1
|
Larrinaga G, Solano-Iturri JD, Arrieta-Aguirre I, Valdivia A, Lecumberri D, Iturregui AM, Lawrie CH, Armesto M, Dorado JF, Nunes-Xavier CE, Pulido R, López JI, Angulo JC. Prognostic and Therapeutic Implications of Alamandine Receptor MrgD Expression in Clear Cell Renal Cell Carcinoma with Development of Metastatic Disease. Biomolecules 2025; 15:387. [PMID: 40149923 PMCID: PMC11939982 DOI: 10.3390/biom15030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Despite advances in the management of advanced clear cell renal cell carcinoma (ccRCC), robust biomarkers for prognosis and therapeutic response prediction remain elusive. Dysregulation of the intrarenal renin-angiotensin system (RAS) has been implicated in renal carcinogenesis but little explored, particularly regarding biomarker discovery and therapeutic innovation. Consequently, this study investigates the immunohistochemical expression and clinical relevance of the Mas-related G-protein-coupled receptor D (MrgD) in patients with ccRCC who developed metastatic disease (mccRCC). A cohort of 132 patients treated between 2008 and 2018 with nephrectomy and tyrosine kinase inhibitor (TKI)-based sequential therapy was analyzed. Treatment response was assessed using both the MASS and RECIST scoring systems. High MrgD expression in primary tumors was significantly associated with larger size, advanced stage, higher histological grade, and worse overall survival. Among 81 patients with metachronous metastases, high MrgD expression independently predicted shorter disease-free survival. High MrgD staining intensity correlated with poorer TKI responses in first-line therapy but improved outcomes with second-line mTORC1 inhibitors. These findings suggest that MrgD may be a useful biomarker of RAS linked to tumor aggressiveness in ccRCC. MrgD holds potential for identifying high-risk patients and guiding treatment selection in advanced disease. Further research is needed to unlock its clinical potential.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/therapy
- Carcinoma, Renal Cell/genetics
- Male
- Female
- Middle Aged
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/therapy
- Kidney Neoplasms/genetics
- Aged
- Prognosis
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Neoplasm Metastasis
- Protein Kinase Inhibitors/therapeutic use
- Adult
- Aged, 80 and over
- Nephrectomy
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
| | - Jon Danel Solano-Iturri
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Pathology Department, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Inés Arrieta-Aguirre
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Asier Valdivia
- Department of Cellular Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - David Lecumberri
- Department of Urology, Cruces University Hospital, 48903 Barakaldo, Spain; (D.L.); (A.M.I.)
| | - Ane Miren Iturregui
- Department of Urology, Cruces University Hospital, 48903 Barakaldo, Spain; (D.L.); (A.M.I.)
| | - Charles H. Lawrie
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (C.H.L.); (M.A.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201800, China
| | - María Armesto
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (C.H.L.); (M.A.)
| | - Juan F. Dorado
- PeRTICA Statistical Solutions, Pl. Constitución, 2, 28943 Fuenlabrada, Spain;
| | - Caroline E. Nunes-Xavier
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - Rafael Pulido
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - José I. López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28905 Getafe, Spain;
| |
Collapse
|
2
|
Chang Q, Zhao S, Sun J, Guo W, Yang L, Qiu L, Zhang N, Fan Y, Liu J. Identification of a novel prognostic and therapeutic prediction model in clear cell renal carcinoma based on Renin-angiotensin system related genes. Front Endocrinol (Lausanne) 2025; 16:1521940. [PMID: 40099255 PMCID: PMC11911175 DOI: 10.3389/fendo.2025.1521940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background Clear cell renal cell carcinoma is the most predominant type of renal malignancies, characterized by high aggressiveness and probability of distant metastasis. Renin angiotensin system (RAS) plays a crucial role in maintaining fluid balance within the human body, and its involvement in tumorigenesis is increasingly being uncovered, while its role in ccRCC remains unclear. Methods WGCNA was used to identify RAS related genes. Machine learning was applied to screen hub genes for constructing risk model, E-MTAB-1980 dataset was used for external validation. Transwell and CCK8 assays were used to investigate the impact of SLC6A19 to ccRCC cells. Results SLC6A19, SLC16A12 and SMIM24 were eventually screened to construct risk model and the predictive efficiency for prognosis was validated by internal and external cohorts. Moreover, the differences were found in pathway enrichment, immune cell infiltration, mutational landscapes and drug prediction between high and low risk groups. Experimental results indicated that SLC6A19 could inhibit invasion and proliferation of ccRCC cells and GSEA pinpointed that SLC6A19 was intimately correlated with fatty acid metabolism and CPT1A. Conclusion The risk model based on the three RAS-related genes have a robust ability to predict the prognosis and drug sensitivity of ccRCC patients, further providing a valid instruction for clinical care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Somova M, Simm S, Ehrhardt J, Schoon J, Burchardt M, Pinto PC. SARS-CoV-2 Spike Protein Amplifies the Immunogenicity of Healthy Renal Epithelium in the Presence of Renal Cell Carcinoma. Cells 2024; 13:2038. [PMID: 39768130 PMCID: PMC11674446 DOI: 10.3390/cells13242038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer, known for its immune evasion and resistance to chemotherapy. Evidence indicates that the SARS-CoV-2 virus may worsen outcomes for RCC patients, as well as patients with diminished renal function. Evidence suggests that the SARS-CoV-2 virus may exacerbate outcomes in RCC patients and those with impaired renal function. This study explored the unidirectional effects of RCC cells and the SARS-CoV-2 spike protein (S protein) on human renal proximal tubule epithelial cells (RPTECs) using a microphysiological approach. We co-cultured RCC cells (Caki-1) with RPTEC and exposed them to the SARS-CoV-2 S protein under dynamic 3D conditions. The impact on metabolic activity, gene expression, immune secretions, and S protein internalization was evaluated. The SARS-CoV-2 S protein was internalized by RPTEC but poorly interacted with RCC cells. RPTECs exposed to RCC cells and the S protein exhibited upregulated expression of genes involved in immunogenic pathways, particularly those related to antigen processing and presentation via the major histocompatibility complex I (MHCI). Additionally, increased TNF-α secretion suggested a pro-inflammatory response. Metabolic shifts toward glycolysis were observed in RCC co-culture, while the presence of the S protein led to minor changes. The presence of RCC cells amplified the immune-modulatory effects of the SARS-CoV-2 S protein on the renal epithelium, potentially exacerbating renal inflammation and fostering tumor-supportive conditions. These findings suggest that COVID-19 infections can impact renal function in the presence of kidney cancer.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/virology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Kidney Neoplasms/immunology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/virology
- SARS-CoV-2/immunology
- COVID-19/immunology
- COVID-19/virology
- COVID-19/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/virology
- Epithelial Cells/immunology
- Kidney Tubules, Proximal/immunology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Cell Line, Tumor
- Epithelium/metabolism
- Epithelium/virology
- Epithelium/pathology
- Coculture Techniques
- Kidney/pathology
- Kidney/virology
- Kidney/immunology
- Kidney/metabolism
Collapse
Affiliation(s)
- Maryna Somova
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475 Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Fleischmannstraße 8, 17475 Greifswald, Germany
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Fleischmannstraße 8, 17475 Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Fleischmannstraße 8, 17475 Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475 Greifswald, Germany
| | - Pedro Caetano Pinto
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475 Greifswald, Germany
| |
Collapse
|
4
|
Larrinaga G, Valdivia A, Arrieta-Aguirre I, Solano-Iturri JD, Ugalde-Olano A, Loizaga-Iriarte A, Santos-Martín A, Pérez-Fernández A, Angulo JC, López JI. The Expression of Alamandine Receptor MrgD in Clear Cell Renal Cell Carcinoma Is Associated with a Worse Prognosis and Unfavorable Response to Antiangiogenic Therapy. Int J Mol Sci 2024; 25:1499. [PMID: 38338778 PMCID: PMC10855800 DOI: 10.3390/ijms25031499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Renal cell carcinoma (RCC) ranks among the most prevalent malignancies in Western countries, marked by its notable heterogeneity, which contributes to an unpredictable clinical trajectory. The insufficiency of dependable biomarkers adds complexity to assessing this tumor progression. Imbalances of several components of the intrarenal renin-angiotensin system (iRAS) significantly impact patient prognoses and responses to first-line immunotherapies. In this study, we analyzed the immunohistochemical expression of the Mas-related G-protein-coupled receptor D (MrgD), which recognizes the novel RAS peptide alamandine (ALA), in a series of 87 clear cell renal cell (CCRCCs), 19 papillary (PRCC), 7 chromophobe (ChRCC) renal cell carcinomas, and 11 renal oncocytomas (RO). MrgD was expressed in all the renal tumor subtypes, with a higher mean staining intensity in the PRCCs, ChRCCs, and ROs. A high expression of MrgD at the tumor center and at the infiltrative front of CCRCC tissues was significantly associated with a high histological grade, large tumor diameter, local invasion, and locoregional node and distant metastasis. Patients with worse 5-year cancer-specific survival and a poorer response to antiangiogenic tyrosine-kinase inhibitors (TKIs) showed higher MrgD expression at the center of their primary tumors. These findings suggest a possible role of MrgD in renal carcinogenetic processes. Further studies are necessary to unveil its potential as a novel biomarker for CCRCC prognosis and response to frontline therapies.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (A.U.-O.); (A.L.-I.); (A.S.-M.); (A.P.-F.); (J.I.L.)
| | - Asier Valdivia
- Department of Cellular Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Inés Arrieta-Aguirre
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Jon Danel Solano-Iturri
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (A.U.-O.); (A.L.-I.); (A.S.-M.); (A.P.-F.); (J.I.L.)
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Aitziber Ugalde-Olano
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (A.U.-O.); (A.L.-I.); (A.S.-M.); (A.P.-F.); (J.I.L.)
- Department of Pathology, Basurto University Hospital, 48903 Barakaldo, Spain
| | - Ana Loizaga-Iriarte
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (A.U.-O.); (A.L.-I.); (A.S.-M.); (A.P.-F.); (J.I.L.)
- Department of Urology, Basurto University Hospital, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
| | - Aida Santos-Martín
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (A.U.-O.); (A.L.-I.); (A.S.-M.); (A.P.-F.); (J.I.L.)
- Department of Urology, Basurto University Hospital, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
| | - Amparo Pérez-Fernández
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (A.U.-O.); (A.L.-I.); (A.S.-M.); (A.P.-F.); (J.I.L.)
- Department of Urology, Basurto University Hospital, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28905 Getafe, Spain;
- Department of Urology, University Hospital of Getafe, 28907 Madrid, Spain
| | - José I. López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (A.U.-O.); (A.L.-I.); (A.S.-M.); (A.P.-F.); (J.I.L.)
| |
Collapse
|
5
|
Rehman A, Fatima I, Wang Y, Tong J, Noor F, Qasim M, Peng Y, Liao M. Unveiling the multi-target compounds of Rhazya stricta: Discovery and inhibition of novel target genes for the treatment of clear cell renal cell carcinoma. Comput Biol Med 2023; 165:107424. [PMID: 37717527 DOI: 10.1016/j.compbiomed.2023.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a prevalent kidney malignancy with a pressing need for innovative therapeutic strategies. In this context, emerging research has focused on exploring the medicinal potential of plants such as Rhazya stricta. Nevertheless, the complex molecular mechanisms underlying its potential therapeutic efficacy remain largely elusive. Our study employed an integrative approach comprising data mining,network pharmacology,tissue cell type analysis, and molecular modelling approaches to identify potent phytochemicals from R. stricta, with potential relevance for ccRCC treatments. Initially, we collected data on R. stricta's phytochemical from public databases. Subsequently, we integrated this information with differentially expressed genes (DEGs) in ccRCC, which were derived from microarray datasets(GSE16441,GSE66270, and GSE76351). We identified potential intersections between R. stricta and ccRCC targets, which enabled us to construct a compound-genes-pathway network using Cytoscape software. This helped illuminate R. stricta's multi-target pharmacological effects on ccRCC. Moreover, tissue cell type analysis added another layer of insight into the cellular specificity of potential therapeutic targets in the kidney. Through further Kaplan-Meier survival analysis, we pinpointed MMP9,ACE,ERBB2, and HSP90AA1 as prospective diagnostic and prognostic biomarkers for ccRCC. Notably, our study underscores the potential of R. stricta derived compounds-namely quebrachamine,corynan-17-ol, stemmadenine,strictanol,rhazinilam, and rhazimolare-to impede ccRCC progression by modulating the activity of MMP9,ACE,ERBB2, and HSP90AA1 genes. Further, molecular docking and dynamic simulations confirmed the plausible binding affinities of these compounds. Despite these promising findings, we recognize the need for comprehensive in vivo and in vitro studies to further investigate the pharmacokinetics and biosafety profiles of these compounds.
Collapse
Affiliation(s)
- Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinuo Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiapei Tong
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Pakistan
| | - Yuzhong Peng
- Key Lab of Scientific Computing and Intelligent Information Processing in Universities of Guangxi, Nanning Normal University, Nanning, 530001, China.
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Wu H, Sun Y, Yang J, Gao Z, Shen H, Li M, Wang D, Tang Y. Iron deficiency downregulates ENPEP to promote angiogenesis in liver tumors. J Nutr Biochem 2023; 117:109357. [PMID: 37085059 DOI: 10.1016/j.jnutbio.2023.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
The abnormal iron metabolism in liver cancer leads to iron deficiency in tumor tissues. We previously found that iron deficiency promoted liver cancer metastasis, but the mechanisms were not fully understood. In the present study, we identified that the angiogenesis-associated glutamyl aminopeptidase (ENPEP) was consistently decreased in iron-deficient liver tissues, iron-deficient liver tumors, and iron-deprived liver cancer cells. Interestingly, the lower expression of ENPEP was correlated with the poor prognosis of liver cancer patients, while the biomarkers of angiogenesis, CD31 and CD34, were increased in tumor tissues. In vivo imaging of liver-orthotopically implanted and tail vein-injected liver cancer cells showed that iron deficiency increased the pulmonary metastasis of liver cancer. The angiogenesis in iron-deficient tumors was enhanced, and the expression of ENPEP was decreased. Silencing ENPEP expression increased the migration of liver cancer cells and the proliferation of cocultured HUVECs. By sequence analysis, we found that the transcription factor SP1 possessed abundant binding sites in the ENPEP promoter region. Its combination with ENPEP promoters was verified by chromatin immunoprecipitation. The inhibition of SP1 by mithramycin A effectively restored the expression of ENPEP, which was decreased by iron deficiency. In conclusion, these results revealed that iron deficiency in liver tumors decreased the expression of ENPEP by SP1 and increased the angiogenesis and metastasis of liver tumors, which further explained the mechanism by which iron deficiency promoted liver cancer metastasis.
Collapse
Affiliation(s)
- Huiwen Wu
- Department of Nutrition, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Sun
- Department of Nutrition, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Yang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Zelong Gao
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Yuxiao Tang
- Department of Nutrition, Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Zhang Q, Liu T, Ding J, Zhou N, Yu Z, Ren Y, Qin X, Du P, Yang Z, Zhu H. Evaluation of 68Ga- and 177Lu-Labeled HZ20 Angiotensin-Converting Enzyme 2-Targeting Peptides for Tumor-Specific Imaging. Mol Pharm 2022; 19:4149-4156. [PMID: 36198565 DOI: 10.1021/acs.molpharmaceut.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is closely related to tumor formation. We developed the radiolabeled peptide pair 68Ga/177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated DX600 (68Ga/177Lu-HZ20), for the targeting and mapping of ACE2-overexpressing tumors. 68Ga/177Lu-HZ20 was prepared with a routine labeling method. HepG2ACE2+/HepG2WT cell lines were used to evaluate the specificity of 68Ga/177Lu-HZ20. Pharmacokinetics, biodistribution, and micro-PET/CT and -SPECT/CT imaging were performed, and radiation dosimetry was estimated. Immunohistochemistry (IHC) staining was performed to assess the expression of ACE2 in tumors. The radiolabeling yields of 68Ga/177Lu-HZ20 were 88.49 ± 8.57% (n > 10) and 84.71 ± 9.75% (n > 10), with specific activities of (18.74 ± 3.72) × 106 and (17.85 ± 1.62) × 106 GBq/mol, respectively. 68Ga/177Lu-HZ20 showed significant differences in the cellular uptake of HepG2ACE2+/HepG2WT cells and fast clearance in KM mice. Moreover, HepG2ACE2+ tumors were clearly visualized in 68Ga/177Lu-HZ20 micro-PET/SPECT images. Based on micro-PET/CT, the standard uptake value (SUVmax) of HepG2ACE2+ tumors was 0.66 ± 0.02 at 30 min postinjection, IHC confirmed the high expression of ACE2 in HepG2ACE2+ tumors. In PET/CT images, the SUVmean of volunteer 1 was higher than the 18F-FDG value in the same lesion. 68Ga/177Lu-HZ20 was successfully obtained and showed high and specific uptake in tumors overexpressing ACE2. They may serve as paired probes for ACE2-targeting theranostics.
Collapse
Affiliation(s)
- Qian Zhang
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China.,Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ziyi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of education/Beijing), Department of Urology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yanan Ren
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China
| | - Xue Qin
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China
| | - Peng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of education/Beijing), Department of Urology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhi Yang
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China.,Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China.,Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
8
|
Larrinaga G, Calvete-Candenas J, Solano-Iturri JD, Martín AM, Pueyo A, Nunes-Xavier CE, Pulido R, Dorado JF, López JI, Angulo JC. (Pro)renin Receptor Is a Novel Independent Prognostic Marker in Invasive Urothelial Carcinoma of the Bladder. Cancers (Basel) 2021; 13:cancers13225642. [PMID: 34830803 PMCID: PMC8616163 DOI: 10.3390/cancers13225642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary This is a novel description of (Pro)renin receptor (PRR) protein and its prognostic role in invasive urothelial cancer of the bladder. Using a tissue microarray, we investigated PRR expression and other immunohistochemical markers including p53, immune-checkpoint inhibition, and basal and luminal phenotypes in a series of patients with invasive urothelial carcinoma of the bladder treated with radical cystectomy. PRR expression is an independent prognostic marker and could be a potential target in urothelial carcinoma that should be further investigated. Abstract (Pro)renin receptor (PRR) is being investigated in several malignancies as it activates pathogenic pathways that contribute to cell proliferation, immunosuppressive microenvironments, and acquisition of aggressive neoplastic phenotypes. Its implication in urothelial cancer (UC) has not been evaluated so far. We retrospectively evaluate the prognostic role of PRR expression in a series of patients with invasive UC treated with radical cystectomy and other clinical and histopathological parameters including p53, markers of immune-checkpoint inhibition, and basal and luminal phenotypes evaluated by tissue microarray. Cox regression analyses using stepwise selection evaluated candidate prognostic factors and disease-specific survival. PRR was expressed in 77.3% of the primary tumors and in 70% of positive lymph nodes. PRR expression correlated with age (p = 0.006) and was associated with lower preoperatively hemoglobin levels. No other statistical association was evidenced with clinical and pathological variables (gender, ASA score, Charlson comorbidity index, grade, pT, pN) or immunohistochemical expressions evaluated (CK20, GA-TA3, CK5/6, CD44, PD-L1, PD-1, B7-H3, VISTA, and p53). PRR expression in primary tumors was associated with worse survival (log-rank, p = 0.008). Cox regression revealed that PRR expression (HR 1.85, 95% CI 1.22–2.8), pT (HR 7.02, 95% CI 2.68–18.39), pN (HR 2.3, 95% CI 1.27–4.19), and p53 expression (HR 1.95, 95% CI 1.1–3.45) were independent prognostic factors in this series. In conclusion, we describe PRR protein and its prognostic role in invasive UC for the first time. Likely mechanisms involved are MAPK/ERK activation, Wnt/β-catenin signaling, and v-ATPAse function.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Correspondence:
| | | | - Jon Danel Solano-Iturri
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Service of Pathology, Donostia University Hospital, 20014 San Sebastian, Spain
| | - Ana M. Martín
- Service of Pathology, University Hospital of Getafe, 28905 Madrid, Spain;
| | - Angel Pueyo
- Foundation for Biomedical Research and Innovation of University Hospitals Infanta Leonor and South-East, 28003 Madrid, Spain;
- Heath Science PhD Program, UCAM Universidad Católica San Antonio de Murcia, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Ikerbasque, The Basque Foundation for Science, 48011 Bilbao, Spain
| | | | - José I. López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28005 Madrid, Spain;
- Department of Urology, University Hospital of Getafe, 28907 Madrid, Spain
| |
Collapse
|
9
|
Viral Membrane Fusion Proteins and RNA Sorting Mechanisms for the Molecular Delivery by Exosomes. Cells 2021; 10:cells10113043. [PMID: 34831268 PMCID: PMC8622164 DOI: 10.3390/cells10113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
The advancement of precision medicine critically depends on the robustness and specificity of the carriers used for the targeted delivery of effector molecules in the human body. Numerous nanocarriers have been explored in vivo, to ensure the precise delivery of molecular cargos via tissue-specific targeting, including the endocrine part of the pancreas, thyroid, and adrenal glands. However, even after reaching the target organ, the cargo-carrying vehicle needs to enter the cell and then escape lysosomal destruction. Most artificial nanocarriers suffer from intrinsic limitations that prevent them from completing the specific delivery of the cargo. In this respect, extracellular vesicles (EVs) seem to be the natural tool for payload delivery due to their versatility and low toxicity. However, EV-mediated delivery is not selective and is usually short-ranged. By inserting the viral membrane fusion proteins into exosomes, it is possible to increase the efficiency of membrane recognition and also ease the process of membrane fusion. This review describes the molecular details of the viral-assisted interaction between the target cell and EVs. We also discuss the question of the usability of viral fusion proteins in developing extracellular vesicle-based nanocarriers with a higher efficacy of payload delivery. Finally, this review specifically highlights the role of Gag and RNA binding proteins in RNA sorting into EVs.
Collapse
|
10
|
Wang T, Xie F, Li YH, Liang B. Downregulation of ACE2 is associated with advanced pathological features and poor prognosis in clear cell renal cell carcinoma. Future Oncol 2021; 17:5033-5044. [PMID: 34704468 DOI: 10.2217/fon-2020-1164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: The aim of this study was to explore the alteration in ACE2 expression and correlation between ACE2 expression and immune infiltration in clear cell renal cell carcinoma (ccRCC). Methods: The authors first analyzed the expression profiles and prognostic value of ACE2 in ccRCC patients using The Cancer Genome Atlas public database. The authors used ESTIMATE and CIBERSORT algorithms to analyze the correlation between ACE2 expression and tumor microenvironment in ccRCC samples. Results: ACE2 was correlated with sex, distant metastasis, clinical stage, tumor T stage and histological grade. Moreover, downregulation of ACE2 was correlated with unfavorable prognosis. In addition, ACE2 expression was associated with different immune cell subtypes. Conclusion: The authors' analyses suggest that ACE2 plays an important role in the development and progression of ccRCC and may serve as a potential prognostic biomarker in ccRCC patients.
Collapse
Affiliation(s)
- Tianjiao Wang
- Bioinformatics Department, Key Laboratory of Cell Biology, Ministry of Public Health & Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Fang Xie
- Medical Basic Experimental Teaching Center, China Medical University, Shenyang 110122, China
| | - Yun-Hui Li
- Department of Clinical Laboratory, General Hospital of PLA Northern Theater Command, Shenyang 110016, China
| | - Bin Liang
- Bioinformatics Department, Key Laboratory of Cell Biology, Ministry of Public Health & Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
11
|
Cui Y, Chen F, Gao J, Lei M, Wang D, Jin X, Guo Y, Shan L, Chen X. Comprehensive landscape of the renin-angiotensin system in Pan-cancer: a potential downstream mediated mechanism of SARS-CoV-2. Int J Biol Sci 2021; 17:3795-3817. [PMID: 34671200 PMCID: PMC8495399 DOI: 10.7150/ijbs.53312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background: SARS-CoV-2, the cause of the worldwide COVID-19 pandemic, utilizes the mechanism of binding to ACE2 (a crucial component of the renin-angiotensin system [RAS]), subsequently mediating a secondary imbalance of the RAS family and leading to severe injury to the host. However, very few studies have been conducted to reveal the mechanism behind the effect of SARS-CoV-2 on tumors. Methods: Demographic data extracted from 33 cancer types and over 10,000 samples were employed to determine the comprehensive landscape of the RAS. Expression distribution, pretranscriptional and posttranscriptional regulation and posttranslational modifications (PTMs) as well as genomic alterations, DNA methylation and m6A modification were analyzed in both tissue and cell lines. The clinical phenotype, prognostic value and significance of the RAS during immune infiltration were identified. Results: Low expression of AGTR1 was common in tumors compared to normal tissues, while very low expression of AGTR2 and MAS1 was detected in both tissues and cell lines. Differential expression patterns of ACE in ovarian serous cystadenocarcinoma (OV) and kidney renal clear cell carcinoma (KIRC) were correlated with ubiquitin modification involving E3 ligases. Genomic alterations of the RAS family were infrequent across TCGA pan-cancer program, and ACE had the highest alteration frequency compared with other members. Low expression of AGTR1 may result from hypermethylation in the promoter. Downregulation of RAS family was linked to higher clinical stage and worse survival (as measured by disease-specific survival [DSS], overall survival [OS] or progression-free interval [PFI]), especially for ACE2 and AGTR1 in KIRC. ACE-AGTR1, a classical axis of the RAS family related to immune infiltration, was positively correlated with M2-type macrophages, cancer-associated fibroblasts (CAFs) and immune checkpoint genes in most cancers. Conclusion: ACE, ACE2, AGT and AGTR1 were differentially expressed in 33 types of cancers. PTM of RAS family was found to rely on ubiquitination. ACE2 and AGTR1 might serve as independent prognostic factors for LGG and KIRC. SARS-CoV-2 might modify the tumor microenvironment by regulating the RAS family, thus affecting the biological processes of cancer.
Collapse
Affiliation(s)
- Yuqing Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Fengzhi Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Jiayi Gao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Mengxia Lei
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Dandan Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xiaoying Jin
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yan Guo
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Liying Shan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| |
Collapse
|
12
|
Xu Y, Kong D, Li Z, Qian L, Li J, Zou C. Screening and identification of key biomarkers of papillary renal cell carcinoma by bioinformatic analysis. PLoS One 2021; 16:e0254868. [PMID: 34358255 PMCID: PMC8345835 DOI: 10.1371/journal.pone.0254868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/05/2021] [Indexed: 12/05/2022] Open
Abstract
Background Papillary renal cell carcinoma (PRCC) is the most common type of renal cell carcinoma after clear cell renal cell carcinoma (ccRCC). Its pathological classification is controversial, and its molecular mechanism is poorly understood. Therefore, the identification of key genes and their biological pathways is of great significance to elucidate the molecular mechanisms of PRCC occurrence and progression. Methods The PRCC-related datasets GSE7023, GSE48352 and GSE15641 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, and gene ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Cytoscape and STRING were used to construct the protein-protein interaction network (PPI) and perform module analysis to identify hub genes and key pathways. A heatmap of hub genes was constructed using the UCSC cancer genomics browser. Overall survival and recurrence-free survival of patients stratified by the expression levels of hub genes were analysed using Kaplan-Meier Plotter. The online database UALCAN was applied to analyse gene expression based on tissue type, stage, subtype and race. Results A total of 214 DEGs, specifically, 205 downregulated genes and 9 upregulated genes, were identified. The DEGs were mainly enriched in angiogenesis, kidney development, oxidation-reduction process, metabolic pathways, etc. The 17 hub genes identified were mainly enriched in the biological processes of angiogenesis, cell adhesion, platelet degranulation, and leukocyte transendothelial migration. Survival analysis showed that EGF, KDR, CXCL12, REN, PECAM1, CDH5, THY1, WT1, PLAU and DCN might be related to the carcinogenesis, metastasis or recurrence of PRCC. UALCAN analysis showed that low expression of PECAM1 and PLAU in PRCC tissues was related to stage, subtype and race. Conclusions The DEGs and hub genes identified in the present study provide insight into the specific molecular mechanisms of PRCC occurrence and development and may be potential molecular markers and therapeutic targets for the accurate classification and efficient diagnosis and treatment of PRCC.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Nephrology, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Deyang Kong
- Department of Nephrology, Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
- * E-mail: (CZ); (DK)
| | - Zhongtang Li
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Lingling Qian
- Department of Nephrology, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Junchao Li
- Department of Vasculocardiology Deparment, Taizhou Clinical Medical College of Nanjing Medical University (Taizhou People’s Hospital), Taizhou, Jiangsu, People’s Republic of China
| | - Chunbo Zou
- Department of Nephrology, Taizhou Clinical Medical College of Nanjing Medical University (Taizhou People’s Hospital), Taizhou, Jiangsu, People’s Republic of China
- * E-mail: (CZ); (DK)
| |
Collapse
|
13
|
Khanna P, Soh HJ, Chen CH, Saxena R, Amin S, Naughton M, Joslin PN, Moore A, Bakouny Z, O'Callaghan C, Catalano P, Signoretti S, McKay R, Choueiri TK, Bhasin M, Walther T, Bhatt RS. ACE2 abrogates tumor resistance to VEGFR inhibitors suggesting angiotensin-(1-7) as a therapy for clear cell renal cell carcinoma. Sci Transl Med 2021; 13:13/577/eabc0170. [PMID: 33472951 DOI: 10.1126/scitranslmed.abc0170] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
Angiotensin converting enzyme 2 (ACE2) is an enzyme that belongs to the renin-angiotensin system (RAS) and antagonizes the classical angiotensin (Ang) II/angiotensin II receptor type 1 (AT1) receptor pathway. Here, we report that higher ACE2 expression correlates with better overall survival in patients with clear cell renal cell carcinoma (ccRCC). Moreover, ACE2 has inhibitory effects on tumor proliferation in ccRCC in vitro and in preclinical animal models of ccRCC. We further show that Ang-(1-7), a heptapeptide generated by ACE2, is the likely mediator of this effect. Vascular endothelial growth factor receptor-tyrosine kinase inhibitor (VEGFR-TKI) treatment of ccRCC xenografts decreased ACE2 expression, and combination treatment with VEGFR-TKI and Ang-(1-7) generated additive suppression of tumor growth and improved survival outcomes. Last, the addition of Ang-(1-7) to programmed death-ligand 1 (PD-L1) pathway inhibitor and VEGFR-TKI showed further growth suppression in an immunocompetent RCC model. Together, these results suggest that targeting the ACE2/Ang-(1-7) axis is a promising therapeutic strategy against ccRCC.
Collapse
Affiliation(s)
- Prateek Khanna
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA
| | - Hong Jie Soh
- Department of Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| | - Chun-Hau Chen
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ruchi Saxena
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Seema Amin
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Maura Naughton
- Department of Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| | - Patrick Neset Joslin
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Moore
- Department of Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Carol O'Callaghan
- Department of Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| | - Paul Catalano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rana McKay
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine and Biotechnology and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Thomas Walther
- Department of Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland. .,Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald 17489, Germany
| | - Rupal S Bhatt
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
14
|
NHERF4 hijacks Mas-mediated PLC/AKT signaling to suppress the invasive potential of clear cell renal cell carcinoma cells. Cancer Lett 2021; 519:130-140. [PMID: 34216689 DOI: 10.1016/j.canlet.2021.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
The Mas receptor has been reported to promote migration and invasion of clear cell renal cell carcinoma (ccRCC) cells via Ang-(1-7)-dependent AKT signaling. However, the mechanism underlying the regulation of Mas function remains unknown. Here, eight PDZ domain-containing proteins were identified as Mas interactors using surface plasmon resonance (SPR) coupled to mass spectrometry (MS). NHERF4 was the only downregulated gene across multiple independent ccRCC datasets. GST pull-down and co-immunoprecipitation assays confirmed physical interaction between NHERF4 and Mas. Using NHERF4 overexpression and knockdown assays, we found that NHERF4 inhibited Mas-induced migration, invasion and in vivo metastasis of ccRCC cells. Mechanistically, NHERF4 suppressed Mas-stimulated AKT phosphorylation and the PLC/Ca2+ response. We further demonstrated that NHERF4 compromised Mas-mediated migration and invasion of ccRCC cells via regulation of the PLC/AKT signaling axis. Analysis of the ccRCC dataset revealed that low levels of NHERF4 expression were correlated with higher TNM stage, and independently predicted poor prognosis of ccRCC patients. Overall, our study identified NHERF4 as a novel regulator of ccRCC invasiveness, and a prognostic biomarker, which may be beneficial for determining optimal therapeutic strategies for ccRCC patients.
Collapse
|
15
|
Mariappan V, Manoharan PS, R P, Shanmugam L, Rao SR, Pillai AB. Potential biomarkers for the early prediction of SARS-COV-2 disease outcome. Microb Pathog 2021; 158:105057. [PMID: 34153419 PMCID: PMC8215377 DOI: 10.1016/j.micpath.2021.105057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
The current pandemic due to the fast spreading of SARS-CoV-2 infection has caused severe impairment in health, social, economic, scientific, and medical sectors across the globe. Owing to the not so well understood mechanism of disease pathogenesis in terms of variations in immune responses, there remains obscure why some of the patients who are infected by the novel SARS-CoV-2 develop an unpredictable clinical course that rapidly causes severe and deadly complications/manifestations. Currently, several assays are available for the confirmation of SARS-CoV-2 infection at the point of care. However, none of these assays can predict the severity of the COVID-19 disease. Thus, the identification of a prognostic biomarker that forecasts the condition of SARS-CoV-2 patients to develop a severe form of the disease could enable the clinicians for more efficient patient triage and treatment. In this regard, the present review describes the role of selected biomolecules that are crucially involved in the immune-pathogenesis of SARS-CoV-2 infection such as hyper-immune responsiveness, bradykinin storm and vascular leakage assuming these may serve as an effective prognostic biomarker in COVID-19 to understand the outcome of the disease. Based on the review, we also propose the development of a cost-effective SERS-based prognostic biosensor for the detection and quantification of biomolecules for use as a point-of-care system during a disease outbreak.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - P S Manoharan
- Indira Gandhi Institute of Dental Science (IGIDS), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Pajanivel R
- Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Lokesh Shanmugam
- Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - S R Rao
- Vice-President (Research, Innovation & Development), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| |
Collapse
|
16
|
Tang Q, Wang Y, Ou L, Li J, Zheng K, Zhan H, Gu J, Zhou G, Xie S, Zhang J, Huang W, Wang S, Wang X. Downregulation of ACE2 expression by SARS-CoV-2 worsens the prognosis of KIRC and KIRP patients via metabolism and immunoregulation. Int J Biol Sci 2021; 17:1925-1939. [PMID: 34131396 PMCID: PMC8193256 DOI: 10.7150/ijbs.57802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) allow entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells and play essential roles in cancer therapy. However, the functions of ACE2 and TMPRSS2 in kidney cancer remain unclear, especially as kidneys are targets for SARS-CoV-2 infection. Methods: UCSC Xena project, the Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases (GSE30589 and GSE59185) were searched for gene expression in human tissues, gene expression data, and clinical information. Several bioinformatics methods were utilized to analyze the correlation between ACE2 and TMPRSS2 with respect to the prognosis of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP). Results: ACE2 expression was significantly upregulated in tumor tissue, while its downregulation was associated with low survival in KIRC and KIRP patients. TMPRSS2 was downregulated in KIRC and KIRP, and its expression was not correlated with patient survival. According to clinical risk factor-based prediction models, ACE2 exhibits predictive accuracy for kidney cancer prognosis and is correlated with metabolism and immune infiltration. In an animal model, ACE2 expression was remarkably downregulated in SARS-CoV-2-infected cells compared to in the control. Conclusion: ACE2 expression is highly correlated with various metabolic pathways and is involved in immune infiltration.it plays a crucial role than TMPRSS2 in diagnosing and prognosis of kidney cancer patients. The overlap in ACE2 expression between kidney cancer and SARS-CoV-2 infection suggests that patients with KIRC or KIRP are at high risk of developing serious symptoms.
Collapse
MESH Headings
- Adult
- Aged
- Angiotensin-Converting Enzyme 2/biosynthesis
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/physiology
- Animals
- COVID-19/complications
- Carcinoma, Renal Cell/complications
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/mortality
- Chlorocebus aethiops
- Down-Regulation
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Kaplan-Meier Estimate
- Kidney Neoplasms/complications
- Kidney Neoplasms/immunology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/mortality
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Middle Aged
- Models, Animal
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Organ Specificity
- Prognosis
- Proportional Hazards Models
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- Renin-Angiotensin System/physiology
- SARS-CoV-2
- Serine Endopeptidases/biosynthesis
- Serine Endopeptidases/genetics
- Serine Endopeptidases/physiology
- Tissue Array Analysis
- Vero Cells
Collapse
Affiliation(s)
- Qian Tang
- School of Pharmacy, Jinan University, Guangzhou 510630, China
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yue Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518000, China
| | - Ling Ou
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jieling Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518000, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518000, China
| | - Hui Zhan
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jiayu Gu
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Guibao Zhou
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jianping Zhang
- School of Pharmacy, Jinan University, Guangzhou 510630, China
| | - Wei Huang
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518000, China
| | - Xiao Wang
- School of Pharmacy, Jinan University, Guangzhou 510630, China
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| |
Collapse
|
17
|
Yim J, Lim HH, Kwon Y. COVID-19 and pulmonary fibrosis: therapeutics in clinical trials, repurposing, and potential development. Arch Pharm Res 2021; 44:499-513. [PMID: 34047940 PMCID: PMC8161353 DOI: 10.1007/s12272-021-01331-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
In 2019, an unprecedented disease named coronavirus disease 2019 (COVID-19) emerged and spread across the globe. Although the rapid transmission of COVID-19 has resulted in thousands of deaths and severe lung damage, conclusive treatment is not available. However, three COVID-19 vaccines have been authorized, and two more will be approved soon, according to a World Health Organization report on December 12, 2020. Many COVID-19 patients show symptoms of acute lung injury that eventually leads to pulmonary fibrosis. Our aim in this article is to present the relationship between pulmonary fibrosis and COVID-19, with a focus on angiotensin converting enzyme-2. We also evaluate the radiological imaging methods computed tomography (CT) and chest X-ray (CXR) for visualization of patient lung condition. Moreover, we review possible therapeutics for COVID-19 using four categories: treatments related and unrelated to lung disease and treatments that have and have not entered clinical trials. Although many treatments have started clinical trials, they have some drawbacks, such as short-term and small-group testing, that need to be addressed as soon as possible.
Collapse
Affiliation(s)
- Joowon Yim
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Republic of Korea
| | - Hee Hyun Lim
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Nakagawa H, Kumazawa T, Onoue K, Nakada Y, Nakano T, Ishihara S, Minamino N, Hosoda H, Iwata N, Ueda T, Seno A, Nishida T, Soeda T, Okayama S, Watanabe M, Kawakami R, Saito Y. Local Action of Neprilysin Exacerbates Pressure Overload Induced Cardiac Remodeling. Hypertension 2021; 77:1931-1939. [PMID: 33840200 DOI: 10.1161/hypertensionaha.120.16445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hitoshi Nakagawa
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Takuya Kumazawa
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Kenji Onoue
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Yasuki Nakada
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Tomoya Nakano
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Satomi Ishihara
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Naoto Minamino
- Omics Research Center (N.M.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroshi Hosoda
- Departments of Regenerative Medicine and Tissue Engineering (H.H.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Nobuhisa Iwata
- Department of Genome-based Drug Discovery, Nagasaki University, Japan (N.I.)
| | - Tomoya Ueda
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Ayako Seno
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Taku Nishida
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Tsunenari Soeda
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Satoshi Okayama
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Makoto Watanabe
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Rika Kawakami
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Yoshihiko Saito
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| |
Collapse
|
19
|
Siljee S, Milne B, Brasch HD, Bockett N, Patel J, Davis PF, Kennedy-Smith A, Itinteang T, Tan ST. Expression of Components of the Renin-Angiotensin System by Cancer Stem Cells in Renal Clear Cell Carcinoma. Biomolecules 2021; 11:537. [PMID: 33916968 PMCID: PMC8067590 DOI: 10.3390/biom11040537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022] Open
Abstract
This study investigated the expression of components of the renin-angiotensin system (RAS) by cancer stem cells (CSCs) we have recently demonstrated in renal clear cell carcinoma (RCCC). Fifteen RCCC tissue samples underwent immunohistochemical staining for components of the RAS: renin, pro-renin receptor (PRR), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), and angiotensin II receptor 2 (AT2R). Immunofluorescence co-staining or double immunohistochemical staining of these components of the RAS with stemness-associated markers OCT4 or KLF4 was performed on two of the samples. Protein and transcript expression of these components of the RAS in six RCCC tissue samples was investigated using western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, angiotensin II receptor 1 (AT1R) was investigated using RT-qPCR only. Immunohistochemical staining demonstrated expression of renin, PRR, and ACE2 in 11, 13, and 13 out of 15 RCCC samples, respectively, while AT2R was expressed in all 15 samples. ACE was detected in the endothelium of normal vasculature only. Double immunohistochemical staining demonstrated localization of ACE2, but not renin, to the KLF4+ CSCs. Immunofluorescence staining showed localization of PRR and AT2R to the OCT4+ CSCs. Western blotting confirmed protein expression of all components of the RAS except renin. RT-qPCR demonstrated transcript expression of all components of the RAS including AT1R, but not AT2R, in all six RCCC tissue samples. This study demonstrated expression of PRR, ACE2, and AT2R by the CSCs within RCCC. Further studies may lead to novel therapeutic targeting of CSCs by manipulation of the RAS in the treatment of this aggressive cancer.
Collapse
Affiliation(s)
- Sam Siljee
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Bridget Milne
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Helen D. Brasch
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Nicholas Bockett
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Josie Patel
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Andrew Kennedy-Smith
- Department of Urology, Wellington Regional Hospital, Wellington 6021, New Zealand;
| | - Tinte Itinteang
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (S.S.); (B.M.); (H.D.B.); (N.B.); (J.P.); (P.F.D.); (T.I.)
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
20
|
Matsuishi Y, Mathis BJ, Shimojo N, Subrina J, Okubo N, Inoue Y. Severe COVID-19 Infection Associated with Endothelial Dysfunction Induces Multiple Organ Dysfunction: A Review of Therapeutic Interventions. Biomedicines 2021; 9:279. [PMID: 33801921 PMCID: PMC7999560 DOI: 10.3390/biomedicines9030279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, the SARS-CoV-2 (COVID-19) pandemic has transfixed the medical world. COVID-19 symptoms vary from mild to severe and underlying chronic conditions such as pulmonary/cardiovascular disease and diabetes induce excessive inflammatory responses to COVID-19 and these underlying chronic diseases are mediated by endothelial dysfunction. Acute respiratory distress syndrome (ARDS) is the most common cause of death in COVID-19 patients, but coagulation induced by excessive inflammation, thrombosis, and disseminated intravascular coagulation (DIC) also induce death by multiple-organ dysfunction syndrome. These associations imply that maintaining endothelial integrity is crucial for favorable prognoses with COVID-19 and therapeutic intervention to support this may be beneficial. Here, we summarize the extent of heart injuries, ischemic stroke and hemorrhage, acute kidney injury, and liver injury caused by immune-mediated endothelial dysfunction that result in the phenomenon of multi-organ dysfunction seen in COVID-19 patients. Moreover, the potential therapeutic effect of angiotensin receptor blockers and angiotensin-converting enzyme inhibitors that improve endothelial dysfunction as well as the bradykinin storm are discussed.
Collapse
Affiliation(s)
- Yujiro Matsuishi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (N.S.); (Y.I.)
- Pediatric Intensive Care Unit, University of Tsukuba Hospital, Tsukuba 305-8571, Japan
- Health & Diseases Research Center for Rural Peoples (HDRCRP), Dhaka 1205, Bangladesh;
| | - Bryan J. Mathis
- Medical English Communication Center, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8571, Japan;
| | - Nobutake Shimojo
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (N.S.); (Y.I.)
| | - Jesmin Subrina
- Health & Diseases Research Center for Rural Peoples (HDRCRP), Dhaka 1205, Bangladesh;
| | - Nobuko Okubo
- Neuroscience Nursing, St. Luke’s International University, Tokyo 104-0044, Japan;
| | - Yoshiaki Inoue
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (N.S.); (Y.I.)
| |
Collapse
|
21
|
COVID-19 engages clinical markers for the management of cancer and cancer-relevant regulators of cell proliferation, death, migration, and immune response. Sci Rep 2021; 11:5228. [PMID: 33664395 PMCID: PMC7933131 DOI: 10.1038/s41598-021-84780-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Clinical reports show that the management of cancer patients infected with SARS-CoV-2 requires modifications. Understanding of cancer-relevant mechanisms engaged by the virus is essential for the evidence-based management of cancer. The network of SARS-CoV-2 regulatory mechanisms was used to study potential engagement of oncogenes, tumor suppressors, other regulators of tumorigenesis and clinical markers used in the management of cancer patients. Our network analysis confirms links between COVID-19 and tumorigenesis that were predicted in epidemiological reports. The COVID-19 network shows the involvement of tumorigenesis regulators and clinical markers. Regulators of cell proliferation, death, migration, and the immune system were retrieved. Examples are pathways initiated by EGF, VEGF, TGFβ and FGF. The SARS-CoV-2 network engages markers for diagnosis, prognosis and selection of treatment. Intersection with cancer diagnostic signatures supports a potential impact of the virus on tumorigenesis. Clinical observations show the diversity of symptoms correlating with biological processes and types of cells engaged by the virus, e.g. epithelial, endothelial, smooth muscle, glial and immune system cells. Our results describe an extensive engagement of cancer-relevant mechanisms and clinical markers by COVID-19. Engagement by the virus of clinical markers provides a rationale for clinical decisions based on these markers.
Collapse
|
22
|
Solano-Iturri JD, Echevarría E, Unda M, Loizaga-Iriarte A, Pérez-Fernández A, Angulo JC, López JI, Larrinaga G. Clinical Implications of (Pro)renin Receptor (PRR) Expression in Renal Tumours. Diagnostics (Basel) 2021; 11:272. [PMID: 33578778 PMCID: PMC7916453 DOI: 10.3390/diagnostics11020272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
(1) Background: Renal cancer is one of the most frequent malignancies in Western countries, with an unpredictable clinical outcome, partly due to its high heterogeneity and the scarcity of reliable biomarkers of tumour progression. (Pro)renin receptor (PRR) is a novel receptor of the renin-angiotensin system (RAS) that has been associated with the development and progression of some solid tumours by RAS-dependent and -independent mechanisms. (2) Methods: In this study, we analysed the immunohistochemical expression of PRR at the centre and border in a series of 83 clear-cell renal cell (CCRCCs), 19 papillary (PRCC) and 7 chromophobe (ChRCC) renal cell carcinomas, and the benign tumour renal oncocytoma (RO, n = 11). (3) Results: PRR is expressed in all the tumour subtypes, with higher mean staining intensity in ChRCCs and ROs. A high expression of PRR at the tumour centre and at the infiltrative front of CCRCC tissues is significantly associated with high grade, tumour diameter, local invasion and stage, and with high mortality risk by UCLA integrated staging system (UISS) scale. (4) Conclusions: These findings indicate that PRR is associated with the development and progression of renal tumours. Its potential as a novel biomarker for RCC diagnosis/prognosis and as a promising therapeutic target should be taken into account in the future.
Collapse
Affiliation(s)
- Jon Danel Solano-Iturri
- Department of Pathology, Donostia University Hospital, 20014 Donostia/San Sebastian, Spain;
- Department of Medical-Surgical Specialities, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Enrique Echevarría
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Miguel Unda
- Department of Urology, Basurto University Hospital, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain; (M.U.); (A.L.-I.); (A.P.-F.)
| | - Ana Loizaga-Iriarte
- Department of Urology, Basurto University Hospital, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain; (M.U.); (A.L.-I.); (A.P.-F.)
| | - Amparo Pérez-Fernández
- Department of Urology, Basurto University Hospital, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain; (M.U.); (A.L.-I.); (A.P.-F.)
| | - Javier C. Angulo
- Clinical Department. Faculty of Medical Sciences. European University of Madrid, 28905 Getafe, Spain;
| | - José I. López
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Gorka Larrinaga
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
23
|
Seco-Calvo J, Sánchez-Herráez S, Casis L, Valdivia A, Perez-Urzelai I, Gil J, Echevarría E. Synovial fluid peptidase activity as a biomarker for knee osteoarthritis clinical progression. Bone Joint Res 2020; 9:789-797. [PMID: 33174472 PMCID: PMC7672324 DOI: 10.1302/2046-3758.911.bjr-2020-0022.r2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS To analyze the potential role of synovial fluid peptidase activity as a measure of disease burden and predictive biomarker of progression in knee osteoarthritis (KOA). METHODS A cross-sectional study of 39 patients (women 71.8%, men 28.2%; mean age of 72.03 years (SD 1.15) with advanced KOA (Ahlbäck grade ≥ 3 and clinical indications for arthrocentesis) recruited through the (Orthopaedic Department at the Complejo Asistencial Universitario de León, Spain (CAULE)), measuring synovial fluid levels of puromycin-sensitive aminopeptidase (PSA), neutral aminopeptidase (NAP), aminopeptidase B (APB), prolyl endopeptidase (PEP), aspartate aminopeptidase (ASP), glutamyl aminopeptidase (GLU) and pyroglutamyl aminopeptidase (PGAP). RESULTS Synovial fluid peptidase activity varied significantly as a function of clinical signs, with differences in levels of PEP (p = 0.020), ASP (p < 0.001), and PGAP (p = 0. 003) associated with knee locking, PEP (p = 0.006), ASP (p = 0.001), GLU (p = 0.037), and PGAP (p = 0.000) with knee failure, and PEP (p = 0.006), ASP (p = 0.001), GLU (p = 0.037), and PGAP (p < 0.001) with knee effusion. Further, patients with the greatest functional impairment had significantly higher levels of APB (p = 0.005), PEP (p = 0.005), ASP (p = 0.006), GLU (p = 0.020), and PGAP (p < 0.001) activity, though not of NAP or PSA, indicating local alterations in the renin-angiotensin system. A binary logistic regression model showed that PSA was protective (p = 0.005; Exp (B) 0.949), whereas PEP (p = 0.005) and GLU were risk factors (p = 0.012). CONCLUSION These results suggest synovial fluid peptidase activity could play a role as a measure of disease burden and predictive biomarker of progression in KOA. Cite this article: Bone Joint Res 2020;9(11):789-797.
Collapse
Affiliation(s)
- Jesús Seco-Calvo
- Institute of Biomedicine (IBIOMED), University of León, University of the Basque Country, León, Spain
| | - Sergio Sánchez-Herráez
- Servicio de Cirugía y Traumatología Ortopédica, Complejo Asistencial Universitario de León (CAULE), León, Spain
| | - Luis Casis
- Department of Physiology, Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | - Asier Valdivia
- Department of Physiology, Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | - Itxaro Perez-Urzelai
- Department of Physiology, Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | - Javier Gil
- Department of Physiology, Faculty of Medicine, University of the Basque Country, Leioa, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| | - Enrique Echevarría
- Department of Physiology, Faculty of Medicine, University of the Basque Country, Leioa, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
24
|
Song J, Han J, Liu F, Chen X, Qian S, Wang Y, Jia Z, Duan X, Zhang X, Zhu J. Systematic Analysis of Coronavirus Disease 2019 (COVID-19) Receptor ACE2 in Malignant Tumors: Pan-Cancer Analysis. Front Mol Biosci 2020; 7:569414. [PMID: 33195415 PMCID: PMC7649796 DOI: 10.3389/fmolb.2020.569414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) was first detected in patients with pneumonia in December 2019 in China and it spread rapidly to the rest of the world becoming a global pandemic. Several observational studies have reported that cancer is a risk factor for COVID-19. On the other hand, ACE2, a receptor for the SARS-CoV-2 virus, was found to be aberrantly expressed in many tumors. However, the characterization of aberrant ACE2 expression in malignant tumors has not been elucidated. Here, we conducted a systematic analysis of the ACE2 expression profile across 31 types of tumors. Methods Distribution of ACE2 expression was analyzed using the GTEx, CCLE, TCGA pan-cancer databases. We evaluated the effect of ACE2 on clinical prognosis using the Kaplan-Meier survival plot and COX regression analysis. Correlation between ACE2 and immune infiltration levels was investigated in various cancer types. Additionally, the correlation between ACE2 and immune neoantigen, TMB, microsatellite instability, Mismatch Repair Genes (MMRs), HLA gene members, and DNA Methyltransferase (DNMT) was investigated. The frequency of ACE2 gene mutation in various tumors was analyzed. Functional enrichment analysis was conducted in various cancer types using the GSEA method. Results In normal tissues, ACE2 was highly expressed in almost all 31 organs tested. In cancer cell lines, the expression level of ACE2 was low to medium. Although aberrant expression was observed in most cancer types, high expression of ACE2 was not linked to OS, DFS, RFS, and DFI in most tumors in TCGA pan-cancer data. We found that ACE2 expression was significantly correlated with the infiltrating levels of macrophages and dendritic cells, CD4+ T cells, CD8+ T cells, and B cells in multiple tumors. A positive correlation between ACE2 expression and immune neoantigen, TMB, and microsatellite instability was found in multiple cancers. GSEA analysis which was carried out to determine the effect of ACE2 on tumors indicated that several cancer-associated pathways and immune-related pathways were hyperactivated in the high ACE2 expression group of most tumors. Conclusion These findings suggest that ACE2 is not correlated with prognosis in most cancer types. However, elevated ACE2 is significantly correlated with immune infiltrating levels, including those of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs in multiple cancers, especially in lung and breast cancer patients. These findings suggest that ACE2 may affect the tumor environment in cancer patients with COVID-19.
Collapse
Affiliation(s)
- Jukun Song
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, China
| | - Jing Han
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guizhou, China
| | - Feng Liu
- Department of B Ultrasound, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xianlin Chen
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, China
| | - Shenqi Qian
- Department of Stomatology, Changshun County Medical Group Central Hospital, Guizhou, China
| | - Yadong Wang
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Xiaofeng Duan
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xiangyan Zhang
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guizhou, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, China
| |
Collapse
|
25
|
Saponaro F, Rutigliano G, Sestito S, Bandini L, Storti B, Bizzarri R, Zucchi R. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Front Mol Biosci 2020; 7:588618. [PMID: 33195436 PMCID: PMC7556165 DOI: 10.3389/fmolb.2020.588618] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 12/23/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is related to ACE but turned out to counteract several pathophysiological actions of ACE. ACE2 exerts antihypertensive and cardioprotective effects and reduces lung inflammation. ACE2 is subjected to extensive transcriptional and post-transcriptional modulation by epigenetic mechanisms and microRNAs. Also, ACE2 expression is regulated post-translationally by glycosylation, phosphorylation, and shedding from the plasma membrane. ACE2 protein is ubiquitous across mammalian tissues, prominently in the cardiovascular system, kidney, and intestine. ACE2 expression in the respiratory tract is of particular interest, in light of the discovery that ACE2 serves as the initial cellular target of severe acute respiratory syndrome (SARS)-coronaviruses, including the recent SARS-CoV2, responsible of the COronaVIrus Disease 2019 (COVID-19). Since the onset of the COVID-19 pandemic, an intense effort has been made to elucidate the biochemical determinants of SARS-CoV2-ACE2 interaction. It has been determined that SARS-CoV2 engages with ACE2 through its spike (S) protein, which consists of two subunits: S1, that mediates binding to the host receptor; S2, that induces fusion of the viral envelope with the host cell membrane and delivery of the viral genome. Owing to the role of ACE2 in SARS-CoV2 pathogenicity, it has been speculated that medical conditions, i.e., hypertension, and/or drugs, i.e., ACE inhibitors and angiotensin receptor blockers, known to influence ACE2 density could alter the fate of SARS-CoV-2 infection. The debate is still open and will only be solved when results of properly designed experimental and clinical investigations will be made public. An interesting observation is, however that, upon infection, ACE2 activity is reduced either by downregulation or by shedding. These events might precipitate the so-called "cytokine storm" that characterizes the most severe COVID-19 forms. As evidence accumulates, ACE2 appears a druggable target in the attempt to limit virus entry and replication. Strategies aimed at blocking ACE2 with antibodies, small molecules or peptides, or at neutralizing the virus by competitive binding with exogenously administered ACE2, are currently under investigations. In this review, we will present an overview of the state-of-the-art knowledge on ACE2 biochemistry and pathophysiology, outlining open issues in the context of COVID-19 disease and potential experimental and clinical developments.
Collapse
Affiliation(s)
| | | | - Simona Sestito
- Department of Pathology, University of Pisa, Pisa, Italy
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Barbara Storti
- NEST, Scuola Normale Superiore and CNR-NANO, Pisa, Italy
| | - Ranieri Bizzarri
- Department of Pathology, University of Pisa, Pisa, Italy
- NEST, Scuola Normale Superiore and CNR-NANO, Pisa, Italy
| | | |
Collapse
|
26
|
Descamps G, Verset L, Trelcat A, Hopkins C, Lechien JR, Journe F, Saussez S. ACE2 Protein Landscape in the Head and Neck Region: The Conundrum of SARS-CoV-2 Infection. BIOLOGY 2020; 9:235. [PMID: 32824830 PMCID: PMC7465650 DOI: 10.3390/biology9080235] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus pandemic raging worldwide since December 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which invades human cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Although it has already been identified in many organs, ACE2 expression remains largely unknown in the head and neck (HN) sphere. Thus, this study aims to investigate its protein expression in several sites of the upper aerodigestive tract in order to highlight potential routes of infection. We compared ACE2 immunohistochemical expression between 70 paraffin-embedded specimens with two different antibodies and reported the quantified expression in each histological location. Surprisingly, we obtained different results depending on the antibody, an absence of labeling having been observed with a monoclonal antibody raised against the extracellular domain, whereas the polyclonal, against the cytoplasmic part of the protein, revealed enriched ACE2 expression, particularly in sinuses, vocal cords, salivary glands and oral cavity epithelial cells. The interpretation of these discordant results has brought several exciting lines of reflection. In conclusion, this study provides possible routes of entry for the SARS-CoV-2 in HN region and, above all, has led us to encourage caution when studying the ACE2 expression which is currently at the center of all attention.
Collapse
Affiliation(s)
- Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
| | - Laurine Verset
- Department of Pathology, Institute Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium;
| | - Anne Trelcat
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
| | - Claire Hopkins
- Guy’s and St Thomas’ Hospitals, Westminster Bridge Road, London SE1 9RT, UK;
- British Rhinological Society (President), 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - Jérome R. Lechien
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 40 Rue Worth, Suresnes, 92150 Paris, France
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, Université Libre de Bruxelles, Rue aux Laines 105, 1000 Brussels, Belgium
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
- Department of Oncology and Experimental Surgery, Institute Jules Bordet (IJB), Université Libre de Bruxelles (ULB), Rue Heger-Bordet 1, 1000 Brussels, Belgium
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, Université Libre de Bruxelles, Rue aux Laines 105, 1000 Brussels, Belgium
| |
Collapse
|
27
|
Huang X, He C, Hua X, Kan A, Sun S, Wang J, Li S. Bioinformatic Analysis of Correlation between Immune Infiltration and COVID-19 in Cancer Patients. Int J Biol Sci 2020; 16:2464-2476. [PMID: 32760213 PMCID: PMC7378636 DOI: 10.7150/ijbs.48639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/20/2020] [Indexed: 01/08/2023] Open
Abstract
In 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused infections worldwide. However, the correlation between the immune infiltration and coronavirus disease 2019 (COVID-19) susceptibility or severity in cancer patients remains to be fully elucidated. ACE2 expressions in normal tissues, cancers and cell lines were comprehensively assessed. Furthermore, we compared ACE2 expression between cancers and matched normal tissues through Gene Expression Profiling Interactive Analysis (GEPIA). In addition, we performed gene set enrichment analysis (GSEA) to investigate the related signaling pathways. Finally, the correlations between ACE2 expression and immune infiltration were investigated via Tumor Immune Estimation Resource (TIMER) and GEPIA. We found that ACE2 was predominantly expressed in both adult and fetal tissues from the digestive, urinary and male reproductive tracts; moreover, ACE2 expressions in corresponding cancers were generally higher than that in matched healthy tissues. GSEA showed that various metabolic and immune-related pathways were significantly associated with ACE2 expression across multiple cancer types. Intriguingly, we found that ACE2 expression correlated significantly with immune cell infiltration in both normal and cancer tissues, especially in the stomach and colon. These findings proposed a possible fecal-oral and maternal-fetal transmission of SARS-CoV-2 and suggested that cancers of the respiratory, digestive or urinary tracts would be more vulnerable to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chaobin He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin Hua
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Anna Kan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Hepatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuxin Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengping Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
28
|
Beitia M, Solano-Iturri JD, Errarte P, Calvete-Candenas J, Loizate A, Etxezarraga MC, Sanz B, Larrinaga G. (Pro)renin Receptor Expression Increases throughout the Colorectal Adenoma-Adenocarcinoma Sequence and It Is Associated with Worse Colorectal Cancer Prognosis. Cancers (Basel) 2019; 11:E881. [PMID: 31238566 PMCID: PMC6627867 DOI: 10.3390/cancers11060881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022] Open
Abstract
(Pro)renin receptor (PRR) is a protein that takes part in several signaling pathways such as Renin Angiotensin System and Wnt signalling. Its biological role has recently been related to cancer progression and in this study, we investigated its relevance in colorectal cancer (CRC). To that end, we analysed the immunohistochemical expression of PRR in adenomatous polyps and CRCs from the same patients (n = 42), and in primary tumours and nodal and liver metastases from advanced CRC patients (n = 294). In addition, the soluble fraction of PRR was measured by ELISA in plasma samples from 161 CRC patients. The results showed that PRR expression was gradually augmented along the uninvolved mucosa-adenoma-adenocarcinoma sequence. Besides, the stronger expression of PRR in primary tumours was markedly associated with local tumour extent and the onset of metastases. Moreover, PRR expression in both primary and distant metastases was associated with worse 5- and 10-year survival of CRC patients. Plasmatic PRR levels did not change with respect to controls and were not associated with CRC aggressiveness. These results suggest a key role of PRR in the development and progression of CRC and a potential use of this protein as a new prognostic biomarker and/or therapeutic target for this disease.
Collapse
Affiliation(s)
- Maider Beitia
- Department of Physiology, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, 48940 Bizkaia, Spain.
- Department of Nursing, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, 48940 Bizkaia, Spain.
- BioCruces Research Institute, Barakaldo, 48903 Bizkaia, Spain.
| | - Jon Danel Solano-Iturri
- BioCruces Research Institute, Barakaldo, 48903 Bizkaia, Spain.
- Department of Pathology, Cruces University Hospital, Bilbao, 48903 Bizkaia, Spain.
| | - Peio Errarte
- Department of Physiology, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, 48940 Bizkaia, Spain.
- Department of Nursing, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, 48940 Bizkaia, Spain.
- BioCruces Research Institute, Barakaldo, 48903 Bizkaia, Spain.
| | | | - Alberto Loizate
- Department of Surgery, Basurto University Hospital, University of the Basque Country (UPV/EHU) Bilbao, 48013 Bizkaia, Spain.
| | - Mari Carmen Etxezarraga
- BioCruces Research Institute, Barakaldo, 48903 Bizkaia, Spain.
- Department of Anatomic Pathology, Basurto University Hospital, University of the Basque Country (UPV/EHU), Bilbao, 48013 Bizkaia, Spain.
| | - Begoña Sanz
- Department of Physiology, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, 48940 Bizkaia, Spain.
- BioCruces Research Institute, Barakaldo, 48903 Bizkaia, Spain.
| | - Gorka Larrinaga
- Department of Physiology, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, 48940 Bizkaia, Spain.
- Department of Nursing, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, 48940 Bizkaia, Spain.
- BioCruces Research Institute, Barakaldo, 48903 Bizkaia, Spain.
| |
Collapse
|
29
|
Dolomatov S, Zukow W, Novikov N, Markaryan A, Eremeeva E. EXPRESSION OF THE RENIN-ANGIOTENSIN SYSTEM COMPONENTS IN ONCOLOGIC DISEASES. Acta Clin Croat 2019; 58:354-364. [PMID: 31819334 PMCID: PMC6884393 DOI: 10.20471/acc.2019.58.02.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The literature devoted to changes in the expression of the renin-angiotensin system (RAS) proteins of cancer cells was analyzed. The dynamics of RAS protein expression in malignant tumors and the possible role of epigenetic mechanisms in these processes are briefly reviewed. Through research of the epigenetic mechanisms in cancer, principally new techniques for their correction based on the use of selective regulatory systems of covalent modification of histone proteins (for example, deacetylase inhibitor) and microRNA synthesis technologies have been developed. Literature data show promising pharmacological correction of epigenetic modification of chromatin in the treatment of cancer.
Collapse
Affiliation(s)
| | - Walery Zukow
- 1Department of Medical Biology, Medical Academy SI Georgievsky, Crimea Federal University, Simferopol, Russian Federation jurisdiction; 2Faculty of Earth, Nicolaus Copernicus University, Toruń, Poland; 3A. Tsyb Medical Radiological Research Center, branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Kaluga Region, Russian Federation
| | - Nikolay Novikov
- 1Department of Medical Biology, Medical Academy SI Georgievsky, Crimea Federal University, Simferopol, Russian Federation jurisdiction; 2Faculty of Earth, Nicolaus Copernicus University, Toruń, Poland; 3A. Tsyb Medical Radiological Research Center, branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Kaluga Region, Russian Federation
| | - Alexandra Markaryan
- 1Department of Medical Biology, Medical Academy SI Georgievsky, Crimea Federal University, Simferopol, Russian Federation jurisdiction; 2Faculty of Earth, Nicolaus Copernicus University, Toruń, Poland; 3A. Tsyb Medical Radiological Research Center, branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Kaluga Region, Russian Federation
| | - Elena Eremeeva
- 1Department of Medical Biology, Medical Academy SI Georgievsky, Crimea Federal University, Simferopol, Russian Federation jurisdiction; 2Faculty of Earth, Nicolaus Copernicus University, Toruń, Poland; 3A. Tsyb Medical Radiological Research Center, branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Kaluga Region, Russian Federation
| |
Collapse
|
30
|
Tang Y, Liu Z, Liang J, Zhang R, Wu K, Zou Z, Zhou C, Zhang F, Lu Y. Early post-operative serum albumin level predicts survival after curative nephrectomy for kidney cancer: a retrospective study. BMC Urol 2018; 18:111. [PMID: 30522461 PMCID: PMC6282248 DOI: 10.1186/s12894-018-0427-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous studies have shown that albumin-related systemic inflammation is associated with the long-term prognosis of cancer, but the clinical significance of an early (≤ 7 days) post-operative serum albumin level has not been well-documented as a prognostic factor in patients with renal cell cancer. METHODS We retrospectively included patients hospitalized for kidney cancer from January 2009 to May 2014. First, the receiver operating characteristic analysis was used to define the best cut-off of an early post-operative serum albumin level in determining the prognosis, from which survival analysis was performed. RESULTS A total of 329 patients were included. The median duration of follow-up was 54.8 months. Patients with an early post-operative serum albumin level < 32 g/L had a significantly shorter median recurrence-free survival (RFS; 49.1 versus 56.5 months, P = 0.001) and median overall survival (OS; 52.2 versus 57.0 months, P = 0.049) than patients with an early post-operative serum albumin level ≥ 32 g/L. After adjusting for age, BMI, tumor stage, post-operative hemoglobin concentration, and pre-operative albumin, globulin, and hemoglobin levels, multivariate Cox regression showed that an early post-operative serum albumin level < 32 g/L was an independent prognostic factor associated with a decreased RFS (HR = 3.60; 95% CI,1.05-12.42 [months], P = 0.042) and decreased OS (HR = 9.95; 95% CI, 1.81-54.80 [months], P = 0.008). CONCLUSION An early post-operative serum albumin level < 32 g/L is an independent prognostic factor leading to an unfavorable RFS and OS. Prospective trials and further studies involving additional patients are warranted.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37 of Guoxue Xiang, Chengdu, 610041 China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruochen Zhang
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Kan Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zijun Zou
- Department of Urology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|