1
|
Wu H, Xue M, Wu C, Lu Q, Ding Z, Wang X, Fu T, Yang K, Lin J. Estimation of scrub typhus incidence and spatiotemporal multicomponent characteristics from 2016 to 2023 in Zhejiang Province, China. Front Public Health 2024; 12:1359318. [PMID: 39391156 PMCID: PMC11464294 DOI: 10.3389/fpubh.2024.1359318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Background China is one of the main epidemic areas of scrub typhus, and Zhejiang Province, which is located in the coastal area of southeastern China, is considered a key region of scrub typhus. However, there may be significant bias in the number of reported cases of scrub typhus, to the extent that its epidemiological patterns are not clearly understood. The purpose of this study was to estimate the possible incidence of scrub typhus and to identify the main driving components affecting the occurrence of scrub typhus at the county level. Methods Data on patients with scrub typhus diagnosed at medical institutions between January 2016 and December 2023 were collected from the China Disease Control and Prevention Information System (CDCPIS). The kriging interpolation method was used to estimate the possible incidence of scrub typhus. Additionally, a multivariate time series model was applied to identify the main driving components affecting the occurrence of scrub typhus in different regions. Results From January 2016 to September 2023, 2,678 cases of scrub typhus were reported in Zhejiang Province, including 1 case of reported death, with an overall case fatality rate of 0.04%. The seasonal characteristics of scrub typhus in Zhejiang Province followed an annual single peak model, and the months of peak onset in different cities were different. The estimated area with case occurrence was relatively wider. There were 41 counties in Zhejiang Province with an annual reported case count of less than 1, while from the estimated annual incidence, the number of counties with less than 1 case decreased to 21. The average annual number of cases in most regions fluctuated between 0 and 15. The numbers of cases in the central urban area of Hangzhou city, Jiaxin city and Huzhou city did not exceed 5. The estimated random effect variance parameters σ λ 2 , σ ϕ 2 , and σ ν 2 were 0.48, 1.03 and 3.48, respectively. The endemic component values of the top 10 counties were Shuichang, Cangnan, Chun'an, Xinchang, Pingyang, Xianju, Longquan, Dongyang, Yueqing and Qingyuan. The spatiotemporal component values of the top 10 counties were Pujiang, Anji, Pan'an, Dongyang, Jinyun, Ninghai, Yongjia, Xiaoshan, Yinwu and Shengzhou. The autoregressive component values of the top 10 counties were Lin'an, Cangnan, Chun'an, Yiwu, Pujiang, Longquan, Xinchang, Luqiao, Sanmen and Fuyang. Conclusion The estimated incidence was higher than the current reported number of cases, and the possible impact area of the epidemic was also wider than the areas with reported cases. The main driving factors of the scrub typhus epidemic in Zhejiang included endemic components such as natural factors, but there was significant heterogeneity in the composition of driving factors in different regions. Some regions were driven by spatiotemporal spread across regions, and the time autoregressive effect in individual regions could not be ignored. These results that monitoring of cases, vectors, and pathogens of scrub typhus should be strengthened. Furthermore, each region should take targeted prevention and control measures based on the main driving factors of the local epidemic to improve the accuracy of prevention and control.
Collapse
Affiliation(s)
- Haocheng Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Hangzhou, Zhejiang, China
| | - Ming Xue
- Hangzhou Centre for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Chen Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Qinbao Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zheyuan Ding
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xinyi Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Tianyin Fu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Ke Yang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Junfen Lin
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Meng X, Zhao H, Ou R, Zeng Q, Lv H, Zhu H, Ye M. Epidemiological and Clinical Characteristics of Influenza Outbreaks Among Children in Chongqing, China. Front Public Health 2022; 10:760746. [PMID: 35493383 PMCID: PMC9051075 DOI: 10.3389/fpubh.2022.760746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza is a global serious public health threat. Seasonal influenza among children in Chongqing has been a heavy health burden. To date, few studies have examined the spatial and temporal characteristics of influenza. This research sheds new light on correlating them with influenza outbreaks with data of over 5 years (2014–2018). All cluster outbreaks among preschool and school-age children reported in Chongqing were collected through the Public Health Emergency Management Information System. The demographical, epidemiological, and clinical data of the cases were analyzed. From 2014 to 2018, a total of 111 preschool- and school-based influenza-like illness outbreaks involving 3,549 cases were identified. Several clinical symptoms that were analyzed in this study showed significant contrast between influenza A and B. Spatial autocorrelation analysis over the 5-year data detected Xiushan district being the most likely cluster. The exploration of the spatial distribution and clinical characteristics of influenza cluster of children in Chongqing could help the effective implementation of health policies. Future studies should be conducted to monitor the outbreaks of influenza among children.
Collapse
Affiliation(s)
- Xuchen Meng
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Clinical College, Chongqing Medical University, Chongqing, China
| | - Han Zhao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Rong Ou
- The Library, Chongqing Medical University, Chongqing, China
| | - Qing Zeng
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Huiqun Lv
- The Library, Chongqing Medical University, Chongqing, China
| | - Hua Zhu
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Mengliang Ye
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Mengliang Ye
| |
Collapse
|
3
|
Molecular epidemiologic characteristics of hemagglutinin from five waves of avian influenza A (H7N9) virus infection, from 2013 to 2017, in Zhejiang Province, China. Arch Virol 2021; 166:3323-3332. [PMID: 34595553 PMCID: PMC8616886 DOI: 10.1007/s00705-021-05233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
There have been five waves of influenza A (H7N9) epidemics in Zhejiang Province between 2013 and 2017. Although the epidemiological characteristics of the five waves have been reported, the molecular genetics aspects, including the phylogeny, evolution, and mutation of hemagglutinin (HA), have not been systematically investigated. A total of 154 H7N9 samples from Zhejiang Province were collected between 2013 and 2017 and sequenced using an Ion Torrent Personal Genome Machine. The starting dates of the waves were 16 March 2013, 1 July 2013, 1 July 2014, 1 July 2015, and 1 July 2016. Single-nucleotide polymorphisms (SNPs) and amino acid mutations were counted after the HA sequences were aligned. The evolution of H7N9 matched the temporal order of the five waves, among which wave 3 played an important role. The 55 SNPs and 14 amino acid mutations with high frequency identified among the five waves revealed the dynamic occurrence of mutation in the process of viral dissemination. Wave 3 contributed greatly to the subsequent epidemic of waves 4 and 5 of H7N9. Compared with wave 1, wave 5 was characterized by more mutations, including A143V and R148K, two mutations that have been reported to weaken the immune response. In addition, some amino acid mutations were observed in wave 5 that led to more lineages. It is necessary to strengthen the surveillance of subsequent H7N9 influenza outbreaks.
Collapse
|
4
|
Chen P, Xie JF, Lin Q, Zhao L, Zhang YH, Chen HB, Weng YW, Huang Z, Zheng KC. A study of the relationship between human infection with avian influenza a (H5N6) and environmental avian influenza viruses in Fujian, China. BMC Infect Dis 2019; 19:762. [PMID: 31477028 PMCID: PMC6719373 DOI: 10.1186/s12879-019-4145-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avian influenza A (H5N6) virus poses a great threat to the human health since it is capable to cross the species barrier and infect humans. Although human infections are believed to largely originate from poultry contaminations, the transmissibility is unclear and only limited information was available on poultry environment contaminations, especially in Fujian Province. METHODS A total of 4901 environmental samples were collected and tested for Avian Influenza Virus (AIV) from six cities in Fujian Province through the Fujian Influenza Surveillance System from 2013 to 2017. Two patient-related samples were taken from Fujian's first confirmed H5N6 human case and his backyard chicken feces in 2017. Chi-square test or Fisher's exact probability test was used to compare the AIV and the viral subtype positive rates among samples from different Surveillance cities, surveillance sites, sample types, and seasons. Phylogenetic tree analysis and molecular analysis were conducted to track the viral transmission route of the human infection and to map out the evolutions of H5N6 in Fujian. RESULTS The overall positive rate of the H5 subtype AIVs was 4.24% (208/4903). There were distinctive differences (p < 0.05) in the positive rates in samples from different cities, sample sites, sample types and seasons. The viruses from the patient and his backyard chicken feces shared high homologies (99.9-100%) in all the eight gene segments. Phylogenetic trees also showed that these two H5N6 viruses were closely related to each other, and were classified into the same genetic clade 2.3.4.4 with another six H5N6 isolates from the environmental samples. The patient's H5N6 virus carried genes from H6N6, H5N8 and H5N6 viruses originated from different areas. The R294K or N294S substitution was not detected in the neuraminidase (NA). The S31 N substitution in the matrix2 (M2) gene was detected but only in one strain from the environmental samples. CONCLUSIONS The H5 subtype of AIVs has started circulating in the poultry environments in Fujian Province. The patient's viral strain originated from the chicken feces in his backyard. Genetic reassortment in H5N6 viruses in Fujian Province was indicated. The H5N6 viruses currently circulating in Fujian Province were still commonly sensitive to Oseltamivir and Zanamivir, but the resistance against Amantadine has emerged.
Collapse
Affiliation(s)
- Ping Chen
- College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China
| | - Jian-Feng Xie
- College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China.,Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Qi Lin
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Lin Zhao
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Yan-Hua Zhang
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Hong-Bin Chen
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Yu-Wei Weng
- College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China.,Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Zheng Huang
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Kui-Cheng Zheng
- College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China. .,Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Enkirch T, Sauber S, Anderson DE, Gan ES, Kenanov D, Maurer-Stroh S, von Messling V. Identification and in vivo Efficacy Assessment of Approved Orally Bioavailable Human Host Protein-Targeting Drugs With Broad Anti-influenza A Activity. Front Immunol 2019; 10:1097. [PMID: 31244822 PMCID: PMC6563844 DOI: 10.3389/fimmu.2019.01097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
The high genetic variability of influenza A viruses poses a continual challenge to seasonal and pandemic vaccine development, leaving antiviral drugs as the first line of defense against antigenically different strains or new subtypes. As resistance against drugs targeting viral proteins emerges rapidly, we assessed the antiviral activity of already approved drugs that target cellular proteins involved in the viral life cycle and were orally bioavailable. Out of 15 candidate compounds, four were able to inhibit infection by 10- to 100-fold without causing toxicity, in vitro. Two of the drugs, dextromethorphan and ketotifen, displayed a 50% effective dose between 5 and 50 μM, not only for the classic H1N1 PR8 strain, but also for a pandemic H1N1 and a seasonal H3N2 strain. Efficacy assessment in mice revealed that dextromethorphan consistently resulted in a significant reduction of viral lung titers and also enhanced the efficacy of oseltamivir. Dextromethorphan treatment of ferrets infected with a pandemic H1N1 strain led to a reduction in clinical disease severity, but no effect on viral titer was observed. In addition to identifying dextromethorphan as a potential influenza treatment option, our study illustrates the feasibility of a bioinformatics-driven rational approach for repurposing approved drugs against infectious diseases.
Collapse
Affiliation(s)
- Theresa Enkirch
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
| | - Svenja Sauber
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Esther S Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Dimitar Kenanov
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Veronika von Messling
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
6
|
Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. J Int Med Res 2019; 48:300060519845488. [PMID: 31068040 PMCID: PMC7140199 DOI: 10.1177/0300060519845488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H7N9 avian influenza virus (AIV) caused human infections in 2013 in China.
Phylogenetic analyses indicate that H7N9 AIV is a novel reassortant strain with
pandemic potential. We conducted a systemic review regarding virus-induced
pathogenesis, vaccine development, and diagnosis of H7N9 AIV infection in
humans. We followed PRISMA guidelines and searched PubMed, Web of Science, and
Google Scholar to identify relevant articles published between January 2013 and
December 2018. Pathogenesis data indicated that H7N9 AIV belongs to low
pathogenic avian influenza, which is mostly asymptomatic in avian species;
however, H7N9 induces high mortality in humans. Sporadic human infections have
recently been reported, caused by highly pathogenic avian influenza viruses
detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause
severe human infection by rapidly inducing progressive acute community-acquired
pneumonia, multiorgan dysfunction, and cytokine dysregulation; however,
mechanisms via which the virus induces severe syndromes remain unclear. An H7N9
AIV vaccine is lacking; designs under evaluation include synthesized peptide,
baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis
of H7N9 AIVs is suggested over conventional assays, for biosafety reasons.
Several advanced or modified diagnostic assays are under investigation and
development. We summarized virus-induced pathogenesis, vaccine development, and
current diagnostic assays in H7N9 AIVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung
| | - Esmeralda Merari Erazo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Max R Chang Ishcol
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Yen Lin
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
7
|
El Sahly HM, Atmar RL, Patel SM, Bellamy A, Liu L, Hong W, Zhu H, Guan Y, Keitel WA. Safety and immunogenicity of an 8 year interval heterologous prime-boost influenza A/H7N7-H7N9 vaccination. Vaccine 2019; 37:2561-2568. [PMID: 30955980 PMCID: PMC6519114 DOI: 10.1016/j.vaccine.2019.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Influenza A/H7N9 viruses are undergoing antigenic drift since their emergence in 2013, and vaccination strategies are needed for pandemic preparedness. Two doses of adjuvanted monovalent inactivated influenza A/H7N9 vaccine (IIV1 A/H7N9) are needed for optimal serological responses. However, administering 2 doses in a pandemic setting might be challenging. We evaluated the immunogenicity of "boosting" with IIV1 A/H7N9 in subjects "primed" 8 years previously with IIV1 A/H7N7. METHODS We administered 1 booster dose containing 45 mcg of IIV1 A/H7N9 hemagglutinin to 17 recipients of 2 prior doses of IIV1 A/H7N7, and to 10 influenza A/H7-naïve subjects. We tested their post-boosting sera for antibodies (Ab) against homologous influenza A/H7N9 using a hemagglutination inhibition assay; and compared their Ab titers to those in stored sera from recipients of AS03-adjuvanted IIV1 A/H7N9 against 9 strains of influenza A/H7N9 viruses. RESULTS The percentage of subjects with Ab titers ≥40 on Days 9 and 29 post boosting, respectively, was 65% and 41% in primed subjects and 10% and 0% in unprimed subjects. The Ab titers in recipients of AS03-adjuvanted IIV1 A/H7N9 were higher than those in the prime-boost group against a panel of influenza A/H7N9 viruses, except for 2 highly pathogenic strains. CONCLUSIONS Priming with IIV1 A/H7 results in serological responses following a delayed boost with 1 dose of unadjuvanted IIV1 A/H7N9, despite lack of antibody response after the prime. Optimizing prime-boost approaches would benefit pandemic preparedness. ClinicalTrials.gov identifier: NCT02586792.
Collapse
Affiliation(s)
- Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.
| | - Robert L Atmar
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Shital M Patel
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Liwei Liu
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China
| | - Wenshan Hong
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China
| | - Huachen Zhu
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China
| | - Yi Guan
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wendy A Keitel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Wang XX, Cheng W, Yu Z, Liu SL, Mao HY, Chen EF. Risk factors for avian influenza virus in backyard poultry flocks and environments in Zhejiang Province, China: a cross-sectional study. Infect Dis Poverty 2018; 7:65. [PMID: 29914558 PMCID: PMC6006748 DOI: 10.1186/s40249-018-0445-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Human infection of avian influenza virus (AIV) remains a great concern. Although live poultry markets are believed to be associated with human infections, ever more infections have been reported in rural areas with backyard poultry, especially in the fifth epidemic of H7N9. However, limited information is available on backyard poultry infection and surrounding environmental contamination. METHODS Two surveillance systems and a field survey were used to collect data and samples in Zhejiang Province. In total, 4538 samples were collected by surveillance systems and 3171 from the field survey between May 2015 and May 2017, while 352 backyard poultry owners were interviewed in May 2017 by questionnaire to investigate factors influencing the prevalence of avian influenza A virus and other AIV subtypes. RT-PCR was used to test the nucleic acids of viruses. ArcGIS 10.1 software was used to generate maps. Univariate and logistic regression analyses were conducted to identify risk factors for AIV infection. RESULTS Of the 428 poultry premises observed by the surveillance system, 53 (12.38%) were positive for influenza A virus. Of the 352 samples from poultry premises observed by field survey, 13 (3.39%) were positive for influenza A virus. The prevalence of AIV was unevenly distributed and the dominant subtype differed among cities. Eastern (Shaoxing and Ningbo) and southern (Wenzhou) cities exhibited a higher prevalence of AIV (16.33, 8.94, and 7.30% respectively). Contamination of AIV subtypes was most severe in January, especially in 2016 (23.26%, 70/301). The positive rate of subtype H5/H7/H9 was 2.53% (115/4538). Subtype H5 was the least prevalent, while subtypes H7 and H9 had similar positivity rates (1.50 and 1.32% respectively). Poultry flocks and environmental samples had a similar prevalence of AIV (4.46% vs 5.06%). The type of live birds was a risk factor and the sanitary condition of the setting was a protective factor against influenza A contamination. CONCLUSIONS AIV subtypes were prevalent in backyard poultry flocks and surrounding environments in Zhejiang Province. The types of live birds and sanitary conditions of the environment were associated with influenza A contamination. These findings shine a light on the characteristics of contamination of AIV subtypes and emphasize the importance of reducing AIV circulation in backyard poultry settings.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - Wei Cheng
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - Zhao Yu
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - She-Lan Liu
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - Hai-Yan Mao
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| | - En-Fu Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310051 People’s Republic of China
| |
Collapse
|
9
|
Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. Int J Mol Sci 2017; 18:ijms18122706. [PMID: 29236050 PMCID: PMC5751307 DOI: 10.3390/ijms18122706] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals.
Collapse
|