1
|
Wolkoff P. Formaldehyde and asthma: a plausibility? Arch Toxicol 2025; 99:865-885. [PMID: 39828805 DOI: 10.1007/s00204-024-03946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Formaldehyde (FA) is a ubiquitous indoor air pollutant emitted from construction, consumer, and combustion-related products, and ozone-initiated reactions with reactive organic volatiles. The derivation of an indoor air quality guideline for FA by World Health Organization in 2010 did not find convincing evidence for bronchoconstriction-related reactions as detrimental lung function. Causal relationship between FA and asthma has since been advocated in meta-analyses of selected observational studies. In this review, findings from controlled human and animal exposure studies of the airways, data of FA retention in the respiratory tract, and observational studies of reported asthma applied in meta-analyses are analyzed together for coherence of direct association between FA and asthma. New information from both human and animal exposure studies are evaluated together with existing literature and assessed across findings from observational studies and associated meta-analyses thereof. Retention of FA in the upper airways is > 90% in agreement with mice exposure studies that only extreme FA concentrations can surpass trachea, travel to the lower airways, and cause mild bronchoconstriction. However, taken together, detrimental lung function effects in controlled human exposure studies have not been observed, even at FA concentrations up 4 ppm (5 mg/m3), and in agreement with controlled mice exposure studies. Typical indoor FA concentrations in public buildings and homes are far below a threshold for sensory irritation in the upper airways, based on controlled human exposure studies, to induce sensory-irritative sensitization nor inflammatory epithelial damage in the airways. Analysis of the observational heterogeneous studies applied in the meta-analyses suffers from several concomitant multifactorial co-exposures, which invalidates a direct association with asthma, thus the outcome of meta-analyses. The evidence of a direct causal relationship between FA and asthma is insufficient from an experimental viewpoint that includes retention data in the upper airways and controlled animal and human exposure studies. Taken together, a coherence of controlled experimental findings with individual observational studies and associated meta-analyses, which suffer from caveats, is absent. Further, lack of identified evidence of FA-IgE sensitization in both experimental studies and observational studies agrees with indoor FA concentrations far below threshold for sensory irritation. The assessment of experimental data with uncontrolled observational studies in meta-analyses is incompatible with a direct causal relationship between FA and asthma or exacerbation thereof due to lack of coherence and plausibility.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
2
|
Austin HK, Schoenberg E. A Comprehensive Literature Review on the Effects of Formaldehyde on the Upper Respiratory Tract. Cureus 2024; 16:e59743. [PMID: 38840986 PMCID: PMC11151271 DOI: 10.7759/cureus.59743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Prolonged exposure to indoor air pollutants at high concentrations can have adverse health effects on the respiratory system of individuals who spend most of their time indoors. Formaldehyde (FA) is a common indoor air pollutant because of its extensive use in household products such as cleaners, floorings, and furnishings. As a chemical, FA is highly water soluble and reactive. When its airborne form is inhaled, it is mainly absorbed in the upper airways. FA has been extensively studied for its carcinogenic effects, but it can also cause inflammation in the upper airways. The objective of the current review was to assess the secondary effects of such inflammation and how it can contribute to an increased risk for upper respiratory infections, which are mostly caused by viruses. A rigorous literature review was conducted through gathering, reading, and analyzing relevant literature, including peer-reviewed articles published after 1990 and seminal literature regardless of publication date. Findings from the review provide a greater understanding of the outcomes of FA exposure, the potential accumulative damage to the upper respiratory tract, and the associated increased risk for acute infections of the upper respiratory tract. This information can help in the development and enforcement of stricter regulations for furniture and building materials for household-related products to limit exposure to indoor pollutants such as FA.
Collapse
Affiliation(s)
- Harriet Kaye Austin
- Otolaryngology, University of Central Florida College of Medicine, Orlando, USA
| | - Erik Schoenberg
- Otolaryngology, HCA Florida Orlando Allergy and ENT, Sanford, USA
| |
Collapse
|
3
|
Ma H, Lou K, Shu Q, Song X, Xu H. Aldehyde dehydrogenase 2 deficiency reinforces formaldehyde-potentiated pro-inflammatory responses and glycolysis in macrophages. J Biochem Mol Toxicol 2024; 38:e23518. [PMID: 37638564 DOI: 10.1002/jbt.23518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) deficiency caused by genetic variant is present in more than 560 million people of East Asian descent, which can be identified by apparent facial flushing from acetaldehyde accumulation after consuming alcohol. Recent findings indicated that ALDH2 also played a critical role in detoxification of formaldehyde (FA). Our previous studies showed that FA could enhance macrophagic inflammatory responses through the induction of HIF-1α-dependent glycolysis. In the present study, pro-inflammatory responses and glycolysis promoted by 0.5 mg/m3 FA were found in mice with Aldh2 gene knockout, which was confirmed in the primary macrophages isolated from Aldh2 gene knockout mice treated with 50 μM FA. FA at 50 and 100 μM also induced stronger dose-dependent increases of pro-inflammatory responses and glycolysis in RAW264.7 murine macrophages with knock-down of ALDH2, and the enhanced effects induced by 50 μM FA was alleviated by inhibition of HIF-1α in RAW264.7 macrophages with ALDH2 knock-down. Collectively, these results clearly demonstrated that ALDH2 deficiency reinforced pro-inflammatory responses and glycolysis in macrophages potentiated by environmentally relevant concentration of FA, which may increase the susceptibility to inflammation and immunotoxicity induced by environmental FA exposure.
Collapse
Affiliation(s)
- Huijuan Ma
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Kaiyan Lou
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Qi Shu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, China
| | - Huan Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Chen F, Wang N, Tian X, Su J, Qin Y, He R, He X. The Protective Effect of Mangiferin on Formaldehyde-Induced HT22 Cell Damage and Cognitive Impairment. Pharmaceutics 2023; 15:1568. [PMID: 37376018 PMCID: PMC10303760 DOI: 10.3390/pharmaceutics15061568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Formaldehyde (FA) has been found to induce major Alzheimer's disease (AD)-like features including cognitive impairment, Aβ deposition, and Tau hyperphosphorylation, suggesting that it may play a significant role in the initiation and progression of AD. Therefore, elucidating the mechanism underlying FA-induced neurotoxicity is crucial for exploring more comprehensive approaches to delay or prevent the development of AD. Mangiferin (MGF) is a natural C-glucosyl-xanthone with promising neuroprotective effects, and is considered to have potential in the treatment of AD. The present study was designed to characterize the effects and mechanisms by which MGF protects against FA-induced neurotoxicity. The results in murine hippocampal cells (HT22) revealed that co-treatment with MGF significantly decreased FA-induced cytotoxicity and inhibited Tau hyperphosphorylation in a dose-dependent manner. It was further found that these protective effects were achieved by attenuating FA-induced endoplasmic reticulum stress (ERS), as indicated by the inhibition of the ERS markers, GRP78 and CHOP, and downstream Tau-associated kinases (GSK-3β and CaMKII) expression. In addition, MGF markedly inhibited FA-induced oxidative damage, including Ca2+ overload, ROS generation, and mitochondrial dysfunction, all of which are associated with ERS. Further studies showed that the intragastric administration of 40 mg/kg/day MGF for 6 weeks significantly improved spatial learning ability and long-term memory in C57/BL6 mice with FA-induced cognitive impairment by reducing Tau hyperphosphorylation and the expression of GRP78, GSK-3β, and CaMKII in the brains. Taken together, these findings provide the first evidence that MGF exerts a significant neuroprotective effect against FA-induced damage and ameliorates mice cognitive impairment, the possible underlying mechanisms of which are expected to provide a novel basis for the treatment of AD and diseases caused by FA pollution.
Collapse
Affiliation(s)
- Fan Chen
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Na Wang
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Xinyan Tian
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Juan Su
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Yan Qin
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100045, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100045, China
| | - Xiaping He
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| |
Collapse
|
5
|
Eden MJ, Matz J, Garg P, Gonzalez MP, McElderry K, Wang S, Gollner MJ, Oakes JM, Bellini C. Prolonged smoldering Douglas fir smoke inhalation augments respiratory resistances, stiffens the aorta, and curbs ejection fraction in hypercholesterolemic mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160609. [PMID: 36470384 PMCID: PMC10699119 DOI: 10.1016/j.scitotenv.2022.160609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
While mounting evidence suggests that wildland fire smoke (WFS) inhalation may increase the burden of cardiopulmonary disease, the occupational risk of repeated exposure during wildland firefighting remains unknown. To address this concern, we evaluated the cardiopulmonary function in mice following a cumulative exposure to lab-scale WFS equivalent to a mid-length wildland firefighter (WLFF) career. Dosimetry analysis indicated that 80 exposure hours at a particulate concentration of 22 mg/m3 yield in mice the same cumulative deposited mass per unit of lung surface area as 3600 h of wildland firefighting. To satisfy this condition, male Apoe-/- mice were whole-body exposed to either air or smoldering Douglas fir smoke (DFS) for 2 h/day, 5 days/week, over 8 consecutive weeks. Particulate size in DFS fell within the respirable range for both mice and humans, with a count median diameter of 110 ± 20 nm. Expiratory breath hold in mice exposed to DFS significantly reduced their minute volume (DFS: 27 ± 4; Air: 122 ± 8 mL/min). By the end of the exposure time frame, mice in the DFS group exhibited a thicker (DFS: 109 ± 3; Air: 98 ± 3 μm) and less distensible (DFS: 23 ± 1; Air: 28 ± 1 MPa-1) aorta with reduced diastolic blood augmentation capacity (DFS: 53 ± 2; Air: 63 ± 2 kPa). Cardiac magnetic resonance imaging further revealed larger end-systolic volume (DFS: 14.6 ± 1.1; Air: 9.9 ± 0.9 μL) and reduced ejection-fraction (DFS: 64.7 ± 1.0; Air: 75.3 ± 0.9 %) in mice exposed to DFS. Consistent with increased airway epithelium thickness (DFS: 10.4 ± 0.8; Air: 7.6 ± 0.3 μm), airway Newtonian resistance was larger following DFS exposure (DFS: 0.23 ± 0.03; Air: 0.20 ± 0.03 cmH2O-s/mL). Furthermore, parenchyma mean linear intercept (DFS: 36.3 ± 0.8; Air: 33.3 ± 0.8 μm) and tissue thickness (DFS: 10.1 ± 0.5; Air: 7.4 ± 0.7 μm) were larger in DFS mice. Collectively, mice exposed to DFS manifested early signs of cardiopulmonary dysfunction aligned with self-reported events in mid-career WLFFs.
Collapse
Affiliation(s)
- Matthew J Eden
- Department of Bioengineering, Northeastern University, MA, USA
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, MA, USA
| | - Priya Garg
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | | | - Siyan Wang
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Michael J Gollner
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, MA, USA.
| |
Collapse
|
6
|
Zhang Q, Zhu W, Zou Z, Yu W, Gao P, Wang Y, Chen J. A Preliminary Study in Immune Response of BALB/c and C57BL/6 Mice with a Locally Allergic Rhinitis Model. Am J Rhinol Allergy 2023:19458924231157619. [PMID: 36797980 DOI: 10.1177/19458924231157619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND BALB/c and C57BL/6 mouse strains are commonly used in allergy research. The current study investigated the immunological differences between these two mouse strains with a locally allergic rhinitis model. METHODS Eighteen BALB/c and eighteen C57BL/6 mice received different doses of ovalbumin (OVA) intranasally for eight weeks (each mouse strain has three subgroups, 25 mg/mL group, 0.25 mg/mL group, and the PBS group). The allergic symptoms, OVA-specific serum antibody (IgE, IgG1, IgG2a), cytokines (IL-4, IFN-γ, IL-10) in the splenic culture supernatant, infiltrating eosinophils and goblet cells in local nasal mucosa were measured. RNA-seq technology was applied to detect differential gene expression in the local nasal mucosa. RESULTS With the same dose of OVA stimulation, the exacerbation of allergic symptoms was more pronounced in C57BL/6 than in BALB/c. BALB/c serum IgE, IgG1, and IgG2a gradually increased, and C57BL/6 produced fewer serum antibodies IgE and IgG1, while IgG2a never increased. BALB/c spleen cell culture supernatant IL-4 and IL-10 increased with increasing dose, and IFN-γ increased significantly in the intermediate dose group, while IL-4, IL-10, and IFN-γ did not increase in C57BL/6. The infiltration of eosinophils and goblet cells in both mice was proportional to the dose, while C57BL/6 was elevated more than BALB/c. RNA-seq suggested that the innate immune response, immune system process function, Jun kinase (JNK) pathway, and MAPKK pathway were upregulated in C57BL/6 compared to BALB/c. The core genes responsible for the differential immune response in both mice with allergic rhinitis were Kng2, Kng1, Gnb3, Lpar3, Lpar1, Pik3r1, Pf4, Apob, Rps9, and Fbxo2. CONCLUSION There are significant differences in the immunologic responses between BALB/c mice and C57BL/6 mice. BALB/c mice developed mild local allergic inflammatory reactions and strong systemic immune responses. In contrast, C57BL/6 mice had stronger local allergic inflammatory responses and relatively mild systemic immune responses. Different mice strains can be selected according to the research purpose.
Collapse
Affiliation(s)
- Qidi Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Wanting Zhu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Zhixin Zou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Pei Gao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
El-Elimat T, Al-Khawlani AR, Al-Sawalha NA, Sa'ed MM, Al-Qiam R, Sharie AHA, Qinna NA. The effect of beetroot juice on airway inflammation in a murine model of asthma. J Food Biochem 2022; 46:e14381. [PMID: 35976974 DOI: 10.1111/jfbc.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023]
Abstract
The effects of beetroot juice on airways inflammation, cytokine levels, and oxidative stress biomarkers were evaluated using an allergen-induced murine model of asthma. Ovalbumin (OVA)-sensitized and challenged BALB/c mice were used as an asthma model. BALB/c mice were randomly assigned into four groups: control (Ova sensitization and normal saline challenge), control and beetroot (Ova sensitization and normal saline challenge plus beetroot juice), Ova S/C [Ova sensitization and challenge (Ova S/C)], Ova S/C and beetroot juice (Ova S/C plus beetroot juice). The bronchoalveolar lavage fluid (BALF) was analyzed for total and differential inflammatory cells count. The levels of cytokines [interleukin (IL)-10, IL-13, and IL-18], and oxidative stress biomarkers [glutathione peroxidase (GPx), catalase, and thiobarbituric acid reactive substances (TBARS)] were analyzed in the lung tissue. Simultaneous administration of beetroot juice and Ova S/C significantly increased the total inflammatory cells compared to the control (p = .0001) and Ova S/C (p = .013) groups and significantly increased the number of eosinophils (p ˂ .0001) and macrophages (p ˂ .0001) compared to the control. Moreover, the simultaneous administration of beetroot juice and Ova S/C did not affect the level of IL-10, IL-13, IL-18, GPx, or TBARS compared to the control (p > .05), but it significantly increased the level of catalase (p = .002). Results suggest that beetroot juice aggravates asthma by enhancing airway inflammation. However, it does not affect airway inflammation in healthy mice. PRACTICAL APPLICATIONS: Asthma is a chronic airway inflammatory disease that is characterized by variable degrees of airways inflammation and obstruction. Paradox data are reported in the literature regarding beetroot and asthma. The present study revealed that beetroot juice exacerbates asthma by enhancing airway inflammation. However, it is safe and has no effects on airway inflammation in healthy mice. Patients having asthma or a history of asthma are advised to avoid the consumption of beetroot.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Nour A Al-Sawalha
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Marwan M Sa'ed
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Reema Al-Qiam
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed H Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
8
|
Park J, Kang GH, Kim Y, Lee JY, Song JA, Hwang JH. Formaldehyde exposure induces differentiation of regulatory T cells via the NFAT-mediated T cell receptor signalling pathway in Yucatan minipigs. Sci Rep 2022; 12:8149. [PMID: 35581361 PMCID: PMC9114421 DOI: 10.1038/s41598-022-12183-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/05/2022] [Indexed: 12/31/2022] Open
Abstract
The use of minipigs (Sus scrofa) as a platform for toxicological and pharmacological research is well established. In the present study, we investigated the effect of formaldehyde (FA) exposure on helper T cell-mediated splenic immune responses in Yucatan minipigs. The minipigs were exposed to different inhaled concentrations of FA (0, 2.16, 4.62, or 10.48 mg/m3) for a period of 2 weeks. Immune responses elicited by exposure to FA were determined by assessing physiological parameters, mRNA expression, and cytokine production. Additionally, the distribution of helper T cells and regulatory T (Treg) cells and expression of NFAT families, which are well-known T cell receptor signalling proteins associated with regulatory T cell development, were evaluated. Exposure to FA suppressed the expression of genes associated with Th1 and Th2 cells in minipigs in a concentration-dependent manner. The subsequent production of cytokines also declined post-FA exposure. Furthermore, exposure to FA induced the differentiation of CD4+ Foxp3+ Treg cells with divergent expression levels of NFAT1 and NFAT2. These results indicated that exposure to FA increased the Treg cell population via the NFAT-mediated T cell receptor signalling pathway, leading to suppression of effector T cell activity with a decline in T cell-related cytokine production.
Collapse
Affiliation(s)
- Jeongsik Park
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | - Goo-Hwa Kang
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | - Youngkyu Kim
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.,Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul-si, 27447, Republic of Korea
| | - Ju Young Lee
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Jeong Ah Song
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
9
|
Meng Y, Xu X, Xie G, Zhang Y, Chen S, Qiu Y, Zhu Z, Zhang H, Yin D. Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-кB signaling pathway. ENVIRONMENT INTERNATIONAL 2022; 163:107209. [PMID: 35358787 DOI: 10.1016/j.envint.2022.107209] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Alkyl organophosphate flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(2-butoxyethyl) phosphate (TBOEP), are ubiquitously detected in indoor and outdoor environments and their inhalation may result in lung damage. This study examined pulmonary toxicity after exposure to TnBP or TBOEP and investigated aggravation of inflammation and immunoreaction by TnBP in an ovalbumin (OVA)-induced mice model. Transcriptomics were used to further reveal the underlying mechanism. Exposure to TnBP or TBOEP resulted in pathological damage, including edema and thickened alveolar septum. In comparison with the control, enhanced levels of superoxide dismutase (SOD) (p < 0.01 in TnBP (High) group and p < 0.05 in TBOEP (High) group), glutathione peroxidase (GSH-px) (p < 0.05), malondialdehyde (MDA) (p < 0.01), and cytokines under a dose-dependent relationship were noted, and the expression of the Fkbp5/Nos3/MAPK/NF-кB signaling pathway (p < 0.01) was upregulated in the TnBP and TBOEP groups. Moreover, the combined exposure of TnBP and OVA exacerbated the allergic inflammatory response, including airway hyperresponsiveness, leukocytosis, cellular exudation and infiltration, secretion of inflammatory mediators, and higher expression of IgE (p < 0.01). Transcriptomics results demonstrated that the PI3K/Akt/NF-кB signal pathway was involved in TnBP-aggravated asthmatic mice. Exposure to TnBP or TBOEP resulted in oxidative damage and leukocyte-induced lung injury. TnBP can further facilitate OVA-induced asthma through an inflammatory response. This study is the first to reveal the pulmonary toxicity and potential mechanism induced by OPFRs through an in-vivo model.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Guangming Xie
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yunwei Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shiyan Chen
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
10
|
Nakano K, Shimizu Y, Arai T, Kaneko T, Okamura T. The versatile electric condition in mouse embryos for genome editing using a three-step square-wave pulse electroporator. Exp Anim 2021; 71:214-223. [PMID: 34880157 PMCID: PMC9130034 DOI: 10.1538/expanim.21-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Technique for Animal Knockout system by Electroporation (TAKE) is a simple and efficient method to generate genetically modified (GM) mice using the clustered regularly interspaced short
palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems. To reinforce the versatility of electroporation used for gene editing in mice, the electric condition was optimized
for vitrified-warmed mouse embryos, and applied to the fresh embryos from widely used inbred strains (C57BL/6NCr, BALB/cCrSlc, FVB/NJcl, and C3H/HeJJcl). The electric pulse settings (poring
pulse: voltage, 150 V; pulse width, 1.0 ms; pulse interval, 50 ms; number of pulses, +4; transfer pulse: voltage, 20 V; pulse width, 50 ms; pulse interval, 50 ms; number of pulses, ±5) were
optimal for vitrified-warmed mouse embryos, which could efficiently deliver the gRNA/Cas9 complex into the zygotes without zona pellucida thinning process and edit the target locus. These
electric condition efficiently generated GM mice in widely used inbred mouse strains. In addition, electroporation using the electrode with a 5 mm gap could introduce more than 100 embryos
within 5 min without specific pretreatment and sophisticated technical skills, such as microinjection, and exhibited a high developmental rate of embryos and genome-editing efficiency in the
generated offspring, leading to the rapid and efficient generation of genome editing mice. The electric condition used in this study is highly versatile and can contribute to understanding
human diseases and gene functions by generating GM mice more easily and efficiently.
Collapse
Affiliation(s)
- Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| | - Tetsuya Arai
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| | - Taketo Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University.,Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| |
Collapse
|
11
|
Ma H, Lin J, Li L, Ding Z, Huang P, Song X, Lou K, Wang W, Xu H. Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. CHEMOSPHERE 2021; 282:131149. [PMID: 34470174 DOI: 10.1016/j.chemosphere.2021.131149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Formaldehyde (FA) is widely used in chemical industry, which is also known as a common indoor air pollutant. Exposure of FA has been associated with multiple detrimental health effects. Our previous study showed that FA could inhibit the development of T lymphocytes in mice, leading to impaired immune functions. Macrophages are important innate immune cells which trigger inflammatory responses in tissues. In the present study, FA exposure at 2.0 mg/m3 was found to enhance the pro-inflammatory responses of macrophages in male BALB/c mice, which was confirmed by elevated pro-inflammatory cytokine release and NO secretion in macrophages isolated from the FA-exposed mice and in vitro macrophage models upon lipopolysaccharide stimulation. Glycolysis is the key metabolic process for the classical activation of macrophages, which was found to be elevated in the in vitro macrophage models treated with FA at 50 and 100 μM concentrations for 18 h. HIF-1α and the associated proteins in its signaling cascade, which are known to mediate glycolytic metabolism and inflammatory responses, were found to be upregulated by 50 and 100 μM FA in THP-1 derived and RAW264.7 macrophage models, and the enhanced pro-inflammatory responses induced by 100 μM FA were reversed by inhibitory compounds interfering with glucose metabolism or suppressing HIF-1α activity. Collectively, the results in this study revealed that FA could enhance the pro-inflammatory responses of macrophages through the induction of glycolysis, which outlined the FA-triggered metabolic and functional alterations in immune cells.
Collapse
Affiliation(s)
- Huijuan Ma
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Jinxuan Lin
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Linyi Li
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Zhaoqian Ding
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Ping Huang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, 201907, China
| | - Kaiyan Lou
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| | - Wei Wang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China; Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| | - Huan Xu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| |
Collapse
|
12
|
Ghelli F, Bellisario V, Squillacioti G, Panizzolo M, Santovito A, Bono R. Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. TOXICS 2021; 9:toxics9080178. [PMID: 34437496 PMCID: PMC8402352 DOI: 10.3390/toxics9080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022]
Abstract
Despite the toxicity and health risk characteristics of formaldehyde (FA), it is currently used as a cytological fixative and the definition of safe exposure levels is still a matter of debate. Our aim was to investigate the alterations in both oxidative and inflammatory status in a hospital working population. The 68 workers recruited wore a personal air-FA passive sampler, provided a urine sample to measure 15-F2t-Isoprostane (15-F2t-IsoP) and malondialdehyde (MDA) and a blood specimen to measure tumour necrosis factor α (TNFα). Subjects were also genotyped for GSTT1 (Presence/Absence), GSTM1 (Presence/Absence), CYP1A1 exon 7 (A > G), and IL6 (−174, G > C). Workers were ex post split into formalin-employers (57.3 μg/m3) and non-employers (13.5 μg/m3). In the formalin-employers group we assessed significantly higher levels of 15-F2t-IsoP, MDA and TNFα (<0.001) in comparison to the non-employers group. The air-FA levels turned out to be positively correlated with 15-F2t-IsoP (p = 0.027) and MDA (p < 0.001). In the formalin-employers group the MDA level was significantly higher in GSTT1 Null (p = 0.038), GSTM1 Null (p = 0.031), and CYP1A1 exon 7 mutation carrier (p = 0.008) workers, compared to the wild type subjects. This study confirms the role of FA in biomolecular profiles alterations, highlighting how low occupational exposure can also result in measurable biological outcomes.
Collapse
Affiliation(s)
- Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (F.G.); (V.B.); (G.S.); (M.P.)
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (F.G.); (V.B.); (G.S.); (M.P.)
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (F.G.); (V.B.); (G.S.); (M.P.)
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (F.G.); (V.B.); (G.S.); (M.P.)
| | - Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy;
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (F.G.); (V.B.); (G.S.); (M.P.)
- Correspondence: ; Tel.: +39-011-670-5818
| |
Collapse
|
13
|
Boucher M, Henry C, Dufour-Mailhot A, Khadangi F, Bossé Y. Smooth Muscle Hypocontractility and Airway Normoresponsiveness in a Mouse Model of Pulmonary Allergic Inflammation. Front Physiol 2021; 12:698019. [PMID: 34267677 PMCID: PMC8277197 DOI: 10.3389/fphys.2021.698019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/04/2021] [Indexed: 01/25/2023] Open
Abstract
The contractility of airway smooth muscle (ASM) is labile. Although this feature can greatly modulate the degree of airway responsiveness in vivo, the extent by which ASM's contractility is affected by pulmonary allergic inflammation has never been compared between strains of mice exhibiting a different susceptibility to develop airway hyperresponsiveness (AHR). Herein, female C57BL/6 and BALB/c mice were treated intranasally with either saline or house dust mite (HDM) once daily for 10 consecutive days to induce pulmonary allergic inflammation. The doses of HDM were twice greater in the less susceptible C57BL/6 strain. All outcomes, including ASM contractility, were measured 24 h after the last HDM exposure. As expected, while BALB/c mice exposed to HDM became hyperresponsive to a nebulized challenge with methacholine in vivo, C57BL/6 mice remained normoresponsive. The lack of AHR in C57BL/6 mice occurred despite exhibiting more than twice as much inflammation than BALB/c mice in bronchoalveolar lavages, as well as similar degrees of inflammatory cell infiltrates within the lung tissue, goblet cell hyperplasia and thickening of the epithelium. There was no enlargement of ASM caused by HDM exposure in either strain. Unexpectedly, however, excised tracheas derived from C57BL/6 mice exposed to HDM demonstrated a decreased contractility in response to both methacholine and potassium chloride, while tracheas from BALB/c mice remained normocontractile following HDM exposure. These results suggest that the lack of AHR in C57BL/6 mice, at least in an acute model of HDM-induced pulmonary allergic inflammation, is due to an acquired ASM hypocontractility.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| |
Collapse
|
14
|
Junge KM, Buchenauer L, Elter E, Butter K, Kohajda T, Herberth G, Röder S, Borte M, Kiess W, von Bergen M, Simon JC, Rolle-Kampczyk UE, Lehmann I, Gminski R, Ohlmeyer M, Polte T. Wood emissions and asthma development: Results from an experimental mouse model and a prospective cohort study. ENVIRONMENT INTERNATIONAL 2021; 151:106449. [PMID: 33611105 DOI: 10.1016/j.envint.2021.106449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Increased use of renewable resources like sustainably produced wood in construction or for all sorts of long-lived products is considered to contribute to reducing society's carbon footprint. However, as a natural, biological material, wood and wood products emit specific volatile organic compounds (VOCs). Therefore, the evaluation of possible health effects due to wood emissions is of major interest. OBJECTIVES We investigated the effects of an exposure to multiple wood-related VOCs on asthma development. METHODS A murine asthma model was used to evaluate possible allergic and inflammatory effects on the lung after short- or long-term and perinatal exposure to pinewood or oriented strand board (OSB). In addition, wood-related VOCs were measured within the German prospective mother-child cohort LINA and their joint effect on early wheezing or asthma development in children until the age of 10 was estimated by Bayesian kernel machine regression (BKMR) stratifying also for family history of atopy (FHA). RESULTS Our experimental data show that neither pinewood nor OSB emissions even at high total VOC levels and a long-lasting exposure period induce significant inflammatory or asthma-promoting effects in sensitized or non-sensitized mice. Moreover, an exposure during the vulnerable time window around birth was also without effect. Consistently, in our mother-child cohort LINA, an exposure to multiple wood-related VOCs during pregnancy or the first year of life was not associated with early wheezing or asthma development in children independent from their FHA. CONCLUSION Our findings indicate that emissions from wood and wood products at levels commonly occurring in the living environment do not exert adverse effects concerning wheezing or asthma development.
Collapse
Affiliation(s)
- Kristin M Junge
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany
| | - Lisa Buchenauer
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Elena Elter
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Katja Butter
- Thünen Institute of Wood Research, Hamburg, Germany
| | - Tibor Kohajda
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Molecular Systems Biology, Leipzig, Germany
| | - Gunda Herberth
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany
| | - Stefan Röder
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany
| | - Michael Borte
- Children's Hospital, Municipal Hospital "St. Georg", Leipzig, Germany
| | - Wieland Kiess
- University of Leipzig, Hospital for Children and Adolescents - Centre for Pediatric Research, Leipzig, Germany; University of Leipzig, LIFE - Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
| | - Martin von Bergen
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Molecular Systems Biology, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Molecular Systems Biology, Leipzig, Germany
| | - Irina Lehmann
- Charité - Universitätsmedizin Berlin, Environmental Epigenetics and Lung Research Group, Berlin, Germany; Berlin Institute of Health (BIH), Molecular Epidemiology, Berlin, Germany
| | - Richard Gminski
- Institute for Infection Prevention and Hospital Epidemiology, Environmental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Tobias Polte
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Chen X, Cheng C, Cheng W, Wang Y, Zuo X, Tang W, Yu Z, Yang Z, Wang Z, Zhu P, Huang W. Different Responses to Identical Trauma Between BALB/C and C57BL/6 Mice. Med Sci Monit 2021; 27:e928676. [PMID: 33621218 PMCID: PMC7911832 DOI: 10.12659/msm.928676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Different responses to identical trauma may be related to the genetic background of individuals, but the molecular mechanism is unclear. In this study we investigated the heterogeneity of trauma in mice and the potential biological explanations for the differences. Material/Methods Compared with other organs, the pathological response of the lung after injury is the earliest and most serious. We used C57BL/6 and BALB/C mice to explore the genetic background of different responses to trauma in the lung. We measured mortality rate, pulmonary microvascular permeability, and Cxcl15 gene expression in BALB/C and C57BL/6 mice before and after blast-wave injury. Microvascular permeability was measured using a fluorescent tracer, and Cxcl15 gene expression level and expression distribution were measured using fluorogenic probe quantitative polymerase chain reaction and northern blot. Results C57BL/6 mice showed lower mortality rates and pulmonary microvascular permeability than BALB/C mice after blast-wave injury; there was no significant difference in the permeability before blast-wave injury. The Cxcl15 gene was expressed specifically in the lung tissue of mice. The level of Cxcl15 expression in BALB/C mice was higher than in C57BL/6 mice before and after injury, and the variation trend of Cxcl15 expression level after injury was significantly different between BALB/C and C57BL/6 mice. Conclusions Our results indicated that BALB/C and C57BL/6 mice had significant heterogeneity in posttraumatic response in terms of mortality and degree of lung damage. The differences in genetic factors such as Cxcl15 may have played a role in this heterogeneity.
Collapse
Affiliation(s)
- Xiuying Chen
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China (mainland)
| | - Chang Cheng
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China (mainland)
| | - Wenchao Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yuhan Wang
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China (mainland)
| | - Xuzheng Zuo
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China (mainland)
| | - Weiju Tang
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China (mainland)
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhihuan Yang
- Department 4, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Zhengguo Wang
- Department 4, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Peifang Zhu
- Department 4, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Wen Huang
- Department of Neurology, Second Affiliated Hospital of Army Medical University, Chongqing, China (mainland)
| |
Collapse
|
16
|
Taha HR, Al-Sawalha NA, Alzoubi KH, Khabour OF. Effect of E-Cigarette aerosol exposure on airway inflammation in a murine model of asthma. Inhal Toxicol 2020; 32:503-511. [PMID: 33297792 DOI: 10.1080/08958378.2020.1856238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The popularity of electronic cigarettes (E-Cigs) smoking is increasing worldwide including patients with asthma. In this study, the effects of E-Cigs aerosol exposure on airway inflammation in an allergen-driven murine model of asthma were investigated. MATERIALS AND METHODS Balb/c mice were randomly assigned to; control group (received fresh air, Ovalbumin (Ova) sensitization and saline challenge), E-Cig group (received E-Cig aerosol, Ova sensitization, and saline challenge), Ova S/C group (received fresh air, Ova sensitization and Ova challenge) and E-Cig + Ova S/C group. Bronchoalveolar lavage fluid (BALF) and lung tissue were evaluated for inflammatory cells and inflammatory mediators, respectively. RESULTS Exposure to E-Cig aerosol significantly increased the number of all types of inflammatory cells in BALF (p < 0.05). Further, E-Cig aerosol reduced levels of transforming growth factor (TGF)-β1 and matrix metalloproteinase (MMP)-2 in lung tissue homogenate (p < 0.05). Combined E-Cig aerosol and Ova S/C increased the airway recruitment of inflammatory cells, especially neutrophils, eosinophils, and lymphocytes (p < 0.05), increased the level of interleukin (IL)-13, and reduced the level of TGF-β1 (p < 0.05). CONCLUSIONS E-Cig aerosol exposure induced airway inflammation in both control mice and allergen-driven murine model of asthma. The inflammatory response induced by E-Cig was slightly higher in allergen-driven murine model of asthma than in healthy animals.
Collapse
Affiliation(s)
- Huda R Taha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Omar F Khabour
- Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
17
|
Bernardini L, Barbosa E, Charão MF, Goethel G, Muller D, Bau C, Steffens NA, Santos Stein C, Moresco RN, Garcia SC, Souza Vencato M, Brucker N. Oxidative damage, inflammation, genotoxic effect, and global DNA methylation caused by inhalation of formaldehyde and the purpose of melatonin. Toxicol Res (Camb) 2020; 9:778-789. [PMID: 33447362 PMCID: PMC7786178 DOI: 10.1093/toxres/tfaa079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Formaldehyde (FA) exposure has been proven to increase the risk of asthma and cancer. This study aimed to evaluate for 28 days the FA inhalation effects on oxidative stress, inflammation process, genotoxicity, and global DNA methylation in mice as well as to investigate the potential protective effects of melatonin. For that, analyses were performed on lung, liver and kidney tissues, blood, and bone marrow. Bronchoalveolar lavage was used to measure inflammatory parameters. Lipid peroxidation (TBARS), protein carbonyl (PCO), non-protein thiols (NPSH), catalase activity (CAT), comet assay, micronuclei (MN), and global methylation were determined. The exposure to 5-ppm FA resulted in oxidative damage to the lung, presenting a significant increase in TBARS and NO levels and a decrease in NPSH levels, besides an increase in inflammatory cells recruited for bronchoalveolar lavage. Likewise, in the liver tissue, the exposure to 5-ppm FA increased TBARS and PCO levels and decreased NPSH levels. In addition, FA significantly induced DNA damage, evidenced by the increase of % tail moment and MN frequency. The pretreatment of mice exposed to FA applying melatonin improved inflammatory and oxidative damage in lung and liver tissues and attenuated MN formation in bone marrow cells. The pulmonary histological study reinforced the results observed in biochemical parameters, demonstrating the potential beneficial role of melatonin. Therefore, our results demonstrated that FA exposure with repeated doses might induce oxidative damage, inflammatory, and genotoxic effects, and melatonin minimized the toxic effects caused by FA inhalation in mice.
Collapse
Affiliation(s)
- Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Eduardo Barbosa
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS 93525-075, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS 93525-075, Brazil
| | - Gabriela Goethel
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Diana Muller
- Department of Genetics, Instituto de Biociências, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Claiton Bau
- Department of Genetics, Instituto de Biociências, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Nadine Arnold Steffens
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Carolina Santos Stein
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Solange Cristina Garcia
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Marina Souza Vencato
- Departament of Morphology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
18
|
Park J, Yang HS, Song MK, Kim DI, Lee K. Formaldehyde exposure induces regulatory T cell-mediated immunosuppression via calcineurin-NFAT signalling pathway. Sci Rep 2020; 10:17023. [PMID: 33046725 PMCID: PMC7550593 DOI: 10.1038/s41598-020-72502-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/15/2020] [Indexed: 11/08/2022] Open
Abstract
In this study, we investigated the effects of Formaldehyde (FA) exposure on splenic immune responses wherein helper T cells become activated and differentiate into effector T and regulatory T cells. BALB/c mice were exposed to two FA concentrations (1.38 mg/m3 and 5.36 mg/m3) for 4 h/day and 5 days/week for 2 weeks. FA-induced immune responses were examined by the production of cytokines, expression of mRNAs, and distributions of helper T cells and regulatory T cells. Moreover, expression of calcineurin and NFATs, regulatory T cell-related signalling proteins, were evaluated. FA exposure suppressed Th2-, Th1-, and Th17-related splenic cytokines in a dose-dependent manner. mRNA expression of splenic cytokines was also decreased by FA exposure, which correlated with decreased cytokine expression. In parallel, FA exposure promoted T cell differentiation into regulatory T cells in a dose-dependent manner supported by the expression of calcineurin and NFAT1. Taken together, our results indicated that FA exposure increases the number of regulatory T cells via calcineurin-NFAT signalling, thereby leading to effector T cell activity suppression with decreased T cell-related cytokine secretion and mRNA expression. These findings provide insight into the mechanisms underlying the adverse effects of FA and accordingly have general implications for human health, particularly in occupational settings.
Collapse
Affiliation(s)
- Jeongsik Park
- Jeonbuk Department of inhalation Research, National Center for Efficacy Evaluation of Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hyo-Seon Yang
- Jeonbuk Department of inhalation Research, National Center for Efficacy Evaluation of Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | - Mi-Kyung Song
- Jeonbuk Department of inhalation Research, National Center for Efficacy Evaluation of Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dong Im Kim
- Jeonbuk Department of inhalation Research, National Center for Efficacy Evaluation of Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | - Kyuhong Lee
- Jeonbuk Department of inhalation Research, National Center for Efficacy Evaluation of Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
19
|
Oztan O, Tutkun L, Turksoy VA, Deniz S, Dip A, Iritas SB, Eravci DB, Alaguney ME. The relationship between impaired lung functions and cytokine levels in formaldehyde exposure. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:248-254. [PMID: 32895023 DOI: 10.1080/19338244.2020.1816883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exposure to formaldehyde (FA) causes detrimental effects on respiratory system. Inflammation is one of the mechanisms responsible for these effects. Our aim is to demonstrate the possible effect of formaldehyde on inflammation biomarkers and pulmonary function tests. One hundred ninety-eight male workers in a fiber production factory are included. Eighty two of them were not exposed to FA. Thirty nine workers were exposed to FA for 4 h or more in a work shift and 77 workers were exposed less than 4 h. Statistically significant differences were found for FA, TNF-α, and IL-6 levels and pulmonary function test parameters (FEV1 and FVC) between no exposure and exposure groups. The results revealed a correlation between decrement in pulmonary function tests and an increase in cytokine levels concordant with the duration of FA exposure. The results may emphasize that FA exposure shows its effect on pulmonary system via inflammatory pathways.
Collapse
Affiliation(s)
- Ozgur Oztan
- Department of Medical Management, HLC Medical Center, Ankara, Turkey
| | - Lutfiye Tutkun
- Department of Nutrition and Dietetics, Health Science Faculty Gazi University, Ankara, Turkey
| | - Vugar Ali Turksoy
- Department of Public Health, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | | | - Aybike Dip
- Ministry of Justice, The Council of Forensic Medicine, Adana, Turkey
| | | | - Deniz Boz Eravci
- Center for Labour and Social Security Training and Research, Ankara, Turkey
| | - Mehmet Erdem Alaguney
- Department Of Occupational Medicine, Konya Training and Research Hospital, Health Sciences University, Konya, Turkey
| |
Collapse
|
20
|
Bernardini L, Barbosa E, Charão MF, Brucker N. Formaldehyde toxicity reports from in vitro and in vivo studies: a review and updated data. Drug Chem Toxicol 2020; 45:972-984. [PMID: 32686516 DOI: 10.1080/01480545.2020.1795190] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formaldehyde (FA) is a xenobiotic air pollutant and its universal distribution causes a widespread exposure to humans. This review aimed to bring updated information concerning FA toxicity in humans and animals based on in vitro and in vivo studies from 2013 to 2019. Researches were carried out in Pubmed, Scopus, and Science Direct databases to determine the effects of FA exposure on inflammation, oxidative stress and genotoxicity in experimental studies with animals (rats and mice) and humans. Besides, in vitro studies assessing FA cytotoxicity focusing on cell viability and apoptosis in different cell line cultures were reviewed. Studies with humans gave evidence regarding significant deleterious effects on health associated to chronic FA occupational exposure. Evaluations carried out in experimental studies showed toxic effects on different organs as lung, upper respiratory tract, bone marrow and brain as well as in cells. In summary, this study demonstrates that knowing the mechanisms underlying FA toxicity is essential to understand the deleterious effects that this xenobiotic causes on biological systems.
Collapse
Affiliation(s)
- Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Eduardo Barbosa
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
21
|
Koyanagi M, Arimura Y. Comparative Expression Analysis of Stress-Inducible Genes in Murine Immune Cells. Immunol Invest 2019; 49:907-925. [PMID: 31833438 DOI: 10.1080/08820139.2019.1702673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Psychological stress affects the immune system. Upon stress occurrence, glucocorticoid is released that binds to the glucocorticoid receptor and regulates gene expression. Thus, we aimed to examine the stress-induced immunomodulatory mechanisms by investigating the expression patterns of stress-inducible genes in murine immune cells. Methods: BALB/c, C57BL/6, glucocorticoid-receptor congenic mice, and corticotropin-releasing hormone (CRH)-deficient mice were exposed to synthetic glucocorticoid, dexamethasone, or placed under a restraint condition. The expression level of stress-related genes, such as Rtp801, Gilz, Mkp-1, Bnip3, and Trp53inp1 was measured in the immune cells in these mice. Results: Short restraint stress induced Rtp801 and Gilz expressions that were higher in the spleen of BALB/c mice than those in C57BL/6 mice. Mkp-1 expression increased equally in these two strains, despite the difference in the glucocorticoid level. These three genes induced by short restraint stress were not induced in the CRH-deficient mice. In contrast, Bnip3 and Trp53inp1 were only upregulated upon longer restraint events. In the thymus, Trp53inp1 expression was induced upon short restraint stress, whereas Gilz expression constantly increased upon short and repetitive restraint stresses. Conclusion: These results suggest that singular and repetitive bouts of stress lead to differential gene expression in mice and stress-induced gene expression in thymocytes is distinct from that observed in splenocytes. Gilz, Rtp801, and Mkp-1 genes induced by short restraint stress are dependent on CRH in the spleen.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Host Defense for Animals, School of Animal Science, Nippon Veterinary and Life Science University , Tokyo, Japan
| | - Yutaka Arimura
- Department of Host Defense for Animals, School of Animal Science, Nippon Veterinary and Life Science University , Tokyo, Japan
| |
Collapse
|
22
|
Wei HL, Xing Y, Zhou W, Wang XL, Zhang H, Ding J. [Establishment of an ovalbumin-induced bronchial asthma model in mice with intrauterine growth retardation]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:1223-1228. [PMID: 31874664 PMCID: PMC7389007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/27/2019] [Indexed: 11/04/2023]
Abstract
OBJECTIVE To establish and evaluate an ovalbumin (OVA)-induced bronchial asthma model in mice with intrauterine growth retardation (IUGR), and to explore the molecular mechanism of relationship between IUGR and asthma. METHODS A total of 16 pregnant BALB/c female mice were divided into a low-protein diet group (n=8) and a normal-protein diet group (n=8), which were fed with low-protein (8%) diet and normal-protein (20%) diet respectively. The neonatal mice were weighed 6 hours after birth. Sixteen male neonatal mice with IUGR were randomly chosen from the low-protein diet group and enrolled in the IUGR group, and 16 male neonatal mice from the normal-protein diet group were enrolled in the control group. Blood samples were collected from the mice in both groups for testing of blood glucose. Enzyme-linked immunosorbent assay (ELISA) was used to determine serum insulin level. The mice in the control group were randomized into a control + PBS group and a control + OVA group (n=8 each). The mice in the IUGR group were randomized into an IUGR + PBS group and an IUGR + OVA group (n=8 each). Six-week-old mice in the control + OVA and IUGR + OVA groups were subjected to intraperitoneal injection of 2 mg/mL OVA for sensitization and aerosol inhalation of 1% OVA for challenge. Mice in the control + PBS group and the IUGR + PBS group were treated with an equivalent amount of PBS. ELISA was used to determine serum IgE level in the mice in each group. Bronchoalveolar lavage fluid (BLF) was collected from the mice in each group for cell counting. The lung tissue of the mice in each group was stained with hematoxylin and eosin to observe pathological changes. RESULTS The body weight at 6 hours after birth was significantly lower for neonatal mice in the low-protein diet group compared with those in the normal-protein diet group (P<0.01). The IUGR group had a significantly lower serum insulin level than the control group (P<0.01). The IUGR + PBS group had a significantly lower IgE level than the control + PBS group (P<0.01). Compared with the control + PBS and IUGR + PBS groups, the control + OVA and IUGR + OVA groups had a significantly increased IgE level, and the IgE level was significantly higher in the IUGR + OVA group than in the control + OVA group (P<0.01). Compared with the control + PBS and IUGR + PBS groups, the control + OVA and IUGR + OVA groups had significantly increased counts of leukocytes, eosinophils, lymphocytes, and macrophages in the BLF (P<0.01). The pulmonary alveoli of OVA-induced IUGR mice showed massive inflammatory cell infiltration and damage of intercellular continuity. Meanwhile, airway epithelial cell proliferation, bronchial wall thickening, bronchial lumen narrowing, and massive inflammatory cell infiltration around the bronchi and the vascular wall were observed. CONCLUSIONS An OVA-induced bronchial asthma model has been successfully established in the mice with IUGR induced by low-protein diet, which provides a basis for further study of the molecular mechanism of relationship between IUGR and airway inflammation.
Collapse
Affiliation(s)
- Hong-Ling Wei
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | | | | | | | | | | |
Collapse
|
23
|
Wei HL, Xing Y, Zhou W, Wang XL, Zhang H, Ding J. [Establishment of an ovalbumin-induced bronchial asthma model in mice with intrauterine growth retardation]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:1223-1228. [PMID: 31874664 PMCID: PMC7389007 DOI: 10.7499/j.issn.1008-8830.2019.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To establish and evaluate an ovalbumin (OVA)-induced bronchial asthma model in mice with intrauterine growth retardation (IUGR), and to explore the molecular mechanism of relationship between IUGR and asthma. METHODS A total of 16 pregnant BALB/c female mice were divided into a low-protein diet group (n=8) and a normal-protein diet group (n=8), which were fed with low-protein (8%) diet and normal-protein (20%) diet respectively. The neonatal mice were weighed 6 hours after birth. Sixteen male neonatal mice with IUGR were randomly chosen from the low-protein diet group and enrolled in the IUGR group, and 16 male neonatal mice from the normal-protein diet group were enrolled in the control group. Blood samples were collected from the mice in both groups for testing of blood glucose. Enzyme-linked immunosorbent assay (ELISA) was used to determine serum insulin level. The mice in the control group were randomized into a control + PBS group and a control + OVA group (n=8 each). The mice in the IUGR group were randomized into an IUGR + PBS group and an IUGR + OVA group (n=8 each). Six-week-old mice in the control + OVA and IUGR + OVA groups were subjected to intraperitoneal injection of 2 mg/mL OVA for sensitization and aerosol inhalation of 1% OVA for challenge. Mice in the control + PBS group and the IUGR + PBS group were treated with an equivalent amount of PBS. ELISA was used to determine serum IgE level in the mice in each group. Bronchoalveolar lavage fluid (BLF) was collected from the mice in each group for cell counting. The lung tissue of the mice in each group was stained with hematoxylin and eosin to observe pathological changes. RESULTS The body weight at 6 hours after birth was significantly lower for neonatal mice in the low-protein diet group compared with those in the normal-protein diet group (P<0.01). The IUGR group had a significantly lower serum insulin level than the control group (P<0.01). The IUGR + PBS group had a significantly lower IgE level than the control + PBS group (P<0.01). Compared with the control + PBS and IUGR + PBS groups, the control + OVA and IUGR + OVA groups had a significantly increased IgE level, and the IgE level was significantly higher in the IUGR + OVA group than in the control + OVA group (P<0.01). Compared with the control + PBS and IUGR + PBS groups, the control + OVA and IUGR + OVA groups had significantly increased counts of leukocytes, eosinophils, lymphocytes, and macrophages in the BLF (P<0.01). The pulmonary alveoli of OVA-induced IUGR mice showed massive inflammatory cell infiltration and damage of intercellular continuity. Meanwhile, airway epithelial cell proliferation, bronchial wall thickening, bronchial lumen narrowing, and massive inflammatory cell infiltration around the bronchi and the vascular wall were observed. CONCLUSIONS An OVA-induced bronchial asthma model has been successfully established in the mice with IUGR induced by low-protein diet, which provides a basis for further study of the molecular mechanism of relationship between IUGR and airway inflammation.
Collapse
Affiliation(s)
- Hong-Ling Wei
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | | | | | | | | | | |
Collapse
|
24
|
Yahiro T, Hara T, Matsumoto T, Ikebe E, Fife-Koshinomi N, Xu Z, Hiratsuka T, Iha H, Inomata M. Long-Term Potable Effects of Alkalescent Mineral Water on Intestinal Microbiota Shift and Physical Conditioning. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2710587. [PMID: 31827547 PMCID: PMC6885775 DOI: 10.1155/2019/2710587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND An alkalescent (pH 8.3) mineral water (AMW) of Hita basin, located in the northwestern part of Kyushu island in Japan, has been recognized for the unique quality of ingredients including highly concentrated silicic acid, sodium, potassium, and hydrogen carbonate. The biological effects of AMW intake were evaluated with a particular focus on its "antiobesity" properties through its modulation of the gut microbiota population. METHODS Two groups of C57BL6/J mice (8-week-old male) were maintained with a standard diet and tap water (control: TWC group) or AMW (AMW group) for 6 months and the following outputs were quantitated: (1) food and water intake, (2) body weight (weekly), (3) body fat measurements by CT scan (monthly), (4) sera biochemical values (TG, ALT, AST, and ALP), and (5) UCP-1 mRNA in fat tissues (terminal point). Two groups of ICR mice (7-week-old male) were maintained with the same method and their feces were collected at the 0, 1st, 3rd, and 6th month at which time the population rates of gut microbiota were quantitated using metagenomic sequencing analysis of 16S-rRNA. RESULTS Among all antiobesity testing items, even though a weekly dietary consumption was increased (p=0.012), both ratios of weight gain (p=1.21E - 10) and visceral fat accumulation (p=0.029) were significantly reduced in the AMW group. Other criteria including water intake (p=0.727), the amounts of total (p=0.1602), and subcutaneous fat accumulation (p=0.052) were within the margin of error and UCP-1 gene expression level (p=0.171) in the AMW group was 3.89-fold higher than that of TWC. Among 8 major gut bacteria families, Lactobacillaceae (increased, p=0.029) and Clostridiaceae (decreased, p=0.029) showed significant shift in the whole population. CONCLUSION We observed significantly reduced (1) weight gaining ratio (average -1.86%, up to -3.3%), (2) visceral fat accumulation ratio (average -4.30%, up to -9.1%), and (3) changes in gut microbiota population. All these consequences could support the "health benefit" functionality of AMW.
Collapse
Affiliation(s)
- Takaaki Yahiro
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
- Department of Pathology, Tsurumi Hospital, Beppu, Oita, Japan
| | - Takao Hara
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Oita, Japan
| | - Takashi Matsumoto
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
| | - Emi Ikebe
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
| | | | - Zhaojun Xu
- Environmental Medicine Research Center, Quanzhou Medical College, Quanzhou, Fujian 362011, China
| | - Takahiro Hiratsuka
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Oita, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Oita, Japan
| |
Collapse
|
25
|
Liu QP, Zhou DX, Lv MQ, Ge P, Li YX, Wang SJ. Formaldehyde inhalation triggers autophagy in rat lung tissues. Toxicol Ind Health 2018; 34:748233718796347. [PMID: 30360701 DOI: 10.1177/0748233718796347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Formaldehyde (FA), a ubiquitous environmental contaminant, has long been suspected of causing lung injury. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The aim of this study was to elucidate the role of autophagy in lung injury induced by FA inhalation. In this study, lung weight coefficient, interleukin 8 in bronchoalveolar fluid, and histopathological examination were used to evaluate the lung injury. Moreover, electron microscopy, Western blotting for the ratio of LC3-II/LC3-I were used to detect autophagy in lung tissues. Our results indicated that the lung toxicity of FA inhalation is dose dependent. Lung weight coefficient, inflammatory response, and histopathological structure in the 0.5 mg/m3 FA exposure group showed no obvious changes compared with the control. However, exposure to 5 and 10 mg/m3 FA produced lung injury including pulmonary edema, histological changes, and inflammatory responses. Furthermore, the alterations of autophagy correlated with lung injury. Taken together, these data indicate that FA exposure triggers autophagy of alveolar epithelial cells, which might play a pivotal role in lung injury.
Collapse
Affiliation(s)
- Qiu-Ping Liu
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
- 2 Third Ward of VIP, 323 Hospital of PLA, Xi'an, China
| | - Dang-Xia Zhou
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
- 3 Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Mo-Qi Lv
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
- 3 Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Pan Ge
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Xin Li
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Shi-Jie Wang
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Effect of Formaldehyde on Human Middle Ear Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6387983. [PMID: 29780828 PMCID: PMC5892286 DOI: 10.1155/2018/6387983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/29/2018] [Accepted: 02/20/2018] [Indexed: 11/25/2022]
Abstract
Formaldehyde (FA) is a familiar indoor air pollutant found in everything from cosmetics to clothing, but its impact on the middle ear is unknown. This study investigated whether FA causes cytotoxicity, inflammation, or induction of apoptosis in human middle ear epithelial cells (HMEECs). Cell viability was investigated using the trypan blue assay and a cell counting kit (CCK-8) in HMEECs treated with FA for 4 or 24 h. The expression of genes encoding the inflammatory cytokine tumor necrosis factor alpha (TNF-α) and mucin (MUC5AC) was analyzed using RT-PCR. Activation of the apoptosis pathway was determined by measuring mitochondrial membrane potential (MMP), cytochrome oxidase, caspase-9/Mch6/Apaf 3, and Caspase-Glo® 3/7 activities. The CCK-8 assay and trypan blue assay results showed a reduction in cell viability in FA-treated HMEECs. FA also increased the cellular expression of TNF-α and MUC5AC and reduced the activities of MMP and cytochrome oxidase. Caspase-9 activity increased in cells stimulated for 4 h, as well as caspase-3/7 activity in cells stimulated for 24 h. The decreased cell viability, the induction of inflammation and mucin gene expression, and the activation of the apoptosis pathway together indicate a link between environmental FA exposure and the development of otitis media.
Collapse
|
27
|
Zhang X, Zhao Y, Song J, Yang X, Zhang J, Zhang Y, Li R. Responses to Comments on "Differential Health Effects of Constant and Intermittent Exposure to Formaldehyde in Mice: Implications for Building Ventilation Strategies". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3322-3324. [PMID: 29473741 DOI: 10.1021/acs.est.8b00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|