1
|
Luo H, Xie K, Dong P, Zhang Y, Ren T, Sui C, Ma C, Zhao C, Dewangan NK, Gong Z. Assessing the Risks of Potential Pathogens and Antibiotic Resistance Genes Among Heterogeneous Habitats in a Temperate Estuary Wetland: a Meta-analysis. MICROBIAL ECOLOGY 2025; 87:172. [PMID: 39820498 PMCID: PMC11739316 DOI: 10.1007/s00248-024-02484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Temperate estuary wetlands act as natural filters for microbiological contamination and have a profound impact on "One Health." However, knowledge of microbiological ecology security across the different habitats in temperate estuarine wetlands remains limited. This study employed meta-analysis to explore the characteristics of bacterial communities, potential pathogens, and antibiotic resistance genes (ARGs) across three heterogeneous habitats (water, soil, and sediment) within the Liaohe Estuary landscape. The diversity and composition of the three bacterial communities differed with biogeography, temperature, and pH, with the highest α-diversity showing a significantly negative correlation along latitude in soil. Furthermore, aminoglycosides were significantly enriched in water and soil, while dihydrofolate was more likely to be enriched in soil. The potential pathogens, Pseudoalteromonas and Planococcus, were dominant in water and sediment, while Stenotrophomonas was the dominant bacterium in soil. The network topology parameter revealed interspecific interactions within the community. PLS-PM highlights the main direct factors affecting the abundance of potential pathogens and the spread of ARGs, while temperature and pH indirectly influence these potential pathogens. This study advances our understanding of bacterial communities in estuarine wetlands, while highlighting the need for effective monitoring to mitigate the risks associated with potential pathogens and ARGs in these ecosystems.
Collapse
Affiliation(s)
- Hongjing Luo
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Kunpeng Xie
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Pengsheng Dong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yongsheng Zhang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Tingyi Ren
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Caihong Sui
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Changwei Ma
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | - Caiyuan Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Naresh Kumar Dewangan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Zheng Gong
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
2
|
Wu W, Hsieh CH, Logares R, Lennon JT, Liu H. Ecological processes shaping highly connected bacterial communities along strong environmental gradients. FEMS Microbiol Ecol 2024; 100:fiae146. [PMID: 39479791 DOI: 10.1093/femsec/fiae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
Along the river-sea continuum, microorganisms are directionally dispersed by water flow while being exposed to strong environmental gradients. To compare the two assembly mechanisms that may strongly and differently influence metacommunity dynamics, namely homogenizing dispersal and heterogeneous selection, we characterized the total (16S rRNA gene) and putatively active (16S rRNA transcript) bacterial communities in the Pearl River-South China Sea Continuum, during the wet (summer) and dry (winter) seasons using high-throughput sequencing. Moreover, well-defined sampling was conducted by including freshwater, oligohaline, mesohaline, polyhaline, and marine habitats. We found that heterogeneous selection exceeded homogenizing dispersal in both the total and active fractions of bacterial communities in two seasons. However, homogeneous selection was prevalent (the dominant except in active bacterial communities during summer), which was primarily due to the bacterial communities' tremendous diversity (associated with high rarity) and our specific sampling design. In either summer or winter seasons, homogeneous and heterogeneous selection showed higher relative importance in total and active communities, respectively, implying that the active bacteria were more responsive to environmental gradients than were the total bacteria. In summary, our findings provide insight into the assembly of bacterial communities in natural ecosystems with high spatial connectivity and environmental heterogeneity.
Collapse
Affiliation(s)
- Wenxue Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Chinese mainland
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, Chinese mainland
- School of Marine Science, Sun Yat-sen University, Zhuhai 519082, Chinese mainland
| | - Chih-Hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan
| | - Ramiro Logares
- Institute of Marine Sciences, CSIC, Barcelona 08003, Spain
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, Chinese mainland
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong
| |
Collapse
|
3
|
Pino-Otín MR, Lorca G, Val J, Ferrando N, Ballestero D, Langa E. Ecotoxicological Study of Tannic Acid on Soil and Water Non-Target Indicators and Its Impact on Fluvial and Edaphic Communities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4041. [PMID: 38068678 PMCID: PMC10708037 DOI: 10.3390/plants12234041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 09/07/2024]
Abstract
Tannic acid (TA) is a key tannin extensively used in the leather industry, contributing to around 90% of global leather production. This practice leads to the generation of highly polluting effluents, causing environmental harm to aquatic ecosystems. Additionally, tannins like TA degrade slowly under natural conditions. Despite efforts to reduce pollutant effluents, limited attention has been devoted to the direct environmental impact of tannins. Moreover, TA has garnered increased attention mainly due to its applications as an antibacterial agent and anti-carcinogenic compound. However, our understanding of its ecotoxicological effects remains incomplete. This study addresses this knowledge gap by assessing the ecotoxicity of TA on non-target indicator organisms in both water (Vibrio fischeri, Daphnia magna) and soil environments (Eisenia foetida, Allium cepa), as well as natural fluvial and edaphic communities, including periphyton. Our findings offer valuable insights into TA's ecotoxicological impact across various trophic levels, underscoring the need for more comprehensive investigations in complex ecosystems. Our results demonstrate that TA exhibits ecotoxicity towards specific non-target aquatic organisms, particularly V. fischeri and D. magna, and phytotoxicity on A. cepa. The severity of these effects varies, with V. fischeri being the most sensitive, followed by D. magna and A. cepa. However, the soil-dwelling invertebrate E. foetida shows resistance to the tested TA concentrations. Furthermore, our research reveals that substantial TA concentrations are required to reduce the growth of river microbial communities. Metabolic changes, particularly in amino acid and amine metabolism, are observed at lower concentrations. Notably, the photosynthetic yield of river periphyton remains unaffected, even at higher concentrations. In contrast, soil microbial communities exhibit greater sensitivity, with significant alterations in population growth and metabolic profiles at a very low concentration of 0.2 mg/L for all metabolites. In summary, this study offers valuable insights into the ecotoxicological effects of TA on both aquatic and terrestrial environments. It underscores the importance of considering a variety of non-target organisms and complex communities when assessing the environmental implications of this compound.
Collapse
|
4
|
Fakhraldeen SA, Al-Haddad S, Habibi N, Alagarsamy S, F. K. Habeebullah S, Ali AK, Al-Zakri WM. Diversity and spatiotemporal variations in bacterial and archaeal communities within Kuwaiti territorial waters of the Northwest Arabian Gulf. PLoS One 2023; 18:e0291167. [PMID: 37972047 PMCID: PMC10653540 DOI: 10.1371/journal.pone.0291167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
Kuwaiti territorial waters of the northwest Arabian Gulf represent a unique aquatic ecosystem prone to various environmental and anthropogenic stressors that pose significant constraints on the resident biota which must withstand extreme temperatures, salinity levels, and reducing conditions, among other factors to survive. Such conditions create the ideal environment for investigations into novel functional genetic adaptations of resident organisms. Firstly, however, it is essential to identify said organisms and understand the dynamic nature of their existence. Thus, this study provides the first comprehensive analysis of bacterial and archaeal community structures in the unique waters of Kuwait located in the Northwest Arabian Gulf and analyzes their variations with respect to depth, season, and location, as well as their susceptibility to changes in abundance with respect to various physicochemical parameters. Importantly, this study is the first of its kind to utilize a shotgun metagenomics approach with sequencing performed at an average depth of 15 million paired end reads per sample, which allows for species-level community profiling and sets the framework for future functional genomic investigations. Results showed an approximately even abundance of both archaeal (42.9%) and bacterial (57.1%) communities, but significantly greater diversity among the bacterial population, which predominantly consisted of members of the Proteobacteria, Cyanobacteria, and Bacteroidetes phyla in decreasing order of abundance. Little to no significant variations as assessed by various metrics including alpha and beta diversity analyses were observed in the abundance of archaeal and bacterial populations with respect to depth down the water column. Furthermore, although variations in differential abundance of key genera were detected at each of the three sampling locations, measurements of species richness and evenness revealed negligible variation (ANOVA p<0.05) and only a moderately defined community structure (ANOSIM r2 = 0.243; p>0.001) between the various locations. Interestingly, abundance of archaeal community members showed a significant increase (log2 median ratio of RA = 2.6) while the bacterial population showed a significant decrease (log2 median ratio = -1.29) in the winter season. These findings were supported by alpha and beta diversity analyses as well (ANOSIM r2 = 0.253; p>0.01). Overall, this study provides the first in-depth analysis of both bacterial and archaeal community structures developed using a shotgun metagenomic approach in the waters of the Northwest Arabian Gulf thus providing a framework for future investigations of functional genetic adaptations developed by resident biota attempting to survive in the uniquely extreme conditions to which they are exposed.
Collapse
Affiliation(s)
- Saja A. Fakhraldeen
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sakinah Al-Haddad
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Nazima Habibi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Surendraraj Alagarsamy
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sabeena F. K. Habeebullah
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Abdulmuhsen K. Ali
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Walid M. Al-Zakri
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| |
Collapse
|
5
|
Srivastava A, Verma D. Urbanization led to the abundance of Gram-negative, chemo-organo-heterotrophs, and antibiotic resistance genes in the downstream regions of the Ganga River water of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27552-7. [PMID: 37217817 DOI: 10.1007/s11356-023-27552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The present investigation assesses the bacterial microbiome and antibiotic resistance genes (ARGs) of the river Ganga from Uttarakhand (upstream region; US group) and Uttar Pradesh (downstream region; DS group) regions using a 16S rRNA amplicon-based metagenomic approach. Gram-negative, aerobic, and chemo-organotrophic bacteria made up the majority of the bacterial genera during the overall analysis. Physicochemical analysis revealed a higher concentration of nitrate and phosphate in the downstream sites of the Ganga River. The prevalence of Gemmatimonas, Flavobacterium, Arenimonas, and Verrucomicrobia in the water of the DS region indicates a high organic load. Pseudomonas and Flavobacterium emerged as the most prevalent genera among the 35 significantly different shared genera (p-value < 0.05) in the US and DS regions, respectively. Overall antibiotic resistance analysis of the samples showed the dominance of β-lactam resistance (33.92%) followed by CAMP (cationic antimicrobial peptide) resistance (27.75%), and multidrug resistance (19.17%), vancomycin resistance (17.84%), and tetracycline resistance (0.77%). While comparing, the DS group exhibited a higher abundance of ARGs over the US group, where the CAMP resistance and β-lactam ARGs were dominant in the respective regions. The correlation (p-value < 0.05) analysis showed that most bacteria exhibit a significant correlation with tetracycline resistance followed by the phenicol antibiotic. The present findings draw attention to the need for regulated disposal of multiform human-derived wastes into the Ganga River to reduce the irrepressible ARGs dissemination.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
6
|
Vijayan J, Nathan VK, Ammini P, Ammanamveetil AMH. Bacterial diversity in the aquatic system in India based on metagenome analysis-a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28383-28406. [PMID: 36680718 PMCID: PMC9862233 DOI: 10.1007/s11356-023-25195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 04/16/2023]
Abstract
Microbial analysis has become one of the most critical areas in aquatic ecology and a crucial component for assessing the contribution of microbes in food web dynamics and biogeochemical processes. Initial research was focused on estimating the abundance and distribution of the microbes using microscopy and culture-based analysis, which are undoubtedly complex tasks. Over the past few decades, microbiologists have endeavored to apply and extend molecular techniques to address pertinent questions related to the function and metabolism of microbes in aquatic ecology. Metagenomics analysis has revolutionized aquatic ecology studies involving the investigation of the genome of a mixed community of organisms in an ecosystem to identify microorganisms, their functionality, and the discovery of novel proteins. This review discusses the metagenomics analysis of bacterial diversity in and around different aquatic systems in India.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India.
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Abdulla Mohamed Hatha Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
7
|
Chow AT. Natural organic matter under human-influenced environments: Implications for future environmental quality research. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1347-1350. [PMID: 34674255 DOI: 10.1002/jeq2.20301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Considerable recent research has confirmed that anthropogenic materials including microplastics and nanomaterials have been integrated into soil and dissolved organic matter in the environment. These pools of organic matter could be geochemically processed through different pathways and have different chemical and physical characteristics than the pools of natural organic matter (NOM). However, environmental scientists and engineers currently refer to any organic matter collected in soil, water, and sediments as NOM. Since "real" NOM pools are rapidly dissipated due to losses in natural landscapes, the shift from NOM to human influenced-organic matter (Hi-OM) pools could have huge ecological impacts on the environment. Future environmental quality research should highlight the differences between Hi-OM from NOM.
Collapse
Affiliation(s)
- Alex T Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson Univ., P.O. Box 596, Georgetown, SC, 29442, USA
| |
Collapse
|
8
|
Ezzedine JA, Desdevises Y, Jacquet S. Bdellovibrio and like organisms: current understanding and knowledge gaps of the smallest cellular hunters of the microbial world. Crit Rev Microbiol 2021; 48:428-449. [PMID: 34595998 DOI: 10.1080/1040841x.2021.1979464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Almost sixty years ago, Bdellovibrio and like organisms (BALOs) were discovered as the first obligate bacterial predators of other bacteria known to science. Since then, they were shown to be diverse and ubiquitous in the environment, and to bear astonishing ecological, physiological, and metabolic capabilities. The last decade has seen important strides made in understanding the mechanistic basis of their life cycle, the dynamics of their interactions with prey, along with significant developments towards their use in medicine, agriculture, and industry. This review details these achievements, identify current understanding and knowledge gaps to encourage and guide future BALO research.
Collapse
Affiliation(s)
- Jade A Ezzedine
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France.,Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France
| | - Yves Desdevises
- CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Stéphan Jacquet
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
9
|
Pino-Otín MR, Langa E, Val J, Mainar AM, Ballestero D. Impact of citronellol on river and soil environments using non-target model organisms and natural populations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112303. [PMID: 33714735 DOI: 10.1016/j.jenvman.2021.112303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Citronellol is an acyclic monoterpenoid with a wide range of pharmacological activities (antibacterial, antifungal, anti-lice, repellent, lipolytic, anti-allergic, anti-inflammatory, antispasmodic, antidiabetic, anti-cholesterol, among other) and potential to replace synthetic products. However, the impact of citronellol on the environment remains unknown. We analysed, for the first time, the environmental impact of citronellol on river and soil environments using non-target model organisms and natural populations. The acute toxicity of citronellol on the aquatic invertebrate Daphnia magna, the plant Allium cepa L and the earthworm Eisenia fetida was quantified. The effect of citronellol in a river ecosystem was analysed using river periphyton communities taxonomically characterised and a river microbial community characterised through 16 S rRNA gene sequencing. Finally, a microbial community from natural soil was used to monitor the effect of citronellol on the soil ecosystem. The results showed that E. fetida was most sensitive to citronellol (LC50 = 12.34 mg/L), followed by D. magna (LC50 = 14.11 mg/L). Citronellol affected the photosynthesis of the fluvial periphyton (LC50 = 94.10 mg/L) and was phytotoxic for A. cepa. Furthermore, citronellol modified the growth and metabolism of both fluvial (LC50 = 0.19% v/v) and edaphic (LC50 = 5.07% v/v) bacterial populations. The metabolism of the microorganisms in the soil and water exposed to citronellol decreased with respect to the control, especially their ability to metabolise carbohydrates. Our results show that citronellol has a negative impact on the environment. Although acute effects cannot be expected, it is necessary to quantify the environmental levels as well as the long-term and persistent effects of this monoterpene.
Collapse
Affiliation(s)
| | - Elisa Langa
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Jonatan Val
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Ana M Mainar
- I3A, Universidad de Zaragoza, c/ Mariano Esquillor s/n, 50018, Zaragoza, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| |
Collapse
|
10
|
Rasmussen AN, Damashek J, Eloe-Fadrosh EA, Francis CA. In-depth Spatiotemporal Characterization of Planktonic Archaeal and Bacterial Communities in North and South San Francisco Bay. MICROBIAL ECOLOGY 2021; 81:601-616. [PMID: 33150499 DOI: 10.1007/s00248-020-01621-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Despite being the largest estuary on the west coast of North America, no in-depth survey of microbial communities in San Francisco Bay (SFB) waters currently exists. In this study, we analyze bacterioplankton and archaeoplankton communities at several taxonomic levels and spatial extents (i.e., North versus South Bay) to reveal patterns in alpha and beta diversity. We assess communities using high-throughput sequencing of the 16S rRNA gene in 177 water column samples collected along a 150-km transect over a 2-year monthly time-series. In North Bay, the microbial community is strongly structured by spatial salinity changes while in South Bay seasonal variations dominate community dynamics. Along the steep salinity gradient in North Bay, we find that operational taxonomic units (OTUs; 97% identity) have higher site specificity than at coarser taxonomic levels and turnover ("species" replacement) is high, revealing a distinct brackish community (in oligo-, meso-, and polyhaline samples) from fresh and marine end-members. At coarser taxonomic levels (e.g., phylum, class), taxa are broadly distributed across salinity zones (i.e., present/abundant in a large number of samples) and brackish communities appear to be a mix of fresh and marine communities. We also observe variations in brackish communities between samples with similar salinities, likely related to differences in water residence times between North and South Bay. Throughout SFB, suspended particulate matter is positively correlated with richness and influences changes in beta diversity. Within several abundant groups, including the SAR11 clade (comprising up to 30% of reads in a sample), OTUs appear to be specialized to a specific salinity range. Some other organisms also showed pronounced seasonal abundance, including Synechococcus, Ca. Actinomarina, and Nitrosopumilus-like OTUs. Overall, this study represents the first in-depth spatiotemporal survey of SFB microbial communities and provides insight into how planktonic microorganisms have specialized to different niches along the salinity gradient.
Collapse
Affiliation(s)
- Anna N Rasmussen
- Department of Earth System Science, Stanford University, 473 Via Ortega, Y2E2 Bldg Rm 140, Stanford, CA, 94305, USA
| | - Julian Damashek
- Department of Earth System Science, Stanford University, 473 Via Ortega, Y2E2 Bldg Rm 140, Stanford, CA, 94305, USA
- Department of Biology, Utica College, Utica, NY, 13502, USA
| | - Emiley A Eloe-Fadrosh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher A Francis
- Department of Earth System Science, Stanford University, 473 Via Ortega, Y2E2 Bldg Rm 140, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Li N, Chen X, Zhao H, Tang J, Jiang G, Li Z, Li X, Chen S, Zou S, Dong K, Xu Q. Spatial distribution and functional profile of the bacterial community in response to eutrophication in the subtropical Beibu Gulf, China. MARINE POLLUTION BULLETIN 2020; 161:111742. [PMID: 33075697 DOI: 10.1016/j.marpolbul.2020.111742] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 05/25/2023]
Abstract
In this study, we investigated the specific bacterial distribution and the response of bacterial communities to shifts in environmental factors in the subtropical Beibu Gulf, southern China. The abundances of Actinobacteria, Bacilli, Planctomycetia, Thermoleophilia, Anaerolineae, and Synechococcophycideae were significantly higher in high eutrophic samples than in medium eutrophic and oligotrophic samples. Bacterial alpha-diversity was found greater in high eutrophication samples than in the other samples. Besides, Ponticaulis koreensis, Nautella italic, Anaerospora hongkongensis, Candidatus Aquiluna rubra, and Roseovarius pacificus were sensitive to trophic variation and thus could be used as eco-markers. In addition, the relative abundances of functional genes involving carbohydrate and amino acid metabolism were very high among the samples. We also found temperature, Chl-a, TDN and NO3- were the main environmental drivers of bacterial community structure. Overall, this study provides new insight into the composition of bacterial community and function response to gradients of eutrophication in Beibu Gulf.
Collapse
Affiliation(s)
- Nan Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xing Chen
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China; College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Huaxian Zhao
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Jinli Tang
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Gonglingxia Jiang
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Zhuoting Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xiaoli Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Si Chen
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Shuqi Zou
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Ke Dong
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Qiangsheng Xu
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China.
| |
Collapse
|
12
|
Wu W, Xu Z, Dai M, Gan J, Liu H. Homogeneous selection shapes free‐living and particle‐associated bacterial communities in subtropical coastal waters. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Wenxue Wu
- School of Marine Sciences Sun Yat‐sen University Zhuhai China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering Sun Yat‐sen University Zhuhai China
| | - Zhimeng Xu
- Department of Ocean Science The Hong Kong University of Science and Technology Kowloon Hong Kong SAR China
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Jianping Gan
- Department of Ocean Science The Hong Kong University of Science and Technology Kowloon Hong Kong SAR China
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai China
- Department of Ocean Science The Hong Kong University of Science and Technology Kowloon Hong Kong SAR China
| |
Collapse
|
13
|
Bhatnagar S, Cowley ES, Kopf SH, Pérez Castro S, Kearney S, Dawson SC, Hanselmann K, Ruff SE. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. ENVIRONMENTAL MICROBIOME 2020; 15:3. [PMID: 33902727 PMCID: PMC8066431 DOI: 10.1186/s40793-019-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. RESULTS Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. CONCLUSIONS The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
Collapse
Affiliation(s)
- Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Elise S. Cowley
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO USA
| | - Sherlynette Pérez Castro
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| | - Sean Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Scott C. Dawson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA USA
| | | | - S. Emil Ruff
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| |
Collapse
|
14
|
Diversity, Dynamics, and Distribution of Bdellovibrio and Like Organisms in Perialpine Lakes. Appl Environ Microbiol 2019; 85:AEM.02494-18. [PMID: 30635378 DOI: 10.1128/aem.02494-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/30/2018] [Indexed: 11/20/2022] Open
Abstract
Microbes drive a variety of ecosystem processes and services, but many of them remain largely unexplored because of a lack of knowledge on both the diversity and functionality of some potentially crucial microbiological compartments. This is the case with and within the group of bacterial predators collectively known as Bdellovibrio and like organisms (BALOs). Here, we report the abundance, distribution, and diversity of three families of these obligate predatory Gram-negative bacteria in three perialpine lakes (Lakes Annecy, Bourget, and Geneva). The study was conducted at different depths (near-surface versus 45 or 50 m) from August 2015 to January 2016. Using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and cloning-sequencing approaches, we show that the diversity of BALOs is relatively low and very specific to freshwaters or even the lakes themselves. While the Peredibacteraceae family was represented mainly by a single species (Peredibacter starrii), it could represent up to 7% of the total bacterial cell abundances. Comparatively, the abundances of the two other families (Bdellovibrionaceae and Bacteriovoracaceae) were significantly lower. In addition, the distributions in the water column were very different between the three groups, suggesting various life strategies/niches, as follows: Peredibacteraceae dominated near the surface, while Bdellovibrionaceae and Bacteriovoracaceae were more abundant at greater depths. Statistical analyses revealed that BALOs seem mainly to be driven by depth and temperature. Finally, this original study was also the opportunity to design new quantitative PCR (qPCR) primers for Peredibacteraceae quantification.IMPORTANCE This study highlights the abundance, distribution, and diversity of a poorly known microbial compartment in natural aquatic ecosystems, the Bdellovibrio and like organisms (BALOs). These obligate bacterial predators of other bacteria may have an important functional role. This study shows the relative quantitative importance of the three main families of this group, with the design of a new primer pair, and their diversity. While both the diversity and the abundances of these BALOs were globally low, it is noteworthy that the abundance of the Peredibacteraceae could reach important values.
Collapse
|
15
|
Mijangos L, Ziarrusta H, Ros O, Kortazar L, Fernández LA, Olivares M, Zuloaga O, Prieto A, Etxebarria N. Occurrence of emerging pollutants in estuaries of the Basque Country: Analysis of sources and distribution, and assessment of the environmental risk. WATER RESEARCH 2018; 147:152-163. [PMID: 30308374 DOI: 10.1016/j.watres.2018.09.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
In this study, the spatial and temporal-distribution of 41-multiclass organic compounds were assessed in three estuaries of the Basque Country, from winter 2016 to winter 2017 by grab (active) sampling methods and an extra campaign combining both, grab and passive sampling methods. Wastewater treatment plant (WWTP) effluents were also evaluated to assess their impact on the estuaries. Moreover, the physicochemical features (phosphate and nitrate concentrations, pH, etc.) of each site were measured and included in the statistical analysis. Anti-inflammatory drugs (diclofenac and acetaminophen), hypertensive drugs (irbesartan and valsartan), a stimulant (caffeine), an artificial sweetener (acesulfame) and a corrosion inhibitor (2-hydroxybenzothiazole) were the most ubiquitous compounds. Due to the stratification of the waters in the estuary of Bilbao two independent sources were identified: WWTP and harbour activities. In the case of Gernika and Plentzia, both are estuaries with a high tidal dilution, and the main sources were localized in the effluents of the WWTPs. In addition to this, the use of POCIS provides an efficient way to monitor emerging pollutants over a relatively long sampling period. Finally, risk quotient (RQ) values of each contaminant were estimated from the maximum values determined at each estuary and WWTP effluent for acute and chronic effects. In the case of acute toxicity the highest RQ values (»1) were obtained for the angiotensin II receptor blockers (telmisartan, eprosartan, etc.), diuron and diclofenac. In the case of the chronic toxicity the highest RQ values (»1) were estimated for caffeine, diclofenac, bezafibrate and sulfadiazine.
Collapse
Affiliation(s)
- Leire Mijangos
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620, Plentzia, Basque Country, Spain.
| | - Haizea Ziarrusta
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620, Plentzia, Basque Country, Spain
| | - Oihana Ros
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Leire Kortazar
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620, Plentzia, Basque Country, Spain
| | - Luis Angel Fernández
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620, Plentzia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620, Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620, Plentzia, Basque Country, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620, Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620, Plentzia, Basque Country, Spain
| |
Collapse
|
16
|
Dai T, Zhang Y, Ning D, Su Z, Tang Y, Huang B, Mu Q, Wen D. Dynamics of Sediment Microbial Functional Capacity and Community Interaction Networks in an Urbanized Coastal Estuary. Front Microbiol 2018; 9:2731. [PMID: 30487783 PMCID: PMC6246683 DOI: 10.3389/fmicb.2018.02731] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022] Open
Abstract
Coastal estuaries and bays are exposed to both natural and anthropogenic environmental changes, inflicting intensive stress on the microbial communities inhabiting these areas. However, it remains unclear how microbial community diversity and their eco-functions are affected by anthropogenic disturbances rather than natural environmental changes. Here, we explored sediment microbial functional genes dynamics and community interaction networks in Hangzhou Bay (HZB), one of the most severely polluted bays on China’s eastern coast. The results indicated key microbial functional gene categories, including N, P, S, and aromatic compound metabolism, and stress response, displayed significant spatial dynamics along environmental gradients. Sensitive feedbacks of key functional gene categories to N and P pollutants demonstrated potential impacts of human-induced seawater pollutants to microbial functional capacity. Seawater ammonia and dissolved inorganic nitrogen (DIN) was identified as primary drivers in selecting adaptive populations and varying community composition. Network analysis revealed distinct modules that were stimulated in inner or outer bay. Importantly, the network keystone species, which played a fundamental role in community interactions, were strongly affected by N-pollutants. Our results provide a systematic understanding of the microbial compositional and functional dynamics in an urbanized coastal estuary, and highlighted the impact of human activities on these communities.
Collapse
Affiliation(s)
- Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yan Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, United States.,Consolidated Core Laboratory, University of Oklahoma, Norman, OK, United States.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yushi Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
17
|
Mai YZ, Lai ZN, Li XH, Peng SY, Wang C. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China. MARINE POLLUTION BULLETIN 2018; 136:309-321. [PMID: 30509812 DOI: 10.1016/j.marpolbul.2018.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 06/09/2023]
Abstract
In this study, we used high-throughput sequencing of 16S rRNA gene amplicons, to investigate the spatio-temporal variation in bacterial communities in surface-waters collected from eight major outlets of the Pearl River Estuary, South China. Betaproteobacteria were the most abundant class among the communities, followed by Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Acidimicrobiia. Generally, alpha-diversity increased in winter communities and the taxonomic diversity of bacterial communities differed with seasonal and spatial differences. Temperature, conductivity, salinity, pH and nutrients were the crucial environmental factors associated with shifts in the bacterial community composition. Furthermore, inferred community functions that were associated with amino acid, carbohydrate and energy metabolisms were lower in winter, whereas the relative abundance of inferred functions associated with membrane transport, bacterial motility proteins, and xenobiotics biodegradation and metabolism, were enriched in winter. These results provide new insights into the dynamics of bacterial communities within estuarine ecosystems.
Collapse
Affiliation(s)
- Yong-Zhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zi-Ni Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Xin-Hui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Song-Yao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
18
|
Wu W, Liu H. Disentangling protist communities identified from DNA and RNA surveys in the Pearl River-South China Sea Continuum during the wet and dry seasons. Mol Ecol 2018; 27:4627-4640. [DOI: 10.1111/mec.14867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/12/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Wenxue Wu
- School of Marine Sciences; Sun Yat-sen University; Zhuhai Guangdong China
- Division of Life Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
| | - Hongbin Liu
- Division of Life Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
- Department of Ocean Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
| |
Collapse
|
19
|
Osterholz H, Kirchman DL, Niggemann J, Dittmar T. Diversity of bacterial communities and dissolved organic matter in a temperate estuary. FEMS Microbiol Ecol 2018; 94:5037919. [DOI: 10.1093/femsec/fiy119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Helena Osterholz
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - David L Kirchman
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Jutta Niggemann
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|