1
|
Mayne G, DeWitt PE, Wen J, Schniedewind B, Dabelea D, Christians U, Hurt KJ. Adiponectin and Glucocorticoids Modulate Risk for Preterm Birth: The Healthy Start Study. J Clin Endocrinol Metab 2025; 110:523-533. [PMID: 38980936 PMCID: PMC12102719 DOI: 10.1210/clinem/dgae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
CONTEXT Adiponectin is a potent uterine tocolytic that decreases with gestational age, suggesting it could be a maternal metabolic quiescence factor. Maternal stress can influence preterm birth risk, and adiponectin levels may be stress responsive. OBJECTIVE We characterized associations between adiponectin and glucocorticoids with preterm birth and modeled their predictive utility. We hypothesized maternal plasma adiponectin and cortisol are inversely related and lower adiponectin and higher cortisol associate with preterm birth. METHODS We performed a nested case-control study using biobanked fasting maternal plasma. We included low-risk singleton pregnancies, and matched 1:3 (16 preterm, 46 term). We quantified high molecular weight (HMW), low molecular weight (LMW), and total adiponectin using an enzyme-linked immunosorbent assay. We validated a high-performance liquid chromatography-tandem mass spectrometry serum assay for use in plasma, to simultaneously measure cortisol, cortisone, and 5 related steroid hormones. We used linear/logistic regression to compare group means and machine learning for predictive modeling. RESULTS The preterm group had lower mean LMW adiponectin (3.07 μg/mL vs 3.81 μg/mL at 15 weeks (w) 0 days (d), P = .045) and higher mean cortisone (34.4 ng/mL vs 29.0 ng/mL at 15w0d, P = .031). The preterm group had lower cortisol to cortisone and lower LMW adiponectin to cortisol ratios. We found HMW adiponectin, cortisol to cortisone ratio, cortisone, maternal height, age, and prepregnancy body mass index most strongly predicted preterm birth (area under the receiver operator curve = 0.8167). In secondary analyses, we assessed biomarker associations with maternal self-reported psychosocial stress. Lower perceived stress was associated with a steeper change in cortisone in the term group. CONCLUSION Overall, metabolic and stress biomarkers are associated with preterm birth in this healthy cohort. We identify a possible mechanistic link between maternal stress and metabolism for pregnancy maintenance.
Collapse
Affiliation(s)
- Gabriella Mayne
- Department of Health & Behavioral Sciences, University of Colorado, Denver, CO 80204, USA
| | - Peter E DeWitt
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer Wen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Björn Schniedewind
- iC42 Clinical Research & Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Uwe Christians
- iC42 Clinical Research & Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Yuen N, Lemaire M, Wilson SL. Cell-free placental DNA: What do we really know? PLoS Genet 2024; 20:e1011484. [PMID: 39652523 PMCID: PMC11627368 DOI: 10.1371/journal.pgen.1011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cell-free placental DNA (cfpDNA) is present in maternal circulation during gestation. CfpDNA carries great potential as a research and clinical tool as it provides a means to investigate the placental (epi)genome across gestation, which previously required invasive placenta sampling procedures. CfpDNA has been widely implemented in the clinical setting for noninvasive prenatal testing (NIPT). Despite this, the basic biology of cfpDNA remains poorly understood, limiting the research and clinical utility of cfpDNA. This review will examine the current knowledge of cfpDNA, including origins and molecular characteristics, highlight gaps in knowledge, and discuss future research directions.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Lemaire
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Samantha L. Wilson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Montoya-Ciriaco N, Hereira-Pacheco S, Estrada-Torres A, Dendooven L, Méndez de la Cruz FR, Gómez-Acata ES, Díaz de la Vega-Pérez AH, Navarro-Noya YE. Maternal transmission of bacterial microbiota during embryonic development in a viviparous lizard. Microbiol Spectr 2023; 11:e0178023. [PMID: 37847033 PMCID: PMC10714757 DOI: 10.1128/spectrum.01780-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE We investigated the presence and diversity of bacteria in the embryos of the viviparous lizard Sceloporus grammicus and their amniotic environment. We compared this diversity to that found in the maternal intestine, mouth, and cloaca. We detected bacterial DNA in the embryos, albeit with a lower bacterial species diversity than found in maternal tissues. Most of the bacterial species detected in the embryos were also found in the mother, although not all of them. Interestingly, we detected a high similarity in the composition of bacterial species among embryos from different mothers. These findings suggest that there may be a mechanism controlling the transmission of bacteria from the mother to the embryo. Our results highlight the possibility that the interaction between maternal bacteria and the embryo may affect the development of the lizards.
Collapse
Affiliation(s)
- Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Stephanie Hereira-Pacheco
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Arturo Estrada-Torres
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Mexico City, Mexico
| | - Fausto R. Méndez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Selene Gómez-Acata
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H. Díaz de la Vega-Pérez
- Consejo Nacional de Ciencia, Humanidades y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala., Tlaxcala, Mexico
| | - Yendi E. Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
4
|
Huang S, Chen J, Cui Z, Ma K, Wu D, Luo J, Li F, Xiong W, Rao S, Xiang Q, Shi W, Song T, Deng J, Yin Y, Tan C. Lachnospiraceae-derived butyrate mediates protection of high fermentable fiber against placental inflammation in gestational diabetes mellitus. SCIENCE ADVANCES 2023; 9:eadi7337. [PMID: 37922350 PMCID: PMC10624355 DOI: 10.1126/sciadv.adi7337] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
Inflammation-associated insulin resistance is a key trigger of gestational diabetes mellitus (GDM), but the underlying mechanisms and effective interventions remain unclear. Here, we report the association of placental inflammation (tumor necrosis factor-α) and abnormal maternal glucose metabolism in patients with GDM, and a high fermentable dietary fiber (HFDF; konjac) could reduce GDM development through gut flora-short-chain fatty acid-placental inflammation axis in GDM mouse model. Mechanistically, HFDF increases abundances of Lachnospiraceae and butyrate, reduces placental-derived inflammation by enhancing gut barrier and inhibiting the transfer of bacterial-derived lipopolysaccharide, and ultimately resists high-fat diet-induced insulin resistance. Lachnospiraceae and butyrate have similar anti-GDM and anti-placental inflammation effects, and they can ameliorate placental function and pregnancy outcome effects probably by dampening placental immune dysfunction. These findings demonstrate the involvement of important placental inflammation-related mechanisms in the progression of GDM and the great potential of HFDFs to reduce susceptibility to GDM through gut-flora-placenta axis.
Collapse
Affiliation(s)
- Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhijuan Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinxi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fuyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Department of Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
- Department of Obstetrics and Gynecology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan 430070, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Sujuan Rao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Quanhang Xiang
- Department of Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan 430070, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Kyathanahalli C, Snedden M, Hirsch E. Is human labor at term an inflammatory condition?†. Biol Reprod 2023; 108:23-40. [PMID: 36173900 PMCID: PMC10060716 DOI: 10.1093/biolre/ioac182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023] Open
Abstract
Parturition at term in normal pregnancy follows a predictable sequence of events. There is some evidence that a state of inflammation prevails in the reproductive tissues during labor at term, but it is uncertain whether this phenomenon is the initiating signal for parturition. The absence of a clear temporal sequence of inflammatory events prior to labor casts doubt on the concept that normal human labor at term is primarily the result of an inflammatory cascade. This review examines evidence linking parturition and inflammation in order to address whether inflammation is a cause of labor, a consequence of labor, or a separate but related phenomenon. Finally, we identify and suggest ways to reconcile inconsistencies regarding definitions of labor onset in published research, which may contribute to the variability in conclusions regarding the genesis and maintenance of parturition. A more thorough understanding of the processes underlying normal parturition at term may lead to novel insights regarding abnormal labor, including spontaneous preterm labor, preterm premature rupture of the fetal membranes, and dysfunctional labor, and the role of inflammation in each.
Collapse
Affiliation(s)
- Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Madeline Snedden
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
MAYNE GB, DeWITT PE, RINGHAM B, WARRENER AG, CHRISTIANS U, DABELEA D, HURT KJ. A Nested Case-Control Study of Allopregnanolone and Preterm Birth in the Healthy Start Cohort. J Endocr Soc 2022; 7:bvac179. [PMID: 36632210 PMCID: PMC9825133 DOI: 10.1210/jendso/bvac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Context Chronic stress is a risk factor for preterm birth; however, objective measures of stress in pregnancy are limited. Maternal stress biomarkers may fill this gap. Steroid hormones and neurosteroids such as allopregnanolone (ALLO) play important roles in stress physiology and pregnancy maintenance and therefore may be promising for preterm birth prediction. Objective We evaluated maternal serum ALLO, progesterone, cortisol, cortisone, pregnanolone, and epipregnanolone twice in gestation to evaluate associations with preterm birth. Methods We performed a nested case-control study using biobanked fasting serum samples from the Healthy Start prebirth cohort. We included healthy women with a singleton pregnancy and matched preterm cases with term controls (1:1; N = 27 per group). We used a new HPLC-tandem mass spectrometry assay to quantify ALLO and five related steroids. We used ANOVA, Fisher exact, χ2, t test, and linear and logistic regression as statistical tests. Results Maternal serum ALLO did not associate with preterm birth nor differ between groups. Mean cortisol levels were significantly higher in the preterm group early in pregnancy (13w0d-18w0d; P < 0.05) and higher early pregnancy cortisol associated with increased odds of preterm birth (at 13w0d; odds ratio, 1.007; 95% CI, 1.0002-1.014). Progesterone, cortisone, pregnanolone, and epipregnanolone did not associate with preterm birth. Conclusion The findings from our pilot study suggest potential utility of cortisol as a maternal serum biomarker for preterm birth risk assessment in early pregnancy. Further evaluation using larger cohorts and additional gestational timepoints for ALLO and the other analytes may be informative.
Collapse
Affiliation(s)
- Gabriella B MAYNE
- Department of Anthropology, University of Colorado, Denver, CO 80204, USA
| | - Peter E DeWITT
- Department of Pediatrics Informatics and Data Science, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brandy RINGHAM
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna G WARRENER
- Department of Anthropology, University of Colorado, Denver, CO 80204, USA
| | - Uwe CHRISTIANS
- iC42 Clinical Research & Development, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana DABELEA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Joseph HURT
- Divisions of Maternal Fetal Medicine and Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
8
|
Phillippe M. Telomeres, oxidative stress, and timing for spontaneous term and preterm labor. Am J Obstet Gynecol 2022; 227:148-162. [PMID: 35460626 DOI: 10.1016/j.ajog.2022.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
Telomeres are nucleoprotein complexes located at the distal ends of chromosomes. In adults, progressive telomere shortening occurs throughout the lifetime and is thought to contribute to progressive aging, physiological senescence, multiorgan dysfunction, and ultimately, death. As discussed in this review, multiple lines of evidence provide support for the biological plausibility that a telomere-based clock mechanism also determines the length of gestation, leading to the onset of labor (parturition). After telomere expansion at the beginning of pregnancy, the telomere lengths in the gestational tissues (ie, the placenta and fetal membranes) progressively shorten throughout the remainder of pregnancy. The rate of telomere shortening can be accelerated by conditions that affect the mother and result in oxidative stress. Preterm births in the United States are associated with multiple risk factors that are linked with increased oxidative stress. Antioxidant vitamins (ie, vitamins E and C) mitigate the effects of oxidative stress and delay or prevent telomere shortening. Clinical trials with vitamins E and C and with multivitamins started during the periconception period have been associated with reduced rates of preterm births. In the United States, African-American women have a 2-3-fold higher rate of preterm birth. African-American women have multiple risk factors for premature birth, all of which are distinct and potentially additive with regard to epigenetic telomere shortening. The "weathering effect" is the hypothesis to explain the increased rates of chronic illness, disabilities, and early death observed in African-Americans. With regard to pregnancy, accelerated weathering with the associated telomere shortening in the gestational tissues would not only explain the preterm birth disparity but could also explain why highly educated, affluent African-American women continue to have an increased rate of preterm birth. These studies suggest that the racial disparities in preterm birth are potentially mediated by telomere shortening produced by lifetime or even generational exposure to the effects of systemic racism and socioeconomic marginalization. In conclusion, this review presents multiple lines of evidence supporting a novel hypothesis regarding the biological clock mechanism that determines the length of pregnancy, and it opens the possibility of new approaches to prevent or reduce the rate of spontaneous preterm birth.
Collapse
|
9
|
Chiu RWK, Lo YMD. Cell-free fetal DNA coming in all sizes and shapes. Prenat Diagn 2021; 41:1193-1201. [PMID: 33882153 PMCID: PMC8518878 DOI: 10.1002/pd.5952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023]
Abstract
Cell‐free fetal DNA analysis has an established role in prenatal assessments. It serves as a source of fetal genetic material that is accessible non‐invasively from maternal blood. Through the years, evidence has accumulated to show that cell‐free fetal DNA molecules are derived from placental tissues, are mainly of short DNA fragments and have rapid post‐delivery clearance profiles. But questions regarding how they come to being short molecules from placental cells and in which physical forms do they exist remained largely unanswered until recently. We now know that the distributions of ending sites of cell‐free DNA molecules are non‐random across the genome and bear correlations with the chromatin structures of cells from which they have originated. Such an insight offers ways to deduce the tissue‐of‐origin of these molecules. Besides, the physical nature and sequence characteristics of the ends of each cell‐free DNA molecule provide tell‐tale signs of how the DNA fragmentation processes are orchestrated by nuclease enzymes. These realizations offered opportunities to develop methods for enriching cell‐free fetal DNA to facilitate non‐invasive prenatal diagnostics. Here we aimed to collate what is known about the biological and physical characteristics of cell‐free fetal DNA into one article and explain the implications of these observations.
What’s already known about this topic?
Cell‐free fetal DNA originates from placental tissues and circulates in maternal plasma as a minor population in the form of short fragments which disappears from maternal circulation rapidly after delivery.
What does this study add?
Cell‐free DNA studies at the per molecule per nucleotide level documented the detailed genomic distributions, fragment end characteristics and physical forms of cell‐free DNA unveiling the fine feature differences between maternal and fetal DNA as well as their intricate relationships with the chromatin structure of the cells‐of‐origin. These studies have substantially bridged the knowledge gaps in the biology of cell‐free fetal DNA and may provide insights on how to enhance prenatal tests based on their analyses.
Collapse
Affiliation(s)
- Rossa W K Chiu
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
10
|
van Boeckel SR, Macpherson H, Norman JE, Davidson DJ, Stock SJ. Inflammation-mediated generation and inflammatory potential of human placental cell-free fetal DNA. Placenta 2020; 93:49-55. [PMID: 32250739 PMCID: PMC7146537 DOI: 10.1016/j.placenta.2020.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022]
Abstract
Introduction Circulating DNA can be pro-inflammatory when detected by leukocytes via toll-like receptor 9 (TLR9). Cell-free fetal DNA (cff-DNA) of placental origin, circulates in pregnancy, and increased concentrations are seen in conditions associated with placental and maternal inflammation such as pre-eclampsia. However, whether cff-DNA is directly pro-inflammatory in pregnant women and what regulates cff-DNA levels in pregnancy are unknown. Methods Using a human term placental explant model, we examined whether induction of placental inflammation can promote cff-DNA release, and the capacity of this cff-DNA to stimulate peripheral blood mononuclear cells (PBMCs) from pregnant women. Results We demonstrate lipopolysaccharide (LPS)-mediated inflammation in placental explants and induced apoptosis after 24 h. However, this did not increase levels of cff-DNA generation compared to controls. Furthermore, the methylation status of the cff-DNA, was not altered by LPS-induced inflammation. Cff-DNA did not elicit production of inflammatory cytokines from PBMCs, in contrast to exposure to LPS or the TLR9 agonist CpG-ODN. Finally, we demonstrate that cff-DNA acquired directly from pregnant women did not differ in methylation status from placental extracted DNA, or from placental explant generated cell-free DNA, and that, unlike Escherichia coli DNA, this cff-DNA has a low level of unmethylated CpG sequences. Discussion Our data suggest that placental inflammation does not increase release of cff-DNA and that placental cff-DNA is not pro-inflammatory to circulating PBMCs. It thus seems unlikely that high levels of cff-DNA are either a direct consequence or cause of inflammation observed in obstetric complications. Cell-free fetal DNA was generated using a human placental explant model. Lipopolysaccharide causes inflammation and cell death in placental explants. Inflammation does not increase cell-free fetal DNA release from placental explants. Generated DNA does not elicit inflammation from blood cells from pregnant women.
Collapse
Affiliation(s)
- Sara R van Boeckel
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom.
| | - Heather Macpherson
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Donald J Davidson
- University of Edinburgh Centre for Inflammation Research, QMRI, Edinburgh, United Kingdom
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom; Usher Institute, University of Edinburgh NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh, EH16 4UX, United Kingdom
| |
Collapse
|
11
|
Cell-Free Fetal DNA Increases Prior to Labor at Term and in a Subset of Preterm Births. Reprod Sci 2020; 27:218-232. [PMID: 32046392 DOI: 10.1007/s43032-019-00023-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023]
Abstract
Cell-free fetal DNA in the maternal circulation has been associated with the onset of labor at term. Moreover, clinical studies have suggested that cell-free fetal DNA has value to predict pregnancy complications such as spontaneous preterm labor leading to preterm birth. However, a mechanistic link between cell-free fetal DNA and preterm labor and birth has not been established. Herein, using an allogeneic mouse model in which a paternal green fluorescent protein (GFP) can be tracked in the fetuses, we established that cell-free fetal DNA (Egfp) concentrations were higher in late gestation compared to mid-pregnancy and were maintained at increased levels during the onset of labor at term, followed by a rapid decrease after birth. A positive correlation between cell-free fetal DNA concentrations and the number of GFP-positive pups was also observed. The increase in cell-free fetal DNA concentrations prior to labor at term was not linked to a surge in any specific cytokine/chemokine; yet, specific chemokines (i.e., CCL2, CCL7, and CXCL2) increased as gestation progressed and maintained elevated levels in the postpartum period. In addition, cell-free fetal DNA concentrations increased prior to systemic inflammation-induced preterm birth, which was associated with a strong cytokine response in the maternal circulation. However, cell-free fetal DNA concentrations were not increased prior to intra-amniotic inflammation-induced preterm birth, but in this model, a mild inflammatory response was observed in the maternal circulation. Collectively, these findings suggest that an elevation in cell-free fetal DNA concentrations in the maternal circulation precedes the physiological process of labor at term and the pathological process of preterm labor linked with systemic inflammation, but not that associated with intra-amniotic inflammation.
Collapse
|
12
|
Phillippe M, Sawyer MR, Edelson PK. The telomere gestational clock: increasing short telomeres at term in the mouse. Am J Obstet Gynecol 2019; 220:496.e1-496.e8. [PMID: 30690015 DOI: 10.1016/j.ajog.2019.01.218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The biologic mechanism(s) regulating the length of gestation are currently poorly understood. After peaking at the blastocyst stage, the average telomere lengths have been reported to shorten during the remainder of gestation in the placenta and fetal membranes in both human and mouse pregnancies, thereby providing a potential countdown biologic clock. These previous studies have reported changes in the average telomere lengths, whereas it has now been shown that the shortest telomeres, not the average telomere lengths, are the mediators of telomere dysfunction which limits cellular survival and results in aging. OBJECTIVE These studies sought to assess for the first time a significant increase in short telomeres in the fetal membrane and placental tissue near the end of pregnancy in the mouse. STUDY DESIGN Placental and fetal membrane tissues were harvested from timed-pregnant CD-1 mice on gestational days 14-18 prior to the onset of parturition. Telomere lengths were determined for 30 DNA samples (5 each for gestational days 14, 16, and 18 from placentas and fetal membranes) using a commercial high-throughput quantitative fluorescence in situ hybridization technique. Quantitative measurements of representative short telomeres (ie, 3 kb and 5 kb telomere fragments) were performed for 29-30 DNA samples (4-7 each for gestational days 14, 15, 16, 17, and 18 from placentas, fetal membranes, and maternal liver) using a real-time quantitative polymerase chain reaction modification of the classic telomere restriction fragment technique. RESULTS The median telomere lengths of fetal membrane tissue decreased from gestational days 14-18 (18,705-16,364 kb) and were significantly shorter than telomeres in placental tissue (P < .05). Representative histograms for the distribution of telomere lengths in mouse fetal membranes (as shown in the Figure) confirm a curve skewed to the left (toward shorter telomere lengths).The relative quantity of the representative short telomeres (ie, 3 kb and 5 kb fragments) increased significantly as gestation progressed in both placenta and fetal membrane tissue. In gestational day 18 fetal membranes, the relative quantity of 3 kb and 5 kb telomeres increased 5.5-fold and 9.3-fold compared with gestational day 14 tissues (P < .05). In placental tissue the relative quantity of 3 kb and 5 kb telomeres increased 9.3-fold and 7.8-fold compared with gestational day 14 tissues (P < .05). Studies performed using adult liver tissue demonstrated little variation of the representative short telomeres and no significant difference between the nonpregnant and pregnant samples. CONCLUSION These mouse studies have demonstrated that the distribution of telomere lengths in fetal membrane and placental tissues are skewed toward shorter lengths and that the quantity of representative short telomeres increase significantly prior to parturition. The telomere gestational clock is a novel hypothesis supported by several preliminary mouse studies and interesting associations in human pregnancies between maternal conditions and telomere lengths. (eg, stress, education, pollution, neighborhood quality, and race). As such, the current hypothesis generating study provides a foundation for future research regarding the potential role for a telomere-based biologic clock that determines gestational length in human and other mammalian pregnancies.
Collapse
|
13
|
Abstract
INTRODUCTION Cell-free "fetal" DNA is released from the placenta. Because the fetal membranes also arise from the trophectoderm layer of the blastocyst, these studies sought to test the hypothesis that the membranes also release cell-free DNA (cfDNA). METHODS Fetal membranes were harvested from pregnant CD-1 mice and cultured in 12-well plates containing media alone or with staurosporine and thapsigargin (apoptosis stimulators), Q-VD-OPh (caspase inhibitor), Trolox (vitamin E analog), and lipopolysaccharide and tumor necrosis factor α (TNFα; inflammatory mediators). The cfDNA in the media was extracted, quantified, and normalized for tissue weight. Media was used for a lactate dehydrogenase (LDH) assay. Membrane homogenates were used to assess activated caspase levels and the expression of DNA fragmentation factor B (DFFB) and BAX proteins. 5-Methylcytosine was assessed using a 5-mC DNA enzyme-linked immunosorbent assay. The cfDNA was used to stimulate interleukin 6 (IL6) release by J774A.1 mouse macrophage cells. RESULTS Increased cfDNA release at 6 and 21 hours occurred in parallel with increasing LDH levels. The cfDNA concentrations were significantly suppressed by Q-VD-OPh and Trolox and increased by thapsigargin and TNFα. Increased caspase activity was suppressed by Q-VD-OPh and increased by TNFα, thapsigargin, and staurosporine. The expression of BAX and DFFB proteins significantly increased by 21 hours. 5-Methylcytosine levels were significantly lower in fetal membranes and placentas and below detectable in the cfDNA released by the explants. The cfDNA-stimulated IL6 release by macrophage cells was suppressed by chloroquine, a Toll-like receptor 9 (TLR9) inhibitor. CONCLUSIONS These studies have confirmed cfDNA release by the mouse fetal membranes; cfDNA was markedly hypomethylated and a robust stimulator of TLR9.
Collapse
Affiliation(s)
- Michala R Sawyer
- Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, 55 Fruit Street, Thier Bldg. 9-911, Boston, MA, 02114, USA
| | - Sharareh Adeli
- Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, 55 Fruit Street, Thier Bldg. 9-911, Boston, MA, 02114, USA
| | - Mark Phillippe
- Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, 55 Fruit Street, Thier Bldg. 9-911, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Dabi Y, Guterman S, Jani JC, Letourneau A, Demain A, Kleinfinger P, Lohmann L, Costa JM, Benachi A. Autoimmune disorders but not heparin are associated with cell-free fetal DNA test failure. J Transl Med 2018; 16:335. [PMID: 30509296 PMCID: PMC6276207 DOI: 10.1186/s12967-018-1705-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Background Recent studies have suggested a possible association between heparin treatment at the time of cell-free DNA (cfDNA) testing and a non-reportable result. However, these studies lack of proper methodology and had a low level of proof to firmly incriminate heparin. Our objective was to investigate further the relationship between heparin treatment and cfDNA test results. Methods Two complementary approaches were used for the demonstration. First, we conducted a retrospective analysis of a cohort of patients with a singleton pregnancy, screened for aneuploidies by using cfDNA, but with a non-reportable cfDNA result. We included patients between 2013 and 2016 including the patients from the DEPOSA study as controls. CfDNA testing was performed by massive parallel sequencing by using a whole-genome approach. A multiple logistic regression was used to account for the influence of the variables included. Second, we performed in vitro experiments on mimic samples containing increased concentrations of heparin. Results Of 9867 singleton pregnancies tested during the inclusion period, 58 (0.59%) had a non-reportable result and were compared to 295 control patients. Fifteen (25.9%) and 20 (6.8%) patients were treated with heparin in the group with a non-reportable cfDNA result and with a successful assay, respectively. In multivariable analysis, an increased calculated risk at the first-trimester combined screening (OR 28.8 CI 9.76–85.15, p < 0.001), maternal weight (OR 1.03, CI 1.01–1.06, p = 0.01), and the presence of an autoimmune disease (OR 10.38, CI 1.62–66.53, p = 0.01) were the only characteristics associated with a non-reportable result. In vitro experiments showed that heparin had no impact on fetal fraction measurement or the final result, no matter what the dose tested. Conclusions Treatment by heparin had no impact on cfDNA screening test for aneuploidies, while the presence of an autoimmune disorder is an independent predictor of a non-reportable result.
Collapse
Affiliation(s)
- Yohann Dabi
- Service de Gynécologie-Obstétrique, AP-HP, Hôpital Antoine Béclère, Université Paris Sud, 154 rue de la Porte de Trivaux, 92140, Clamart, France.
| | - Sarah Guterman
- Service de Gynécologie-Obstétrique, AP-HP, Hôpital Antoine Béclère, Université Paris Sud, 154 rue de la Porte de Trivaux, 92140, Clamart, France
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandra Letourneau
- Service de Gynécologie-Obstétrique, AP-HP, Hôpital Antoine Béclère, Université Paris Sud, 154 rue de la Porte de Trivaux, 92140, Clamart, France
| | - Adèle Demain
- Service de Gynécologie-Obstétrique, AP-HP, Hôpital Antoine Béclère, Université Paris Sud, 154 rue de la Porte de Trivaux, 92140, Clamart, France
| | | | - Laurence Lohmann
- Human Genetics Department, Laboratoire CERBA, Saint-Ouen l'Aumône, France
| | - Jean-Marc Costa
- Human Genetics Department, Laboratoire CERBA, Saint-Ouen l'Aumône, France
| | - Alexandra Benachi
- Service de Gynécologie-Obstétrique, AP-HP, Hôpital Antoine Béclère, Université Paris Sud, 154 rue de la Porte de Trivaux, 92140, Clamart, France
| |
Collapse
|
15
|
Mhatre M, Adeli S, Norwitz E, Craigo S, Phillippe M, Edlow A. The Effect of Maternal Obesity on Placental Cell-Free DNA Release in a Mouse Model. Reprod Sci 2018; 26:1218-1224. [PMID: 30453834 DOI: 10.1177/1933719118811647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The fetal fraction of cell-free DNA (cfDNA) in maternal plasma is decreased in obese women. The underlying mechanism is not well understood. The amount of cfDNA released from the placenta has not been directly examined in maternal obesity. OBJECTIVE We sought to quantify release of cfDNA from the placenta and fetal membranes in maternal diet-induced obesity using explant cultures in an established mouse model. STUDY DESIGN C57BL6/J females were fed either 60% high-fat diet or 10% fat-matched control diet for 14 weeks prepregnancy and throughout gestation. Placentas and fetal membranes were collected on e18 and randomly allocated to time 0-, 1-, or 6-hour culture times. The CfDNA was isolated from culture media, quantified, and normalized to tissue weight. RESULTS Placentas from obese dams released significantly less cfDNA compared to those of lean dams at time 0 (45.8 ± 4.3 ng/mg vs 65.6 ± 7.9 ng/mg, P = .02). Absolute cfDNA levels increased with longer placental culture, with no significant differences between obese and lean dams at 1 and 6 hours. Membranes released significantly less cfDNA than did placentas at every time point. CONCLUSIONS Maternal obesity is associated with decreased release of cfDNA from the placenta compared to lean controls immediately after tissue harvest. This may provide an alternative explanation for the lower fetal fraction of cfDNA noted in maternal obesity.
Collapse
Affiliation(s)
- Mohak Mhatre
- 1 Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, USA
| | - Sharareh Adeli
- 2 Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Errol Norwitz
- 1 Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, USA.,3 Tufts University School of Medicine, Boston, MA, USA
| | - Sabrina Craigo
- 1 Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, USA.,3 Tufts University School of Medicine, Boston, MA, USA
| | - Mark Phillippe
- 2 Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA.,4 Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA. Edlow is now with Vincent Center for Reproductive Biology and Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA, and Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Andrea Edlow
- 1 Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, USA.,3 Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
16
|
Kacerovsky M, Vlkova B, Musilova I, Andrys C, Pliskova L, Zemlickova H, Stranik J, Halada P, Jacobsson B, Celec P. Amniotic fluid cell-free DNA in preterm prelabor rupture of membranes. Prenat Diagn 2018; 38:1086-1095. [PMID: 30276834 DOI: 10.1002/pd.5366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION We evaluated the levels of cell-free nuclear DNA (nDNA) and cell-free mitochondrial DNA (mtDNA) in the amniotic fluid supernatant from pregnancies complicated by preterm prelabor rupture of membranes (PPROM) based on evidence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). MATERIAL AND METHODS A total of 155 women with PPROM were included in this study. Amniotic fluid samples were obtained by transabdominal amniocentesis. The levels of cell-free nDNA and mtDNA in the amniotic fluid supernatant were assessed and quantified by real-time polymerase chain reaction. RESULTS The levels of cell-free nDNA and mtDNA were higher in women with MIAC and IAI than in women without these conditions (nDNA: with MIAC: median 3.9 × 104 genome equivalent [GE]/mL vs without MIAC: median 1.2 × 104 GE/mL, with IAI: median: 5.3 × 104 GE/mL vs without IAI: median 1.2 × 104 GE/mL; mtDNA: with MIAC: median 9.2 × 105 GE/mL vs without MIAC: median 2.5 × 105 GE/mL, with IAI: median 1.1 × 106 GE/mL vs without IAI: median 2.5 × 105 ; all P values ≤ 0.01). Women with the microbial-associated IAI showed the highest levels of cell-free nDNA and mtDNA. CONCLUSIONS Cell-free nDNA and mtDNA are constituents of the amniotic fluid supernatant from PPROM pregnancies. Both cell-free nDNA and mtDNA are involved in the intra-amniotic inflammatory response in women with PPROM.
Collapse
Affiliation(s)
- Marian Kacerovsky
- Department of Obstetrics and Gynecology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Barbora Vlkova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Helena Zemlickova
- Institute of Clinical Microbiology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petr Halada
- Department of Obstetrics and Gynecology, Charles University, Faculty of Medicine Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
17
|
Cheng SB, Davis S, Sharma S. Maternal-fetal cross talk through cell-free fetal DNA, telomere shortening, microchimerism, and inflammation. Am J Reprod Immunol 2018; 79:e12851. [PMID: 29577468 PMCID: PMC5908740 DOI: 10.1111/aji.12851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
There exists a strong correlation between unscheduled inflammation at the maternal-fetal interface and the continuum of pregnancy complications. In normal pregnancy, immunological tolerance is established to protect the semi-allogeneic fetus. There has been extensive research on how the immunity, endovascular trophoblast migration, and hormonal nexus are orchestrated during pregnancy at the maternal-fetal interface to program a normal pregnancy outcome. It is not clear what contributes to the plasticity of uterine immune tolerance, fetal survial, and long-term post-partum health of the mother and the offspring. Old and new concepts have reemerged and emerged that include cell-free fetal DNA (cffDNA), telomere shortening, microchimerism involving bidirectional migration of maternal and fetal cells, and pregnancy as a stress factor. The question is how these pathways converge in a gestational age-dependent manner to contribute to the health of the mother and the offspring later in life and respond to an array of inflammatory challenges. In this Review, we provide pertinent discussion on maternal-fetal cross talk through cffDNA, telomere shortening, and microchimerism in the context of inflammatory and anti-inflammatory settings, particularly how these pathways lead to normal and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pediatrics, Women and Infants’ Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sarah Davis
- Department of Obstetrics and Gynecology, Women and Infants’ Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants’ Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|