Lisong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingying Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hua Wei
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
9
|
Buchberger AR, DeLaney K, Liu Y, Vu NQ, Helfenbein K, Li L. Mass Spectrometric Profiling of Neuropeptides in Callinectes sapidus during Hypoxia Stress. ACS Chem Neurosci 2020; 11:3097-3106. [PMID: 32840999 DOI: 10.1021/acschemneuro.0c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxygen (O2) is a critical component of life; without proper O2 levels, cells are unable to respire, meaning glucose cannot be utilized. Thus, hypoxia (low O2 levels) is a well-documented stressor, especially in aquatic environments. Neuropeptides are a major class of regulators for stress-induced responses; however, their global expression changes during stress are not well characterized due to the natural complexity of the nervous system. Beyond being a neurological model organism, crustaceans are regularly exposed to hypoxia, making them a relevant system for this study. Several neuropeptide families, including orcokinins, RFamides, and allatostatin A-types, show dynamic dysregulation due to hypoxic stress. In particular, the brain showed the most dynamic changes with a survival mechanism "switching" (i.e., significant increase to decrease) of neuropeptide content between moderate and severe hypoxia (e.g., NFDEDRSGFA, FDAFTTGFGHS, NRNFLRFamide, and APSGFLGMRamide). Globally, neuropeptides in different tissues appeared to exhibit unique expression patterns at the various severities of hypoxia, including LSSSNSPSSTPL and NFDEIDRSSFGF. Overall, this study provides clear evidence for the benefits of globally analyzing biomolecules and that neuropeptides play a critical role in how crustaceans adapt due to hypoxic stress.
Collapse
Affiliation(s)
- Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Yang Liu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Kylie Helfenbein
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
- School of Pharmacy, University of Wisconsin-Madison, 5125 Rennebohm Hall, 777 Highland Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Yuan J, Zhang X, Gao Y, Zhang X, Liu C, Xiang J, Li F. Adaptation and molecular evidence for convergence in decapod crustaceans from deep‐sea hydrothermal vent environments. Mol Ecol 2020; 29:3954-3969. [DOI: 10.1111/mec.15610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Yi Gao
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Xiaoxi Zhang
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| |
Collapse
|
11
|
Allen GJP, Kuan PL, Tseng YC, Hwang PP, Quijada-Rodriguez AR, Weihrauch D. Specialized adaptations allow vent-endemic crabs (Xenograpsus testudinatus) to thrive under extreme environmental hypercapnia. Sci Rep 2020; 10:11720. [PMID: 32678186 PMCID: PMC7367285 DOI: 10.1038/s41598-020-68656-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Shallow hydrothermal vent environments are typically very warm and acidic due to the mixing of ambient seawater with volcanic gasses (> 92% CO2) released through the seafloor making them potential ‘natural laboratories’ to study long-term adaptations to extreme hypercapnic conditions. Xenograpsus testudinatus, the shallow hydrothermal vent crab, is the sole metazoan inhabitant endemic to vents surrounding Kueishantao Island, Taiwan, where it inhabits waters that are generally pH 6.50 with maximum acidities reported as pH 5.50. This study assessed the acid–base regulatory capacity and the compensatory response of X. testudinatus to investigate its remarkable physiological adaptations. Hemolymph parameters (pH, [HCO3−], \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2, [NH4+], and major ion compositions) and the whole animal’s rates of oxygen consumption and ammonia excretion were measured throughout a 14-day acclimation to pH 6.5 and 5.5. Data revealed that vent crabs are exceptionally strong acid–base regulators capable of maintaining homeostatic pH against extreme hypercapnia (pH 5.50, 24.6 kPa \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2) via HCO3−/Cl− exchange, retention and utilization of extracellular ammonia. Intact crabs as well as their isolated perfused gills maintained \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2tensions below environmental levels suggesting the gills can excrete CO2 against a hemolymph-directed \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document}PCO2 gradient. These specialized physiological mechanisms may be amongst the adaptations required by vent-endemic animals surviving in extreme conditions.
Collapse
Affiliation(s)
- Garett J P Allen
- Biological Sciences, University of Manitoba, 190 Dysart Rd., Winnipeg, MB, R3T 2M8, Canada
| | - Pou-Long Kuan
- Institute of Cellular and Organismal Biology's Marine Research Station, Academia Sinica, No. 23-10 Dawen Rd., Jiaoxi, 262, Yilan County, Taiwan
| | - Yung-Che Tseng
- Institute of Cellular and Organismal Biology's Marine Research Station, Academia Sinica, No. 23-10 Dawen Rd., Jiaoxi, 262, Yilan County, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismal Biology, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang District, Taipei City, 11529, Taiwan
| | | | - Dirk Weihrauch
- Biological Sciences, University of Manitoba, 190 Dysart Rd., Winnipeg, MB, R3T 2M8, Canada.
| |
Collapse
|
12
|
Mat AM, Sarrazin J, Markov GV, Apremont V, Dubreuil C, Eché C, Fabioux C, Klopp C, Sarradin PM, Tanguy A, Huvet A, Matabos M. Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus. Nat Commun 2020; 11:3454. [PMID: 32651383 PMCID: PMC7351958 DOI: 10.1038/s41467-020-17284-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Biological rhythms are a fundamental property of life. The deep ocean covers 66% of our planet surface and is one of the largest biomes. The deep sea has long been considered as an arrhythmic environment because sunlight is totally absent below 1,000 m depth. In the present study, we have sequenced the temporal transcriptomes of a deep-sea species, the ecosystem-structuring vent mussel Bathymodiolus azoricus. We reveal that tidal cycles predominate in the transcriptome and physiology of mussels fixed directly at hydrothermal vents at 1,688 m depth at the Mid-Atlantic Ridge, whereas daily cycles prevail in mussels sampled after laboratory acclimation. We identify B. azoricus canonical circadian clock genes, and show that oscillations observed in deep-sea mussels could be either a direct response to environmental stimulus, or be driven endogenously by one or more biological clocks. This work generates in situ insights into temporal organisation in a deep-sea organism. Little is known about gene expression of organisms in the deep sea, partially owing to constraints on sampling these organisms in situ. Here the authors circumvent this problem, fixing tissue of a deep-sea mussel at 1,688 m in depth, and later analyzing transcriptomes to reveal gene expression patterns showing tidal oscillations.
Collapse
Affiliation(s)
- Audrey M Mat
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France. .,Ifremer, EEP, F-29280, Plouzané, France.
| | | | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Vincent Apremont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France.,Ifremer, EEP, F-29280, Plouzané, France
| | | | - Camille Eché
- GeT-PlaGe, Genotoul, INRA Auzeville, Auzeville, France
| | - Caroline Fabioux
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | | | | - Arnaud Tanguy
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
13
|
Wang Z, Tang D, Guo H, Shen C, Wu L, Luo Y. Evolution of digestive enzyme genes associated with dietary diversity of crabs. Genetica 2020; 148:87-99. [PMID: 32096054 DOI: 10.1007/s10709-020-00090-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
Crabs feed on a wide range of items and display diverse feeding strategies. The primary objective of this study was to investigate 10 digestive enzyme genes in representative crabs to provide insights into the genetic basis of feeding habits among crab functional groups. Crabs were classified into three groups based on their feeding habits: herbivores (HV), omnivores (OV), and carnivores (CV). To test whether crabs' feeding adaptations matched adaptive evolution of digestive enzyme genes, we examined the 10 digestive enzyme genes of 12 crab species based on hepatopancreas transcriptome data. Each of the digestive enzyme genes was compared to orthologous sequences using both nucleotide- (i.e., PAML and Datamonkey) and protein-level (i.e., TreeSAAP) approaches. Positive selection genes were detected in HV crabs (AMYA, APN, and MGAM) and CV crabs (APN, CPB, PNLIP, RISC, TRY, and XPD). Additionally, a series of positive selection sites were localized in important functional regions of these digestive enzyme genes. This is the first study to characterize the molecular basis of crabs' digestive enzyme genes based on functional feeding group. Our data suggest that HV crabs have evolved an enhanced digestion capacity for carbohydrates, and CV crabs have acquired digestion capacity for proteins and lipids.
Collapse
Affiliation(s)
- Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China.
| | - Dan Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Huayun Guo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Chenchen Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Lv Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Yaqi Luo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| |
Collapse
|
14
|
Sun S, Sha Z, Wang Y. The complete mitochondrial genomes of two vent squat lobsters, Munidopsis lauensis and M. verrilli: Novel gene arrangements and phylogenetic implications. Ecol Evol 2019; 9:12390-12407. [PMID: 31788185 PMCID: PMC6875667 DOI: 10.1002/ece3.5542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Hydrothermal vents are considered as one of the most extremely harsh environments on the Earth. In this study, the complete mitogenomes of hydrothermal vent squat lobsters, Munidopsis lauensis and M. verrilli, were determined through Illumina sequencing and compared with other available mitogenomes of anomurans. The mitogenomes of M. lauensis (17,483 bp) and M. verrilli (17,636 bp) are the largest among all Anomura mitogenomes, while the A+T contents of M. lauensis (62.40%) and M. verrilli (63.99%) are the lowest. The mitogenomes of M. lauensis and M. verrilli display novel gene arrangements, which might be the result of three tandem duplication-random loss (tdrl) events from the ancestral pancrustacean pattern. The mitochondrial gene orders of M. lauensis and M. verrilli shared the most similarities with S. crosnieri. The phylogenetic analyses based on both gene order data and nucleotide sequences (PCGs and rRNAs) revealed that the two species were closely related to Shinkaia crosnieri. Positive selection analysis revealed that eighteen residues in seven genes (atp8, Cytb, nad3, nad4, nad4l, nad5, and nad6) of the hydrothermal vent anomurans were positively selected sites.
Collapse
Affiliation(s)
- Shao'e Sun
- Deep Sea Research CenterInstitute of OceanologyChinese Academy of ScienceQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Zhongli Sha
- Deep Sea Research CenterInstitute of OceanologyChinese Academy of ScienceQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanrong Wang
- Deep Sea Research CenterInstitute of OceanologyChinese Academy of ScienceQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| |
Collapse
|
15
|
Pang YY, Zhang C, Xu MJ, Huang GY, Cheng YX, Yang XZ. The transcriptome sequencing and functional analysis of eyestalk ganglions in Chinese mitten crab (Eriocheir sinensis) treated with different photoperiods. PLoS One 2019; 14:e0210414. [PMID: 30645610 PMCID: PMC6333377 DOI: 10.1371/journal.pone.0210414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Photoperiod plays an important role in individual growth, development, and metabolism in crustaceans. The growth and reproduction of crabs are closely related to the photoperiod. However, as of yet, there are still no transcriptomic reports of eyestalk ganglions treated under different photoperiods in the Chinese mitten crab (Eriocheir sinensis), which is a benthonic crab with high commercial value in Asia. In this study, we collected the eyestalk ganglions of crabs that were reared under different photoperiods, including a control group (L: D = 12 h: 12 h, named CC), a constant light group (L: D = 24 h: 0 h, named LL) and a constant darkness group (L: D = 0 h: 24 h, named DD). RNA sequencing was performed on these tissues in order to examine the effects of different photoperiods. The total numbers of clean reads from the CC, LL and DD groups were 48,772,584 bp, 53,943,281 bp and 53,815,178 bp, respectively. After de novo assembly, 161,380 unigenes were obtained and were matched with different databases. The DEGs were significantly enriched in phototransduction and energy metabolism pathways. Results from RT-qPCR showed that TRP channel protein (TRP) in the phototransduction pathway had a significantly higher level of expression in LL and DD groups than in the CC group. We found that the downregulation of the pyruvate dehydrogenase complex (PDC) gene and the upregulation phosphoenolpyruvate carboxykinase (PPC) gene were involved in energy metabolism processes in LL or DD. In addition, we also found that the upregulation of the expression level of the genes Gαq, pyruvate kinase (PK), NADH peroxidase (NADH) and ATPase is involved in phototransduction and energy metabolism. These results may shed some light on the molecular mechanism underlying the effect of photoperiod in physiological activity of E. sinensis.
Collapse
Affiliation(s)
- Yang-yang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Min-jie Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Gen-yong Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yong-xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- * E-mail: (XZY); (YXC)
| | - Xiao-zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- * E-mail: (XZY); (YXC)
| |
Collapse
|
16
|
Hui M, Cheng J, Sha Z. First comprehensive analysis of lysine acetylation in Alvinocaris longirostris from the deep-sea hydrothermal vents. BMC Genomics 2018; 19:352. [PMID: 29747590 PMCID: PMC5946511 DOI: 10.1186/s12864-018-4745-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/30/2018] [Indexed: 11/27/2022] Open
Abstract
Background Deep-sea hydrothermal vents are unique chemoautotrophic ecosystems with harsh conditions. Alvinocaris longirostris is one of the dominant crustacean species inhabiting in these extreme environments. It is significant to clarify mechanisms in their adaptation to the vents. Lysine acetylation has been known to play critical roles in the regulation of many cellular processes. However, its function in A. longirostris and even marine invertebrates remains elusive. Our study is the first, to our knowledge, to comprehensively investigate lysine acetylome in A. longirostris. Results In total, 501 unique acetylation sites from 206 proteins were identified by combination of affinity enrichment and high-sensitive-massspectrometer. It was revealed that Arg, His and Lys occurred most frequently at the + 1 position downstream of the acetylation sites, which were all alkaline amino acids and positively charged. Functional analysis revealed that the protein acetylation was involved in diverse cellular processes, such as biosynthesis of amino acids, citrate cycle, fatty acid degradation and oxidative phosphorylation. Acetylated proteins were found enriched in mitochondrion and peroxisome, and many stress response related proteins were also discovered to be acetylated, like arginine kinases, heat shock protein 70, and hemocyanins. In the two hemocyanins, nine acetylation sites were identified, among which one acetylation site was unique in A. longirostris when compared with other shallow water shrimps. Further studies are warranted to verify its function. Conclusion The lysine acetylome of A. longirostris is investigated for the first time and brings new insights into the regulation function of the lysine acetylation. The results supply abundant resources for exploring the functions of acetylation in A. longirostris and other shrimps. Electronic supplementary material The online version of this article (10.1186/s12864-018-4745-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Hui
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Cheng
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongli Sha
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
17
|
Guinot D, Segonzac M. A review of the brachyuran deep-sea vent community of the western Pacific, with two new species of Austinograea Hessler & Martin, 1989 (Crustacea, Decapoda, Brachyura, Bythograeidae) from the Lau and North Fiji Back-Arc Basins. ZOOSYSTEMA 2018. [DOI: 10.5252/zoosystema2018v40a5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Danièle Guinot
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNR
| | - Michel Segonzac
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNR
| |
Collapse
|
18
|
Diversity and characterization of bacteria associated with the deep-sea hydrothermal vent crab Austinograea sp. comparing with those of two shallow-water crabs by 16S ribosomal DNA analysis. PLoS One 2017; 12:e0187842. [PMID: 29121118 PMCID: PMC5679544 DOI: 10.1371/journal.pone.0187842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/26/2017] [Indexed: 11/19/2022] Open
Abstract
For deep-sea hydrothermal vent crabs, recent investigations have revealed some epibiotic bacteria, but no study has described the bacterial community associated with the gill and intestine. In this study, the microbiota attached to the gill and intestine of the hydrothermal vent crab Austinograea sp. and two shallow-water crab species (Eriocheir sinensis and Portunus trituberculatus) were compared by high-throughput sequencing of 16S rDNA genes. The highest and lowest diversity in bacterial communities were observed in the gill and intestine of Austinograea sp., respectively. Non-metric multidimensional scaling (NMDS) analysis indicated that Austinograea sp. harbored a distinct microbial community. Operational taxonomic units (OTUs) for phylum Fusobacteria, class Epsilonproteobacteria, and genera Leucothrix, Polaribacter, Fusibacter, etc. were dominant in Austinograea sp. Of these, Leucothrix, Sulfurospirillum, and Arcobacter may be involved in oxidizing reduced sulfur compounds and sulfur metabolism; Marinomonas, Polaribacter adapted to the low temperature, and Fusibacter and Psychrilyobacter may survive well under hypoxic conditions. Bacteria commonly present in seawater were dominant in the gill, whereas anaerobic bacteria showed strikingly high abundance in the intestine. Interestingly, Firmicutes and Epsilonproteobacteria may complement each other in Austinograea sp., forming an internal environment. The diversified microbial community of Austinograea sp. reveals adaptation to the hydrothermal vent environment.
Collapse
|