1
|
Wu X, Xu H, Xia E, Gao L, Hou Y, Sun L, Zhang H, Cheng Y. Histone modifications in the regulation of erythropoiesis. Ann Med 2025; 57:2490824. [PMID: 40214280 PMCID: PMC11995772 DOI: 10.1080/07853890.2025.2490824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION The pathogenesis of anemia and other erythroid dysphasia are mains poorly understood, primarily due to limited knowledge about the differentiation processes and regulatory mechanisms governing erythropoiesis. Erythropoiesis is a highly complex and precise biological process, that can be categorized into three distinct stages: early erythropoiesis, terminal erythroid differentiation, and reticulocyte maturation, and this complex process is tightly controlled by multiple regulatory factors. Emerging evidence highlights the crucial role of epigenetic modifications, particularly histone modifications, in regulating erythropoiesis. Methylation and acetylation are two common modification forms that affect genome accessibility by altering the state of chromatin, thereby regulating gene expression during erythropoiesis. DISCUSSION This review systematically examines the roles of histone methylation and acetylation, along with their respective regulatory enzymes, in regulating the development and differentiation of hematopoietic stem/progenitor cells (HSPCs) and erythroid progenitors. Furthermore, we discuss the involvement of these histone modifications in erythroid-specific developmental processes, including hemoglobin switching, chromatin condensation, and enucleation.Conclusions This review summarizes the current understanding of the role of histone modifications in erythropoiesis based on existing research, as a foundation for further research the mechanisms of epigenetic regulatory in erythropoiesis.
Collapse
Affiliation(s)
- Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongdi Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Erxi Xia
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Linru Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Hou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Suda Y, Ikuta K, Hayashi S, Wada K, Anjiki K, Kamenaga T, Tsubosaka M, Kuroda Y, Nakano N, Maeda T, Tsumiyama K, Matsumoto T, Kuroda R, Matsubara T. Comparison of anti-inflammatory and anti-angiogenic effects of JAK inhibitors in IL-6 and TNFα-stimulated fibroblast-like synoviocytes derived from patients with RA. Sci Rep 2025; 15:9736. [PMID: 40118969 PMCID: PMC11928453 DOI: 10.1038/s41598-025-94894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Rheumatoid arthritis (RA) involves synovial tissue proliferation, inflammation, and angiogenesis, and contributes to joint destruction. Angiogenesis is a key therapeutic target for the treatment of RA, and Janus kinase (JAK) inhibitors have emerged as a promising therapy. In this study, we compared the inhibitory effects of five JAK inhibitors, including tofacitinib (TOF), baricitinib, peficitinib, upadacitinib, and filgotinib, on interleukin (IL)-6-induced inflammation in RA synovial tissues. All five inhibitors effectively suppressed IL-6-induced inflammatory and angiogenic factors, including vascular endothelial growth factor, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, by inhibiting the phosphorylation of signal transducer and activator of transcription (STAT)1 and STAT3. Overall, the results suggest that while all five JAK inhibitors are effective in reducing IL-6-induced inflammatory and angiogenic factors, their efficacy may differ owing to specific molecular mechanisms and pharmacological properties.
Collapse
Affiliation(s)
- Yoshihito Suda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, 944-25, Japan
| | - Kemmei Ikuta
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan.
| | - Kensuke Wada
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Kensuke Anjiki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Naoki Nakano
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Toshihisa Maeda
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, 944-25, Japan
| | - Ken Tsumiyama
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, 944-25, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tsukasa Matsubara
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, 944-25, Japan
| |
Collapse
|
3
|
Mitsutani M, Yokoyama M, Hano H, Morita A, Matsushita M, Tagami T, Moriyama K. Growth hormone is involved in GATA1 gene expression via STAT5B in human erythroleukemia and monocytic cell lines. Blood Cells Mol Dis 2025; 110:102894. [PMID: 39303396 DOI: 10.1016/j.bcmd.2024.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
GATAs are a family of transcription factors consisting of six members. Particularly, GATA1 and GATA2 have been reported to promote the development of erythrocytes, megakaryocytes, eosinophils, and mast cells. However, little information is available on the extracellular ligands that promote GATA1 expression. We evaluated whether growth hormone (GH) is an extracellular stimulator that participates in the signal transduction of GATAs, focusing on GATA1 expression in hematopoietic cell lineages. We used a reporter assay, RT-PCR, real-time quantitative PCR, and western blotting to evaluate GH-induced expression of GATA1 and GATA2 in the human erythroleukemic cell line K562 and the non-erythroid cell line U937. GATA1 expression in these hematopoietic cell lines increased at the transcriptional and protein levels in the presence of GH, and was inhibited by a STAT5 specific inhibitor. Cells transfected with activated STAT5B showed increased expression of GATA1. We identified functional STAT5B consensus sequences as binding site-158 bp from the transcription starting site in the GATA1 promoter region. These results suggest that GH directly induces GATA1 expression via GHR/JAK/STAT5 and is related to hematopoietic cell proliferation.
Collapse
Affiliation(s)
- Mana Mitsutani
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Mei Yokoyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Hiromi Hano
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Aoi Morita
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Midori Matsushita
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Tetsuya Tagami
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kenji Moriyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan.
| |
Collapse
|
4
|
Yu HC, Cui R, Chen MY, Du XY, Bai QR, Zhang SL, Guo JJ, Tong FC, Wu J. Regulation of Erythroid Differentiation via the HIF1α-NFIL3-PIM1 Signaling Axis Under Hypoxia. Antioxid Redox Signal 2025; 42:36-52. [PMID: 38573002 DOI: 10.1089/ars.2023.0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Aims: Erythropoiesis is controlled by several factors, including oxygen level under different circumstances. However, the role of hypoxia in erythroid differentiation and the underlying mechanisms are poorly understood. We studied the effect and mechanism of hypoxia on erythroid differentiation of K562 cells and observed the effect of hypoxia on early erythropoiesis of zebrafish. Results: Compared with normal oxygen culture, both hemin-induced erythroid differentiation of K562 cells and the early erythropoiesis of zebrafish were inhibited under hypoxic treatment conditions. Hypoxia-inducible factor 1 alpha (HIF1α) plays a major role in the response to hypoxia. Here, we obtained a stable HIF1α knockout K562 cell line using the CRISPR-Cas9 technology and further demonstrated that HIF1α knockout promoted hemin-induced erythroid differentiation of K562 cells under hypoxia. We demonstrated an HIF1-mediated induction of the nuclear factor interleukin-3 (NFIL3) regulated in K562 cells under hypoxia. Interestingly, a gradual decrease in NFIL3 expression was detected during erythroid differentiation of erythropoietin-induced CD34+ hematopoietic stem/progenitor cells (HSPCs) and hemin-induced K562 cells. Notably, erythroid differentiation was inhibited by enforced expression of NFIL3 under normoxia and was promoted by the knockdown of NFIL3 under hypoxia in hemin-treated K562 cells. In addition, a target of NFIL3, pim-1 proto-oncogene, serine/threonine kinase (PIM1), was obtained by RNA microarray after NFIL3 knockdown. PIM1 can rescue the inhibitory effect of NFIL3 on hemin-induced erythroid differentiation of K562 cells. Innovation and Conclusion: Our findings demonstrate that the HIF1α-NFIL3-PIM1 signaling axis plays an important role in erythroid differentiation under hypoxia. These results will provide useful clues for preventing the damage of acute hypoxia to erythropoiesis. Antioxid. Redox Signal. 42, 36-52.
Collapse
Affiliation(s)
- Hai-Chuan Yu
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| | - Rui Cui
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| | - Meng-Yao Chen
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yan Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Qi-Rong Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Shuang-Ling Zhang
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| | - Jiao-Jie Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Fang-Chao Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jiao Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
Anjiki K, Hayashi S, Ikuta K, Suda Y, Kamenaga T, Tsubosaka M, Kuroda Y, Nkano N, Maeda T, Tsumiyama K, Matsumoto T, Kuroda R, Matsubara T. JAK inhibitors inhibit angiogenesis by reducing VEGF production from rheumatoid arthritis-derived fibroblast-like synoviocytes. Clin Rheumatol 2024; 43:3525-3536. [PMID: 39302595 DOI: 10.1007/s10067-024-07142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION/OBJECTIVES JAK/STAT signaling inhibition exerts therapeutic effects on angiogenesis in rheumatoid arthritis (RA). However, whether the inhibitory effect differs among JAK inhibitors because of differing selectivity is unknown. Therefore, we compared the inhibitory effects of tofacitinib, baricitinib, peficitinib, upadacitinib, and filgotinib on angiogenesis. METHOD RA-derived fibroblast-like synoviocytes (RA-FLS) were seeded on type I collagen gel, and human umbilical vein endothelial cells (HUVECs) were directly added. The control and aforementioned JAK inhibitors were added to the medium, followed by stimulation with interleukin (IL)-6 and soluble IL-6 receptor (sIL-6R). Each JAK inhibitor's concentration was determined based on estimated blood concentrations. The vascular endothelial growth factor (VEGF) concentration was evaluated with an enzyme-linked immunosorbent assay using the medium from the first exchange. A migration assay was performed, and HUVEC migration was evaluated using CD31 fluorescence immunostaining. RESULTS Hematoxylin-eosin staining showed that compared with the non-JAKi treatment group, the JAKi treatment group markedly degenerated in the sub-lining and deep lining, with decreased lymphocyte infiltration and neovascularization [Rooney's score subscale, non-JAKi vs JAKi (median, 6.5 vs 2.5, p = 0.005)]. In vitro, IL-6 and sIL-6R administration increased VEGF production from RA-FLS and promoted neovascularization in HUVECs, and JAK-inhibitor administration, which decreased VEGF production from RA-FLS and suppressed HUVEC migration, inhibited neovascularization in RA-FLS and HUVEC co-cultures. CONCLUSIONS The JAK inhibitors suppressed IL-6-induced angiogenesis via decreased VEGF production and HUVEC migration in RA-FLS and HUVEC co-cultures. No significant differences were observed among the JAK inhibitors, whose anti-angiogenic effect may be an important mechanism for RA treatment. Key Points • JAK inhibitors inhibit angiogenesis in RA by reducing VEGF production from RA-derived fibroblast-like synoviocytes. • Our study provides new insights into RA treatment by elucidating the anti-angiogenic effect of JAK inhibitors.
Collapse
Affiliation(s)
- Kensuke Anjiki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan.
| | - Kenmei Ikuta
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoshihito Suda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyui Kamenaga
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Naoki Nkano
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Toshihisa Maeda
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| | - Ken Tsumiyama
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tsukasa Matsubara
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| |
Collapse
|
6
|
Coltoff A, Kuykendall A. Emerging drug profile: JAK inhibitors. Leuk Lymphoma 2024; 65:1258-1269. [PMID: 38739701 DOI: 10.1080/10428194.2024.2353434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Dysregulated JAK/STAT hyperactivity is essential to the pathogenesis of myelofibrosis, and JAK inhibitors are the first-line treatment option for many patients. There are four FDA-approved JAK inhibitors for patients with myelofibrosis. Single-agent JAK inhibition can improve splenomegaly, symptom burden, cytopenias, and possibly survival in patients with myelofibrosis. Despite their efficacy, JAK inhibitors produce variable or short-lived responses, in part due to the large network of cooperating signaling pathways and downstream targets of JAK/STAT, which mediates upfront or acquired resistance to JAK inhibitors. Synergistic inhibition of JAK/STAT accessory pathways can increase the rates and duration of response for patients with myelofibrosis. Two recently reported, placebo-controlled phase III trials of novel agents added to JAK inhibition met their primary endpoint, and additional late-stage studies are ongoing. This paper will review role of dysregulated JAK/STAT signaling, biological plausible additional therapeutic targets and the recent advancements in combination strategies with JAK inhibitors for myelofibrosis.
Collapse
Affiliation(s)
- Alexander Coltoff
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew Kuykendall
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
7
|
Huang S, Reed C, Ilsley M, Magor G, Tallack M, Landsberg M, Mitchell H, Gillinder K, Perkins A. Mutations in linker-2 of KLF1 impair expression of membrane transporters and cytoskeletal proteins causing hemolysis. Nat Commun 2024; 15:7019. [PMID: 39147774 PMCID: PMC11327367 DOI: 10.1038/s41467-024-50579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
The SP/KLF family of transcription factors harbour three C-terminal C2H2 zinc fingers interspersed by two linkers which confers DNA-binding to a 9-10 bp motif. Mutations in KLF1, the founding member of the family, are common. Missense mutations in linker two result in a mild phenotype. However, when co-inherited with loss-of-function mutations, they result in severe non-spherocytic hemolytic anemia. We generate a mouse model of this disease by crossing Klf1+/- mice with Klf1H350R/+ mice that harbour a missense mutation in linker-2. Klf1H350R/- mice exhibit severe hemolysis without thalassemia. RNA-seq demonstrate loss of expression of genes encoding transmembrane and cytoskeletal proteins, but not globins. ChIP-seq show no change in DNA-binding specificity, but a global reduction in affinity, which is confirmed using recombinant proteins and in vitro binding assays. This study provides new insights into how linker mutations in zinc finger transcription factors result in different phenotypes to those caused by loss-of-function mutations.
Collapse
Affiliation(s)
- Stephen Huang
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Casie Reed
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Melissa Ilsley
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Graham Magor
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Michael Tallack
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
| | - Michael Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Helen Mitchell
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Kevin Gillinder
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Andrew Perkins
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia.
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia.
- Department of Haematology, The Alfred Hospital, Melbourne, Australia.
- Biodiscovery Institute, Monash University, Clayton, Australia.
| |
Collapse
|
8
|
Zakaria MF, Sonoda S, Kato H, Ma L, Uehara N, Kyumoto-Nakamura Y, Sharifa MM, Yu L, Dai L, Yamauchi-Tomoda E, Aijima R, Yamaza H, Nishimura F, Yamaza T. Erythropoietin receptor signal is crucial for periodontal ligament stem cell-based tissue reconstruction in periodontal disease. Sci Rep 2024; 14:6719. [PMID: 38509204 PMCID: PMC10954634 DOI: 10.1038/s41598-024-57361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Alveolar bone loss caused by periodontal disease eventually leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are the tissue-specific cells for maintaining and repairing the periodontal ligament, cementum, and alveolar bone. Here, we investigated the role of erythropoietin receptor (EPOR), which regulates the microenvironment-modulating function of mesenchymal stem cells, in PDLSC-based periodontal therapy. We isolated PDLSCs from patients with chronic periodontal disease and healthy donors, referred to as PD-PDLSCs and Cont-PDLSCs, respectively. PD-PDLSCs exhibited reduced potency of periodontal tissue regeneration and lower expression of EPOR compared to Cont-PDLSCs. EPOR-silencing suppressed the potency of Cont-PDLSCs mimicking PD-PDLSCs, whereas EPO-mediated EPOR activation rejuvenated the reduced potency of PD-PDLSCs. Furthermore, we locally transplanted EPOR-silenced and EPOR-activated PDLSCs into the gingiva around the teeth of ligament-induced periodontitis model mice and demonstrated that EPOR in PDLSCs participated in the regeneration of the periodontal ligament, cementum, and alveolar bone in the ligated teeth. The EPOR-mediated paracrine function of PDLSCs maintains periodontal immune suppression and bone metabolic balance via osteoclasts and osteoblasts in the periodontitis model mice. Taken together, these results suggest that EPOR signaling is crucial for PDLSC-based periodontal regeneration and paves the way for the development of novel options for periodontal therapy.
Collapse
Affiliation(s)
- Mhd Fouad Zakaria
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Periodontology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Lan Ma
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - M Majd Sharifa
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Liting Yu
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Lisha Dai
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Erika Yamauchi-Tomoda
- Department of Oral and Maxillofacial Radiology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Reona Aijima
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Papadaki S, Piperi C. Impact of Histone Lysine Methyltransferase SUV4-20H2 on Cancer Onset and Progression with Therapeutic Potential. Int J Mol Sci 2024; 25:2498. [PMID: 38473745 DOI: 10.3390/ijms25052498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Histone lysine methyltransferase SUV4-20H2, a member of the suppressor of variegation 4-20 homolog (SUV4-20) family, has a critical impact on the regulation of chromatin structure and gene expression. This methyltransferase establishes the trimethylation of histone H4 lysine 20 (H4K20me3), a repressive histone mark that affects several cellular processes. Deregulated SUV4-20H2 activity has been associated with altered chromatin dynamics, leading to the misregulation of key genes involved in cell cycle control, apoptosis and DNA repair. Emerging research evidence indicates that SUV4-20H2 acts as a potential epigenetic modifier, contributing to the development and progression of several malignancies, including breast, colon and lung cancer, as well as renal, hepatocellular and pancreatic cancer. Understanding the molecular mechanisms that underlie SUV4-20H2-mediated effects on chromatin structure and gene expression may provide valuable insights into novel therapeutic strategies for targeting epigenetic alterations in cancer. Herein, we discuss structural and functional aspects of SUV4-20H2 in cancer onset, progression and prognosis, along with current targeting options.
Collapse
Affiliation(s)
- Stela Papadaki
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
10
|
Quotti Tubi L, Canovas Nunes S, Mandato E, Pizzi M, Vitulo N, D’Agnolo M, Colombatti R, Martella M, Boaro MP, Doriguzzi Breatta E, Fregnani A, Spinello Z, Nabergoj M, Filhol O, Boldyreff B, Albiero M, Fadini GP, Gurrieri C, Vianello F, Semenzato G, Manni S, Trentin L, Piazza F. CK2β Regulates Hematopoietic Stem Cell Biology and Erythropoiesis. Hemasphere 2023; 7:e978. [PMID: 38026791 PMCID: PMC10673422 DOI: 10.1097/hs9.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The Ser-Thr kinase CK2 plays important roles in sustaining cell survival and resistance to stress and these functions are exploited by different types of blood tumors. Yet, the physiological involvement of CK2 in normal blood cell development is poorly known. Here, we discovered that the β regulatory subunit of CK2 is critical for normal hematopoiesis in the mouse. Fetal livers of conditional CK2β knockout embryos showed increased numbers of hematopoietic stem cells associated to a higher proliferation rate compared to control animals. Both hematopoietic stem and progenitor cells (HSPCs) displayed alterations in the expression of transcription factors involved in cell quiescence, self-renewal, and lineage commitment. HSPCs lacking CK2β were functionally impaired in supporting both in vitro and in vivo hematopoiesis as demonstrated by transplantation assays. Furthermore, KO mice developed anemia due to a reduced number of mature erythroid cells. This compartment was characterized by dysplasia, proliferative defects at early precursor stage, and apoptosis at late-stage erythroblasts. Erythroid cells exhibited a marked compromise of signaling cascades downstream of the cKit and erythropoietin receptor, with a defective activation of ERK/JNK, JAK/STAT5, and PI3K/AKT pathways and perturbations of several transcriptional programs as demonstrated by RNA-Seq analysis. Moreover, we unraveled an unforeseen molecular mechanism whereby CK2 sustains GATA1 stability and transcriptional proficiency. Thus, our work demonstrates new and crucial functions of CK2 in HSPC biology and in erythropoiesis.
Collapse
Affiliation(s)
- Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sara Canovas Nunes
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa Mandato
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marco Pizzi
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Italy
| | - Mirco D’Agnolo
- Department of Women’s and Child’s Health, University of Padova, Italy
| | | | | | - Maria Paola Boaro
- Department of Women’s and Child’s Health, University of Padova, Italy
| | - Elena Doriguzzi Breatta
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Zaira Spinello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Mitja Nabergoj
- Hematology Service, Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | - Odile Filhol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1036, Institute de Reserches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l’Infection, Grenoble, France
| | | | - Mattia Albiero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
| | - Gian Paolo Fadini
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
- Department of Medicine, University of Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
11
|
Pemmaraju N, Garcia JS, Perkins A, Harb JG, Souers AJ, Werner ME, Brown CM, Passamonti F. New era for myelofibrosis treatment with novel agents beyond Janus kinase-inhibitor monotherapy: Focus on clinical development of BCL-X L /BCL-2 inhibition with navitoclax. Cancer 2023; 129:3535-3545. [PMID: 37584267 DOI: 10.1002/cncr.34986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Myelofibrosis is a heterogeneous myeloproliferative neoplasm characterized by chronic inflammation, progressive bone marrow failure, and hepatosplenic extramedullary hematopoiesis. Treatments like Janus kinase inhibitor monotherapy (e.g., ruxolitinib) provide significant spleen and symptom relief but demonstrate limited ability to lead to a durable disease modification. There is an urgent unmet medical need for treatments with a novel mechanism of action that can modify the underlying pathophysiology and affect the disease course of myelofibrosis. This review highlights the role of B-cell lymphoma (BCL) protein BCL-extra large (BCL-XL ) in disease pathogenesis and the potential role that navitoclax, a BCL-extra large/BCL-2 inhibitor, may have in myelofibrosis treatment.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Andrew Perkins
- Australian Centre for Blood Diseases, Monash University, and the Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | - Francesco Passamonti
- Department of Oncology and Onco-Hematology, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol 2023; 13:1025373. [PMID: 36755813 PMCID: PMC9899847 DOI: 10.3389/fimmu.2022.1025373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)-5 proteins are required in immune regulation and homeostasis and play a crucial role in the development and function of several hematopoietic cells. STAT5b activation is involved in the expression of genes that participate in cell development, proliferation, and survival. STAT5a and STAT5b are paralogs and only human mutations in STAT5B have been identified leading to immune dysregulation and hematopoietic malignant transformation. The inactivating STAT5B mutations cause impaired post-natal growth, recurrent infections and immune dysregulation, whereas gain of function somatic mutations cause dysregulated allergic inflammation. These mutations are rare, and they are associated with a wide spectrum of clinical manifestations which provide a disease model elucidating the biological mechanism of STAT5 by studying the consequences of perturbations in STAT5 activity. Further, the use of Jak inhibitors as therapy for a variety of autoimmune and malignant disorders has increased substantially heading relevant lessons for the consequences of Jak/STAT immunomodulation from the human model. This review summarizes the biology of the STAT5 proteins, human disease associate with molecular defects in STAT5b, and the connection between aberrant activation of STAT5b and the development of certain cancers.
Collapse
Affiliation(s)
- Madison R. Smith
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States,*Correspondence: Alexander Vargas-Hernández,
| |
Collapse
|
13
|
Yao D, Guo D, Zhang Y, Chen Z, Gao X, Xing G, Yang X, Wang X, Di S, Cai J, Niu B. Identification of mutations in porcine STAT5A that contributes to the transcription of CISH. Front Vet Sci 2023; 9:1090833. [PMID: 36733428 PMCID: PMC9887310 DOI: 10.3389/fvets.2022.1090833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Identification of causative genes or genetic variants associated with phenotype traits benefits the genetic improvement of animals. CISH plays a role in immunity and growth, however, the upstream transcriptional factors of porcine CISH and the genetic variations in these factors remain unclear. In this study, we firstly identified the minimal core promoter of porcine CISH and confirmed the existence of STATx binding sites. Overexpression and RT-qPCR demonstrated STAT5A increased CISH transcriptional activity (P < 0.01) and mRNA expression (P < 0.01), while GATA1 inhibited CISH transcriptional activity (P < 0.01) and the following mRNA expression (P < 0.05 or P < 0.01). Then, the putative functional genetic variations of porcine STAT5A were screened and a PCR-SSCP was established for genotype g.508A>C and g.566C>T. Population genetic analysis showed the A allele frequency of g.508A>C and C allele frequency of g.566C>T was 0.61 and 0.94 in Min pigs, respectively, while these two alleles were fixed in the Landrace population. Statistical analysis showed that Min piglets with CC genotype at g.566C>T or Hap1: AC had higher 28-day body weight, 35-day body weight, and ADG than TC or Hap3: CT animals (P < 0.05, P < 0.05). Further luciferase activity assay demonstrated that the activity of g.508A>C in the C allele was lower than the A allele (P < 0.05). Collectively, the present study demonstrated that STAT5A positively regulated porcine CISH transcription, and SNP g.566C>T in the STAT5A was associated with the Min piglet growth trait.
Collapse
Affiliation(s)
- Diwen Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Yingkun Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhihua Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaowen Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guiling Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shengwei Di
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | | | - Buyue Niu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Buyue Niu ✉
| |
Collapse
|
14
|
Mendie LE, Hemalatha S. Bioactive Compounds from Nyctanthes arbor tristis Linn as Potential Inhibitors of Janus Kinases (JAKs) Involved in Rheumatoid Arthritis. Appl Biochem Biotechnol 2023; 195:314-330. [PMID: 36083429 DOI: 10.1007/s12010-022-04121-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Nyctanthes arbor tristis L (NAT) is one of the herbal plants whose parts are commonly used to treat diverse ailment including RA. Although the etiology of the autoimmune disorder RA is still unclear, actions of cytokines have been greatly associated with the mechanism of RA. Despite the huge development of drugs to combat this disorder, the search for alternative medicine is increasing due to the adverse effects of these synthetic drugs. Here, the ability of 30 selected bioactive compounds from the parts of NAT to bind effectively to target proteins of the Janus kinases as a potent inhibitor was predicted in an in silico manner through molecular docking procedure using Autodock 4.2.6 and their interactions visualized using Discovery Studio, followed by evaluating the physiochemical and ADMET properties of compounds of the lowest binding energy comparable to the reference drug baricitinib. Comparing the predicted target information with the standard drug baricitinib, 7 bioactive compounds may be potential lead drug for the treatment of RA owing to their lowest binding energy ranging from - 7.0 kcal/mol to - 10.49 kcal/mol and their pharmacokinetics properties. This can be used for further in vivo and in vitro studies to establish their potency as JAKs inhibitors to treat RA.
Collapse
Affiliation(s)
- Love Edet Mendie
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - S Hemalatha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India.
| |
Collapse
|
15
|
Awasthi N, Liongue C, Ward AC. STAT proteins: a kaleidoscope of canonical and non-canonical functions in immunity and cancer. J Hematol Oncol 2021; 14:198. [PMID: 34809691 PMCID: PMC8607625 DOI: 10.1186/s13045-021-01214-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
STAT proteins represent an important family of evolutionarily conserved transcription factors that play key roles in diverse biological processes, notably including blood and immune cell development and function. Classically, STAT proteins have been viewed as inducible activators of transcription that mediate cellular responses to extracellular signals, particularly cytokines. In this 'canonical' paradigm, latent STAT proteins become tyrosine phosphorylated following receptor activation, typically via downstream JAK proteins, facilitating their dimerization and translocation into the nucleus where they bind to specific sequences in the regulatory region of target genes to activate transcription. However, growing evidence has challenged this paradigm and identified alternate 'non-canonical' functions, such as transcriptional repression and roles outside the nucleus, with both phosphorylated and unphosphorylated STATs involved. This review provides a revised framework for understanding the diverse kaleidoscope of STAT protein functional modalities. It further discusses the implications of this framework for our understanding of STAT proteins in normal blood and immune cell biology and diseases such as cancer, and also provides an evolutionary context to place the origins of these alternative functional modalities.
Collapse
Affiliation(s)
- Nagendra Awasthi
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia. .,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
16
|
Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host-directed therapy of Mycobacterium tuberculosis and Salmonella enterica infections. Sci Rep 2021; 11:19634. [PMID: 34608194 PMCID: PMC8490354 DOI: 10.1038/s41598-021-98980-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The persistent increase of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) infections negatively impacts Tuberculosis treatment outcomes. Host-directed therapies (HDT) pose an complementing strategy, particularly since Mtb is highly successful in evading host-defense by manipulating host-signaling pathways. Here, we screened a library containing autophagy-modulating compounds for their ability to inhibit intracellular Mtb-bacteria. Several active compounds were identified, including two drugs of the diphenylbutylpiperidine-class, Fluspirilene and Pimozide, commonly used as antipsychotics. Both molecules inhibited intracellular Mtb in pro- as well as anti-inflammatory primary human macrophages in a host-directed manner and synergized with conventional anti-bacterials. Importantly, these inhibitory effects extended to MDR-Mtb strains and the unrelated intracellular pathogen, Salmonella enterica serovar Typhimurium (Stm). Mechanistically Fluspirilene and Pimozide were shown to regulate autophagy and alter the lysosomal response, partly correlating with increased bacterial localization to autophago(lyso)somes. Pimozide's and Fluspirilene's efficacy was inhibited by antioxidants, suggesting involvement of the oxidative-stress response in Mtb growth control. Furthermore, Fluspirilene and especially Pimozide counteracted Mtb-induced STAT5 phosphorylation, thereby reducing Mtb phagosome-localized CISH that promotes phagosomal acidification. In conclusion, two approved antipsychotic drugs, Pimozide and Fluspirilene, constitute highly promising and rapidly translatable candidates for HDT against Mtb and Stm and act by modulating the autophagic/lysosomal response by multiple mechanisms.
Collapse
|
17
|
Tomc J, Debeljak N. Molecular Pathways Involved in the Development of Congenital Erythrocytosis. Genes (Basel) 2021; 12:1150. [PMID: 34440324 PMCID: PMC8391844 DOI: 10.3390/genes12081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.
Collapse
Affiliation(s)
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
18
|
STAT5 as a Key Protein of Erythropoietin Signalization. Int J Mol Sci 2021; 22:ijms22137109. [PMID: 34281163 PMCID: PMC8268974 DOI: 10.3390/ijms22137109] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Erythropoietin (EPO) acts on multiple tissues through its receptor EPOR, a member of a cytokine class I receptor superfamily with pleiotropic effects. The interaction of EPO and EPOR triggers the activation of several signaling pathways that induce erythropoiesis, including JAK2/STAT5, PI3K/AKT, and MAPK. The canonical EPOR/JAK2/STAT5 pathway is a known regulator of differentiation, proliferation, and cell survival of erythroid progenitors. In addition, its role in the protection of other cells, including cancer cells, is under intense investigation. The involvement of EPOR/JAK2/STAT5 in other processes such as mRNA splicing, cytoskeleton reorganization, and cell metabolism has been recently described. The transcriptomics, proteomics, and epigenetic studies reviewed in this article provide a detailed understanding of EPO signalization. Advances in this area of research may be useful for improving the efficacy of EPO therapy in hematologic disorders, as well as in cancer treatment.
Collapse
|
19
|
Ryzhkova A, Battulin N. Genome Reorganization during Erythroid Differentiation. Genes (Basel) 2021; 12:genes12071012. [PMID: 34208866 PMCID: PMC8306769 DOI: 10.3390/genes12071012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
Hematopoiesis is a convenient model to study how chromatin dynamics plays a decisive role in regulation of cell fate. During erythropoiesis a population of stem and progenitor cells becomes increasingly lineage restricted, giving rise to terminally differentiated progeny. The concerted action of transcription factors and epigenetic modifiers leads to a silencing of the multipotent transcriptome and activation of the transcriptional program that controls terminal differentiation. This article reviews some aspects of the biology of red blood cells production with the focus on the extensive chromatin reorganization during differentiation.
Collapse
Affiliation(s)
- Anastasia Ryzhkova
- Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
20
|
Zhang YF, Wang YX, Zhang N, Lin ZH, Wang LR, Feng Y, Pan Q, Wang L. Prognostic alternative splicing regulatory network of RBM25 in hepatocellular carcinoma. Bioengineered 2021; 12:1202-1211. [PMID: 33830865 PMCID: PMC8806338 DOI: 10.1080/21655979.2021.1908812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RNA-binding motif protein 25 (RBM25) is a poorly characterized RNA-binding protein that is involved in several biological processes and regulates the proliferation and metastasis of tumor cells. The regulatory role of RBM25 in hepatocellular carcinoma (HCC) is unknown. Here, RBM25 expression and outcomes in HCC patients were evaluated using The Cancer Genome Atlas database. RBM25 was overexpressed in HCC patients compared with the healthy group. The high expression of RBM25 in tumor tissues was significantly related to poor overall survival (P<0.001). Overexpression of RBM25 significantly contributed to poorer survival in male patients and N0 stage patients (P<0.001). Spearman analysis and weighted gene co-expression network analysis identified 694 RBM25-related genes. Protein-protein interaction network analysis revealed the Cluster with the highest score, which positively correlated with RBM25. CDCA5 and INCENP were identified as the core functional genes related to RBM25. The overexpression of CDCA5 and INCENP in HCC patients was examined using the Human Protein Atlas database. The findings collectively indicated that RBM25 may interact with CDCA5 and INCENP to regulate HCC. Our detailed characterization of RBM25 protein interactions and related core functional genes provides a basis for further studies aimed at identifying molecular regulatory pathways or splicing events.
Collapse
Affiliation(s)
- Yong-Fa Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Xiu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning- Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen-Hai Lin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Long-Rong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun Feng
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Pan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
ABCG2 Is Overexpressed on Red Blood Cells in Ph-Negative Myeloproliferative Neoplasms and Potentiates Ruxolitinib-Induced Apoptosis. Int J Mol Sci 2021; 22:ijms22073530. [PMID: 33805426 PMCID: PMC8036917 DOI: 10.3390/ijms22073530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of disorders characterized by clonal expansion of abnormal hematopoietic stem cells leading to hyperproliferation of one or more myeloid lineages. The main complications in MPNs are high risk of thrombosis and progression to myelofibrosis and leukemia. MPN patients with high risk scores are treated by hydroxyurea (HU), interferon-α, or ruxolitinib, a tyrosine kinase inhibitor. Polycythemia vera (PV) is an MPN characterized by overproduction of red blood cells (RBCs). ABCG2 is a member of the ATP-binding cassette superfamily transporters known to play a crucial role in multidrug resistance development. Proteome analysis showed higher ABCG2 levels in PV RBCs compared to RBCs from healthy controls and an additional increase of these levels in PV patients treated with HU, suggesting that ABCG2 might play a role in multidrug resistance in MPNs. In this work, we explored the role of ABCG2 in the transport of ruxolitinib and HU using human cell lines, RBCs, and in vitro differentiated erythroid progenitors. Using stopped-flow analysis, we showed that HU is not a substrate for ABCG2. Using transfected K562 cells expressing three different levels of recombinant ABCG2, MPN RBCs, and cultured erythroblasts, we showed that ABCG2 potentiates ruxolitinib-induced cytotoxicity that was blocked by the ABCG2-specific inhibitor KO143 suggesting ruxolitinib intracellular import by ABCG2. In silico modeling analysis identified possible ruxolitinib-binding site locations within the cavities of ABCG2. Our study opens new perspectives in ruxolitinib efficacy research targeting cell types depending on ABCG2 expression and polymorphisms among patients.
Collapse
|
22
|
Mei Y, Liu Y, Ji P. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev 2021; 46:100740. [PMID: 32798012 DOI: 10.1016/j.blre.2020.100740] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
A characteristic feature of terminal erythropoiesis in mammals is extrusion of the highly condensed nucleus out of the cytoplasm. Other vertebrates, including fish, reptiles, amphibians, and birds, undergo nuclear condensation but do not enucleate. Enucleation provides mammals evolutionary advantages by gaining extra space for hemoglobin and being more flexible to migrate through capillaries. Nascent reticulocytes further mature into red blood cells through membrane and proteome remodeling and organelle clearance. Over the past decade, novel molecular mechanisms and signaling pathways have been uncovered that play important roles in chromatin condensation, enucleation, and reticulocyte maturation. These advances not only increase understanding of the physiology of erythropoiesis, but also facilitate efforts in generating in vitro red blood cells for various translational application. In the present review, recent studies in epigenetic modification and release of histones during chromatin condensation are highlighted. New insights in enucleation, including protein sorting, vesicle trafficking, transcriptional regulation, noncoding RNA, cytoskeleton remodeling, erythroblastic islands, and cytokinesis, are summarized. Moreover, organelle clearance and proteolysis mediated by ubiquitin-proteasome degradation during reticulocytes maturation is also examined. Perspectives for future directions in this rapidly evolving research area are also provided.
Collapse
Affiliation(s)
- Yang Mei
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Yijie Liu
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Peng Ji
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
23
|
Karayel Ö, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol 2020; 16:e9813. [PMID: 33259127 PMCID: PMC7706838 DOI: 10.15252/msb.20209813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Isabell Bludau
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Yu Yao
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Freitas Colaco Ana Rita
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
24
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
25
|
An induced pluripotent stem cell model of Fanconi anemia reveals mechanisms of p53-driven progenitor cell differentiation. Blood Adv 2020; 4:4679-4692. [PMID: 33002135 DOI: 10.1182/bloodadvances.2020001593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Fanconi anemia (FA) is a disorder of DNA repair that manifests as bone marrow (BM) failure. The lack of accurate murine models of FA has refocused efforts toward differentiation of patient-derived induced pluripotent stem cells (IPSCs) to hematopoietic progenitor cells (HPCs). However, an intact FA DNA repair pathway is required for efficient IPSC derivation, hindering these efforts. To overcome this barrier, we used inducible complementation of FANCA-deficient IPSCs, which permitted robust maintenance of IPSCs. Modulation of FANCA during directed differentiation to HPCs enabled the production of FANCA-deficient human HPCs that recapitulated FA genotoxicity and hematopoietic phenotypes relative to isogenic FANCA-expressing HPCs. FANCA-deficient human HPCs underwent accelerated terminal differentiation driven by activation of p53/p21. We identified growth arrest specific 6 (GAS6) as a novel target of activated p53 in FANCA-deficient HPCs and modulate GAS6 signaling to rescue hematopoiesis in FANCA-deficient cells. This study validates our strategy to derive a sustainable, highly faithful human model of FA, uncovers a mechanism of HPC exhaustion in FA, and advances toward future cell therapy in FA.
Collapse
|
26
|
Bhoopalan SV, Huang LJS, Weiss MJ. Erythropoietin regulation of red blood cell production: from bench to bedside and back. F1000Res 2020; 9:F1000 Faculty Rev-1153. [PMID: 32983414 PMCID: PMC7503180 DOI: 10.12688/f1000research.26648.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
More than 50 years of efforts to identify the major cytokine responsible for red blood cell (RBC) production (erythropoiesis) led to the identification of erythropoietin (EPO) in 1977 and its receptor (EPOR) in 1989, followed by three decades of rich scientific discovery. We now know that an elaborate oxygen-sensing mechanism regulates the production of EPO, which in turn promotes the maturation and survival of erythroid progenitors. Engagement of the EPOR by EPO activates three interconnected signaling pathways that drive RBC production via diverse downstream effectors and simultaneously trigger negative feedback loops to suppress signaling activity. Together, the finely tuned mechanisms that drive endogenous EPO production and facilitate its downstream activities have evolved to maintain RBC levels in a narrow physiological range and to respond rapidly to erythropoietic stresses such as hypoxia or blood loss. Examination of these pathways has elucidated the genetics of numerous inherited and acquired disorders associated with deficient or excessive RBC production and generated valuable drugs to treat anemia, including recombinant human EPO and more recently the prolyl hydroxylase inhibitors, which act partly by stimulating endogenous EPO synthesis. Ongoing structure-function studies of the EPOR and its essential partner, tyrosine kinase JAK2, suggest that it may be possible to generate new "designer" drugs that control selected subsets of cytokine receptor activities for therapeutic manipulation of hematopoiesis and treatment of blood cancers.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN, 38105, USA
| | - Lily Jun-shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN, 38105, USA
| |
Collapse
|
27
|
Harrington R, Al Nokhatha SA, Conway R. JAK Inhibitors in Rheumatoid Arthritis: An Evidence-Based Review on the Emerging Clinical Data. J Inflamm Res 2020; 13:519-531. [PMID: 32982367 PMCID: PMC7500842 DOI: 10.2147/jir.s219586] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
Janus kinase (JAK) Inhibitors are the latest drug class of disease-modifying medication to emerge for the treatment of rheumatoid arthritis (RA). They are a small molecule-targeted treatment and are the first oral option to compare favourably to existing biologic disease-modifying anti-rheumatic drugs (DMARDs). Tofacitinib, baricitinib and upadacitinib are the first 3 JAK inhibitors to become commercially available in the field and are the core focus of this review. To date, they have demonstrated comparable efficacy to tumour necrosis factor (TNF) inhibitors in terms of American College of Rheumatology (ACR) response rates and disease activity (DAS28) scores with similar cost to the benchmark adalimumab. This narrative review article aims to synthesise and distil the key available trial data on JAK inhibitor efficacy and safety, along with their place in the ACR and European League Against Rheumatism (EULAR) guidelines for RA. The novel mechanism of action of the JAK/STAT pathway is highlighted along with the potential effects of modulating each pathway. The rapid onset of action, role in attenuation of central pain processing and effect on structural damage and radiographic progression are also all examined in detail. We also explore the latest meta-analyses and comparative performance of each of the 3 available JAKs in an effort to determine which is most efficacious and which has the most favourable safety profile. Post marketing concerns regarding thromboembolism risk and herpes zoster infection are also discussed. Additionally, we review the cost-benefit analyses of the available JAK inhibitors and address some of the pharmacoeconomic considerations for real-world practice in the UK and US by detailing the raw acquisition cost and the value they provide in comparison to the benchmark biologic adalimumab and the anchor DMARD methotrexate.
Collapse
Affiliation(s)
| | | | - Richard Conway
- Department of Rheumatology, St. James’s Hospital, Dublin, Ireland
| |
Collapse
|
28
|
Fagnan A, Bagger FO, Piqué-Borràs MR, Ignacimouttou C, Caulier A, Lopez CK, Robert E, Uzan B, Gelsi-Boyer V, Aid Z, Thirant C, Moll U, Tauchmann S, Kurtovic-Kozaric A, Maciejewski J, Dierks C, Spinelli O, Salmoiraghi S, Pabst T, Shimoda K, Deleuze V, Lapillonne H, Sweeney C, De Mas V, Leite B, Kadri Z, Malinge S, de Botton S, Micol JB, Kile B, Carmichael CL, Iacobucci I, Mullighan CG, Carroll M, Valent P, Bernard OA, Delabesse E, Vyas P, Birnbaum D, Anguita E, Garçon L, Soler E, Schwaller J, Mercher T. Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers. Blood 2020; 136:698-714. [PMID: 32350520 PMCID: PMC8215330 DOI: 10.1182/blood.2019003062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.
Collapse
Affiliation(s)
- Alexandre Fagnan
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Frederik Otzen Bagger
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Swiss Institute of Bioinformatics, Basel, Basel, Switzerland
| | - Maria-Riera Piqué-Borràs
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Cathy Ignacimouttou
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Alexis Caulier
- Equipe d'Accueil (EA) 4666, Hématopoïèse et Immunologie (HEMATIM), Université de Picardie Jules Verne (UPJV), Amiens, France
- Service Hématologie Biologique, Centre Hospitalier Universitaire (CHU) Amiens, Amiens, France
| | - Cécile K Lopez
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Elie Robert
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Benjamin Uzan
- Unité Mixte de Recherche 967 (UMR 967), INSERM-Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut de Biologie François Jacob (IBFJ)/Institut de Radiobiologie Cellulaire et Moléculaire (IRCM)/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL)-Université Paris-Diderot-Université Paris-Sud, Fontenay-aux-Roses, France
| | - Véronique Gelsi-Boyer
- U1068 and
- UMR7258, Centre de Recherche en Cancérologie de Marseille, Centre National de la Recherche Scientifique (CNRS)/INSERM/Institut Paoli Calmettes/Aix-Marseille Université, Marseille, France
| | - Zakia Aid
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Cécile Thirant
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Ute Moll
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Samantha Tauchmann
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amina Kurtovic-Kozaric
- Clinical Center of the University of Sarajevo, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncologic Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Christine Dierks
- Hämatologie, Onkologie und Stammzelltransplantation, Klinik für Innere Medizin I, Freiburg, Germany
| | - Orietta Spinelli
- UOC Ematologia, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Silvia Salmoiraghi
- UOC Ematologia, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII Hospital, Bergamo, Italy
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Thomas Pabst
- Department of Oncology, Inselspital, University Hospital Bern/University of Bern, Bern, Switzerland
| | - Kazuya Shimoda
- Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Virginie Deleuze
- IGMM, University of Montpellier, CNRS, Montpellier, France
- Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | - Hélène Lapillonne
- Centre de Recherche Saint Antoine (CRSA)-Unité INSERM, Sorbonne Université/Assistance Publique-Hôpitaux de Paris (AP-HP)/Hôpital Trousseau, Paris, France
| | - Connor Sweeney
- Medical Research Council Molecular Haematology Unit (MRC MHU), Biomedical Research Centre (BRC) Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Véronique De Mas
- Team 16, Hematology Laboratory, Center of Research of Cancerology of Toulouse, U1037, INSERM/Institut Universitaire du Cancer de Toulouse (IUCT) Oncopole, Toulouse, France
| | - Betty Leite
- Genomic Platform, Unité Mixte de Service - Analyse Moléculaire, Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy/Université Paris-Saclay, Villejuif, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR-1184, Immunologie des Maladies Virales, Auto-immunes, Hématologiques et Bactériennes (IMVA-HB) and Infectious Disease Models and Innovative Therapies (IDMIT) Center, CEA/INSERM/Paris-Saclay University, Fontenay-aux-Roses, France
| | - Sébastien Malinge
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Stéphane de Botton
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jean-Baptiste Micol
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
| | - Benjamin Kile
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | | | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, PA
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I and
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Olivier A Bernard
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Eric Delabesse
- Team 16, Hematology Laboratory, Center of Research of Cancerology of Toulouse, U1037, INSERM/Institut Universitaire du Cancer de Toulouse (IUCT) Oncopole, Toulouse, France
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit (MRC MHU), Biomedical Research Centre (BRC) Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Birnbaum
- U1068 and
- UMR7258, Centre de Recherche en Cancérologie de Marseille, Centre National de la Recherche Scientifique (CNRS)/INSERM/Institut Paoli Calmettes/Aix-Marseille Université, Marseille, France
| | - Eduardo Anguita
- Hematology Department
- Instituto de Medicina de Laboratorio (IML), and
- Instituto de Investigación Sanitaria San Carlos, (IdISSC), Hospital Clínico San Carlos (HCSC), Madrid, Spain; and
- Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Loïc Garçon
- Equipe d'Accueil (EA) 4666, Hématopoïèse et Immunologie (HEMATIM), Université de Picardie Jules Verne (UPJV), Amiens, France
- Service Hématologie Biologique, Centre Hospitalier Universitaire (CHU) Amiens, Amiens, France
| | - Eric Soler
- IGMM, University of Montpellier, CNRS, Montpellier, France
- Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | - Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas Mercher
- Unité 1170 (U1170), INSERM, Gustave Roussy, Université Paris Diderot, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
29
|
Lakkavaram A, Lundie RJ, Do H, Ward AC, de Koning-Ward TF. Acute Plasmodium berghei Mouse Infection Elicits Perturbed Erythropoiesis With Features That Overlap With Anemia of Chronic Disease. Front Microbiol 2020; 11:702. [PMID: 32373101 PMCID: PMC7176981 DOI: 10.3389/fmicb.2020.00702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Severe malaria anemia is one of the most common causes of morbidity and mortality arising from infection with Plasmodium falciparum. The pathogenesis of malarial anemia is complex, involving both parasite and host factors. As mouse models of malaria also develop anemia, they can provide a useful resource to study the impact of Plasmodium infections and the resulting host innate immune response on erythropoiesis. In this study, we have characterized the bone marrow and splenic responses of the erythroid as well as other hematopoietic lineages after an acute infection of Balb/c mice with Plasmodium berghei. Such characterization of the hematopoietic changes is critical to underpin future studies, using knockout mice and transgenic parasites, to tease out the interplay between host genes and parasite modulators implicated in susceptibility to malaria anemia. P. berghei infection led to a clear perturbation of steady-state erythropoiesis, with the most profound defects in polychromatic and orthochromatic erythroblasts as well as erythroid colony- and burst-forming units (CFU-E and BFU-E), resulting in an inability to compensate for anemia. The perturbation in erythropoiesis was not attributable to parasites infecting erythroblasts and affecting differentiation, nor to insufficient erythropoietin (EPO) production or impaired activation of the Signal transducer and activator of transcription 5 (STAT5) downstream of the EPO receptor, indicating EPO-signaling remained functional in anemia. Instead, the results point to acute anemia in P. berghei-infected mice arising from increased myeloid cell production in order to clear the infection, and the concomitant release of pro-inflammatory cytokines and chemokines from myeloid cells that inhibit erythroid development, in a manner that resembles the pathophysiology of anemia of chronic disease.
Collapse
Affiliation(s)
- Asha Lakkavaram
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Rachel J Lundie
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hang Do
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
30
|
Ghetti M, Vannini I, Storlazzi CT, Martinelli G, Simonetti G. Linear and circular PVT1 in hematological malignancies and immune response: two faces of the same coin. Mol Cancer 2020; 19:69. [PMID: 32228602 PMCID: PMC7104523 DOI: 10.1186/s12943-020-01187-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Non coding RNAs (ncRNAs) have emerged as regulators of human carcinogenesis by affecting the expression of key tumor suppressor genes and oncogenes. They are divided into short and long ncRNAs, according to their length. Circular RNAs (circRNAs) are included in the second group and were recently discovered as being originated by back-splicing, joining either single or multiple exons, or exons with retained introns. The human Plasmacytoma Variant Translocation 1 (PVT1) gene maps on the long arm of chromosome 8 (8q24) and encodes for 52 ncRNAs variants, including 26 linear and 26 circular isoforms, and 6 microRNAs. PVT1 genomic locus is 54 Kb downstream to MYC and several interactions have been described among these two genes, including a feedback regulatory mechanism. MYC-independent functions of PVT1/circPVT1 have been also reported, especially in the regulation of immune responses. We here review and discuss the role of both PVT1 and circPVT1 in the hematopoietic system. No information is currently available concerning their transforming ability in hematopoietic cells. However, present literature supports their cooperation with a more aggressive and/or undifferentiated cell phenotype, thus contributing to cancer progression. PVT1/circPVT1 upregulation through genomic amplification or rearrangements and/or increased transcription, provides a proliferative advantage to malignant cells in acute myeloid leukemia, acute promyelocytic leukemia, Burkitt lymphoma, multiple myeloma (linear PVT1) and acute lymphoblastic leukemia (circPVT1). In addition, PVT1 and circPVT1 regulate immune responses: the overexpression of the linear form in myeloid derived suppressor cells induced immune tolerance in preclinical tumor models and circPVT1 showed immunosuppressive properties in myeloid and lymphoid cell subsets. Overall, these recent data on PVT1 and circPVT1 functions in hematological malignancies and immune responses reflect two faces of the same coin: involvement in cancer progression by promoting a more aggressive phenotype of malignant cells and negative regulation of the immune system as a novel potential therapy-resistance mechanism.
Collapse
Affiliation(s)
- Martina Ghetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Ivan Vannini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy.
| | | | - Giovanni Martinelli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| |
Collapse
|
31
|
Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V. STAT5A and STAT5B-Twins with Different Personalities in Hematopoiesis and Leukemia. Cancers (Basel) 2019; 11:E1726. [PMID: 31690038 PMCID: PMC6895831 DOI: 10.3390/cancers11111726] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factors STAT5A and STAT5B have essential roles in survival and proliferation of hematopoietic cells-which have been considered largely redundant. Mutations of upstream kinases, copy number gains, or activating mutations in STAT5A, or more frequently in STAT5B, cause altered hematopoiesis and cancer. Interfering with their activity by pharmacological intervention is an up-and-coming therapeutic avenue. Precision medicine requests detailed knowledge of STAT5A's and STAT5B's individual functions. Recent evidence highlights the privileged role for STAT5B over STAT5A in normal and malignant hematopoiesis. Here, we provide an overview on their individual functions within the hematopoietic system.
Collapse
Affiliation(s)
- Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Judith Pickem
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
32
|
Pim1 kinase positively regulates myoblast behaviors and skeletal muscle regeneration. Cell Death Dis 2019; 10:773. [PMID: 31601787 PMCID: PMC6787030 DOI: 10.1038/s41419-019-1993-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/18/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022]
Abstract
Adult skeletal muscle regeneration after injury depends on normal myoblast function. However, the intrinsic mechanisms for the control of myoblast behaviors are not well defined. Herein, we identified Pim1 kinase as a novel positive regulator of myoblast behaviors in vitro and muscle regeneration in vivo. Specifically, knockdown of Pim1 significantly restrains the proliferation and accelerates the apoptosis of myoblasts in vitro, indicating that Pim1 is critical for myoblast survival and amplification. Meanwhile, we found that Pim1 kinase is increased and translocated from cytoplasm into nucleus during myogenic differentiation. By using Pim1 kinase inhibitor, we proved that inhibition of Pim1 activity prevents myoblast differentiation and fusion, suggesting the necessity of Pim1 kinase activity for proper myogenesis. Mechanistic studies demonstrated that Pim1 kinase interacts with myogenic regulator MyoD and controls its transcriptional activity, inducing the expression of muscle-specific genes, which consequently promotes myogenic differentiation. Additionally, in skeletal muscle injury mouse model, deletion of Pim1 hinders the regeneration of muscle fibers and the recovery of muscle strength. Taken together, our study provides a potential target for the manipulation of myoblast behaviors in vitro and the myoblast-based therapeutics of skeletal muscle injury.
Collapse
|
33
|
STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv 2019; 2:2199-2213. [PMID: 30185437 DOI: 10.1182/bloodadvances.2018021063] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset of ALL, the most frequent childhood malignancy. Whereas interleukin-7 (IL-7) is essential for normal T-cell development, it can also accelerate T-ALL development in vivo and leukemia cell survival and proliferation by activating phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling. Here, we investigated whether STAT5 could also mediate IL-7 T-ALL-promoting effects. We show that IL-7 induces STAT pathway activation in T-ALL cells and that STAT5 inactivation prevents IL-7-mediated T-ALL cell viability, growth, and proliferation. At the molecular level, STAT5 is required for IL-7-induced downregulation of p27kip1 and upregulation of the transferrin receptor, CD71. Surprisingly, STAT5 inhibition does not significantly affect IL-7-mediated Bcl-2 upregulation, suggesting that, contrary to normal T-cells, STAT5 promotes leukemia cell survival through a Bcl-2-independent mechanism. STAT5 chromatin immunoprecipitation sequencing and RNA sequencing reveal a diverse IL-7-driven STAT5-dependent transcriptional program in T-ALL cells, which includes BCL6 inactivation by alternative transcription and upregulation of the oncogenic serine/threonine kinase PIM1 Pharmacological inhibition of PIM1 abrogates IL-7-mediated proliferation on T-ALL cells, indicating that strategies involving the use of PIM kinase small-molecule inhibitors may have therapeutic potential against a majority of leukemias that rely on IL-7 receptor (IL-7R) signaling. Overall, our results demonstrate that STAT5, in part by upregulating PIM1 activity, plays a major role in mediating the leukemia-promoting effects of IL-7/IL-7R.
Collapse
|
34
|
Muller R. JAK inhibitors in 2019, synthetic review in 10 points. Eur J Intern Med 2019; 66:9-17. [PMID: 31178258 DOI: 10.1016/j.ejim.2019.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/03/2023]
Abstract
JAK inhibitors are recent treatments. Many publications have appeared in recent years, exposing treatment efficiencies in phases 2 and 3 studies, or their tolerance profile in various rheumatological diseases. We propose here a systematic review of JAK inhibitors, from their mechanism of physiological action up to the estimation of their current risk benefit balance, and their possible future applications. In order to better synthesize the data, we organized this review into 10 essential points. 1- What is the role of JAK/Stat pathway? 2- How can a single signaling pathway regulate as many different signals? 3- What are the commercialized JAK inhibitors and their validated indications in humans today? 4- What is the level of efficiency of JAK inhibitors in inflammatory diseases? 5- What is the delay of efficiency of JAK inhibitors? 6- Where is the place of JAK inhibitors in the therapeutic strategy today? 7- What is the infectious tolerance profile of JAK inhibitors? 8- What is the non-infectious safety profile of JAK inhibitors? 9- What is the cost of JAK inhibitors compared to other DMARDs? 10- What future prospects for JAK inhibitors?
Collapse
Affiliation(s)
- Romain Muller
- Internal medecine, Assistance Publique-Hôpitaux de Marseille (AP-HM), France.
| |
Collapse
|
35
|
Integrative view on how erythropoietin signaling controls transcription patterns in erythroid cells. Curr Opin Hematol 2019; 25:189-195. [PMID: 29389768 DOI: 10.1097/moh.0000000000000415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Erythropoietin (EPO) is necessary and sufficient to trigger dynamic transcriptional patterns that drive the differentiation of erythroid precursor cells into mature, enucleated red cells. Because the molecular cloning and Food and Drug Administration approval for the therapeutic use of EPO over 30 years ago, a detailed understanding of how EPO works has advanced substantially. Yet, the precise epigenetic and transcriptional mechanisms by which EPO signaling controls erythroid expression patterns remains poorly understood. This review focuses on the current state of erythroid biology in regards to EPO signaling from human genetics and functional genomics perspectives. RECENT FINDINGS The goal of this review is to provide an integrative view of the gene regulatory underpinnings for erythroid expression patterns that are dynamically shaped during erythroid differentiation. Here, we highlight vignettes connecting recent insights into a genome-wide association study linking an EPO mutation to anemia, a study linking EPO-signaling to signal transducer and activator of transcription 5 (STAT5) chromatin occupancy and enhancers, and studies that examine the molecular mechanisms driving topological chromatin organization in erythroid cells. SUMMARY The genetic, epigenetic, and gene regulatory mechanisms underlying how hormone signal transduction influences erythroid gene expression remains only partly understood. A detailed understanding of these molecular pathways and how they intersect with one another will provide the basis for novel strategies to treat anemia and potentially other hematological diseases. As new regulators and signal transducers of EPO-signaling continue to emerge, new clinically relevant targets may be identified that improve the specificity and effectiveness of EPO therapy.
Collapse
|
36
|
Transferrin receptor 2 is a potential novel therapeutic target for β-thalassemia: evidence from a murine model. Blood 2018; 132:2286-2297. [PMID: 30209118 DOI: 10.1182/blood-2018-05-852277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
β-thalassemias are genetic disorders characterized by anemia, ineffective erythropoiesis, and iron overload. Current treatment of severe cases is based on blood transfusion and iron chelation or allogeneic bone marrow (BM) transplantation. Novel approaches are explored for nontransfusion-dependent patients (thalassemia intermedia) who develop anemia and iron overload. Here, we investigated the erythropoietin (EPO) receptor partner, transferrin receptor 2 (TFR2), as a novel potential therapeutic target. We generated a murine model of thalassemia intermedia specifically lacking BM Tfr2: because their erythroid cells are more susceptible to EPO stimulation, mice show improved erythropoiesis and red blood cell morphology as well as partial correction of anemia and iron overload. The beneficial effects become attenuated over time, possibly due to insufficient iron availability to sustain the enhanced erythropoiesis. Germ line deletion of Tfr2, including haploinsufficiency, had a similar effect in the thalassemic model. Because targeting TFR2 enhances EPO-mediated effects exclusively in cells expressing both receptors, this approach may have advantages over erythropoiesis-stimulating agents in the treatment of other anemias.
Collapse
|
37
|
Nébor D, Graber JH, Ciciotte SL, Robledo RF, Papoin J, Hartman E, Gillinder KR, Perkins AC, Bieker JJ, Blanc L, Peters LL. Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. Sci Rep 2018; 8:12793. [PMID: 30143664 PMCID: PMC6109071 DOI: 10.1038/s41598-018-30839-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Anemic Nan mice carry a mutation (E339D) in the second zinc finger of erythroid transcription factor KLF1. Nan-KLF1 fails to bind a subset of normal KLF1 targets and ectopically binds a large set of genes not normally engaged by KLF1, resulting in a corrupted fetal liver transcriptome. Here, we performed RNAseq using flow cytometric-sorted spleen erythroid precursors from adult Nan and WT littermates rendered anemic by phlebotomy to identify global transcriptome changes specific to the Nan Klf1 mutation as opposed to anemia generally. Mutant Nan-KLF1 leads to extensive and progressive transcriptome corruption in adult spleen erythroid precursors such that stress erythropoiesis is severely compromised. Terminal erythroid differentiation is defective in the bone marrow as well. Principle component analysis reveals two major patterns of differential gene expression predicting that defects in basic cellular processes including translation, cell cycle, and DNA repair could contribute to disordered erythropoiesis and anemia in Nan. Significant erythroid precursor stage specific changes were identified in some of these processes in Nan. Remarkably, however, despite expression changes in large numbers of associated genes, most basic cellular processes were intact in Nan indicating that developing red cells display significant physiological resiliency and establish new homeostatic set points in vivo.
Collapse
Affiliation(s)
| | - Joel H Graber
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,MDI Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | | | | | - Julien Papoin
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Emily Hartman
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Kevin R Gillinder
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Andrew C Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - James J Bieker
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Lionel Blanc
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | | |
Collapse
|
38
|
EPO does not promote interaction between the erythropoietin and beta-common receptors. Sci Rep 2018; 8:12457. [PMID: 30127368 PMCID: PMC6102255 DOI: 10.1038/s41598-018-29865-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
A direct interaction between the erythropoietin (EPOR) and the beta-common (βc) receptors to form an Innate Repair Receptor (IRR) is controversial. On one hand, studies have shown a functional link between EPOR and βc receptor in tissue protection while others have shown no involvement of the βc receptor in tissue repair. To date there is no biophysical evidence to confirm a direct association of the two receptors either in vitro or in vivo. We investigated the existence of an interaction between the extracellular regions of EPOR and the βc receptor in silico and in vitro (either in the presence or absence of EPO or EPO-derived peptide ARA290). Although a possible interaction between EPOR and βc was suggested by our computational and genomic studies, our in vitro biophysical analysis demonstrates that the extracellular regions of the two receptors do not specifically associate. We also explored the involvement of the βc receptor gene (Csf2rb) under anaemic stress conditions and found no requirement for the βc receptor in mice. In light of these studies, we conclude that the extracellular regions of the EPOR and the βc receptor do not directly interact and that the IRR is not involved in anaemic stress.
Collapse
|
39
|
Moore KS, von Lindern M. RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Front Physiol 2018; 9:910. [PMID: 30087616 PMCID: PMC6066521 DOI: 10.3389/fphys.2018.00910] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell’s actual protein requirement. The 5′ and 3′ untranslated regions of mRNA (5′UTR, 3′UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5′UTR by translation complexes or may help to recruit translation factors. In addition, the term 5′UTR is not fully correct because many transcripts contain small open reading frames in their 5′UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5′UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
40
|
Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev 2018; 32:130-143. [PMID: 29054350 PMCID: PMC5882559 DOI: 10.1016/j.blre.2017.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Erythropoiesis is a dynamic process regulated at multiple levels to balance proliferation, differentiation and survival of erythroid progenitors. Ineffective erythropoiesis is a key feature of various diseases, including β-thalassemia. The pathogenic mechanisms leading to ineffective erythropoiesis are complex and still not fully understood. Altered survival and decreased differentiation of erythroid progenitors are both critical processes contributing to reduced production of mature red blood cells. Recent studies have identified novel important players and provided major advances in the development of targeted therapeutic approaches. In this review, β-thalassemia is used as a paradigmatic example to describe our current knowledge on the mechanisms leading to ineffective erythropoiesis and novel treatments that may have the potential to improve the clinical phenotype of associated diseases in the future.
Collapse
Affiliation(s)
- Paraskevi Rea Oikonomidou
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA.
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group (CAMB), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|